1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/codegen.h"
#if defined(V8_OS_AIX)
#include <fenv.h> // NOLINT(build/c++11)
#endif
#include "src/ast/prettyprinter.h"
#include "src/bootstrapper.h"
#include "src/compiler.h"
#include "src/debug/debug.h"
#include "src/parsing/parser.h"
#include "src/profiler/cpu-profiler.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
#if defined(V8_OS_WIN)
double modulo(double x, double y) {
// Workaround MS fmod bugs. ECMA-262 says:
// dividend is finite and divisor is an infinity => result equals dividend
// dividend is a zero and divisor is nonzero finite => result equals dividend
if (!(std::isfinite(x) && (!std::isfinite(y) && !std::isnan(y))) &&
!(x == 0 && (y != 0 && std::isfinite(y)))) {
x = fmod(x, y);
}
return x;
}
#else // POSIX
double modulo(double x, double y) {
#if defined(V8_OS_AIX)
// AIX raises an underflow exception for (Number.MIN_VALUE % Number.MAX_VALUE)
feclearexcept(FE_ALL_EXCEPT);
double result = std::fmod(x, y);
int exception = fetestexcept(FE_UNDERFLOW);
return (exception ? x : result);
#else
return std::fmod(x, y);
#endif
}
#endif // defined(V8_OS_WIN)
#define UNARY_MATH_FUNCTION(name, generator) \
static UnaryMathFunctionWithIsolate fast_##name##_function = nullptr; \
double std_##name(double x, Isolate* isolate) { return std::name(x); } \
void init_fast_##name##_function(Isolate* isolate) { \
if (FLAG_fast_math) fast_##name##_function = generator(isolate); \
if (!fast_##name##_function) fast_##name##_function = std_##name; \
} \
void lazily_initialize_fast_##name(Isolate* isolate) { \
if (!fast_##name##_function) init_fast_##name##_function(isolate); \
} \
double fast_##name(double x, Isolate* isolate) { \
return (*fast_##name##_function)(x, isolate); \
}
UNARY_MATH_FUNCTION(sqrt, CreateSqrtFunction)
UNARY_MATH_FUNCTION(exp, CreateExpFunction)
#undef UNARY_MATH_FUNCTION
#define __ ACCESS_MASM(masm_)
#ifdef DEBUG
Comment::Comment(MacroAssembler* masm, const char* msg)
: masm_(masm), msg_(msg) {
__ RecordComment(msg);
}
Comment::~Comment() {
if (msg_[0] == '[') __ RecordComment("]");
}
#endif // DEBUG
#undef __
void CodeGenerator::MakeCodePrologue(CompilationInfo* info, const char* kind) {
bool print_source = false;
bool print_ast = false;
const char* ftype;
if (info->isolate()->bootstrapper()->IsActive()) {
print_source = FLAG_print_builtin_source;
print_ast = FLAG_print_builtin_ast;
ftype = "builtin";
} else {
print_source = FLAG_print_source;
print_ast = FLAG_print_ast;
ftype = "user-defined";
}
if (FLAG_trace_codegen || print_source || print_ast) {
base::SmartArrayPointer<char> name = info->GetDebugName();
PrintF("[generating %s code for %s function: %s]\n", kind, ftype,
name.get());
}
#ifdef DEBUG
if (info->parse_info() && print_source) {
PrintF("--- Source from AST ---\n%s\n",
PrettyPrinter(info->isolate()).PrintProgram(info->literal()));
}
if (info->parse_info() && print_ast) {
PrintF("--- AST ---\n%s\n",
AstPrinter(info->isolate()).PrintProgram(info->literal()));
}
#endif // DEBUG
}
Handle<Code> CodeGenerator::MakeCodeEpilogue(MacroAssembler* masm,
CompilationInfo* info) {
Isolate* isolate = info->isolate();
Code::Flags flags;
if (info->IsStub() && info->code_stub()) {
DCHECK_EQ(info->output_code_kind(), info->code_stub()->GetCodeKind());
flags = Code::ComputeFlags(
info->output_code_kind(), info->code_stub()->GetICState(),
info->code_stub()->GetExtraICState(), info->code_stub()->GetStubType());
} else {
flags = Code::ComputeFlags(info->output_code_kind());
}
// Allocate and install the code.
CodeDesc desc;
bool is_crankshafted =
Code::ExtractKindFromFlags(flags) == Code::OPTIMIZED_FUNCTION ||
info->IsStub();
masm->GetCode(&desc);
Handle<Code> code =
isolate->factory()->NewCode(desc, flags, masm->CodeObject(),
false, is_crankshafted,
info->prologue_offset(),
info->is_debug() && !is_crankshafted);
isolate->counters()->total_compiled_code_size()->Increment(
code->instruction_size());
isolate->heap()->IncrementCodeGeneratedBytes(is_crankshafted,
code->instruction_size());
return code;
}
void CodeGenerator::PrintCode(Handle<Code> code, CompilationInfo* info) {
#ifdef ENABLE_DISASSEMBLER
AllowDeferredHandleDereference allow_deference_for_print_code;
bool print_code = info->isolate()->bootstrapper()->IsActive()
? FLAG_print_builtin_code
: (FLAG_print_code ||
(info->IsStub() && FLAG_print_code_stubs) ||
(info->IsOptimizing() && FLAG_print_opt_code));
if (print_code) {
base::SmartArrayPointer<char> debug_name = info->GetDebugName();
CodeTracer::Scope tracing_scope(info->isolate()->GetCodeTracer());
OFStream os(tracing_scope.file());
// Print the source code if available.
bool print_source =
info->parse_info() && (code->kind() == Code::OPTIMIZED_FUNCTION ||
code->kind() == Code::FUNCTION);
if (print_source) {
FunctionLiteral* literal = info->literal();
Handle<Script> script = info->script();
if (!script->IsUndefined() && !script->source()->IsUndefined()) {
os << "--- Raw source ---\n";
StringCharacterStream stream(String::cast(script->source()),
literal->start_position());
// fun->end_position() points to the last character in the stream. We
// need to compensate by adding one to calculate the length.
int source_len =
literal->end_position() - literal->start_position() + 1;
for (int i = 0; i < source_len; i++) {
if (stream.HasMore()) {
os << AsReversiblyEscapedUC16(stream.GetNext());
}
}
os << "\n\n";
}
}
if (info->IsOptimizing()) {
if (FLAG_print_unopt_code && info->parse_info()) {
os << "--- Unoptimized code ---\n";
info->closure()->shared()->code()->Disassemble(debug_name.get(), os);
}
os << "--- Optimized code ---\n"
<< "optimization_id = " << info->optimization_id() << "\n";
} else {
os << "--- Code ---\n";
}
if (print_source) {
FunctionLiteral* literal = info->literal();
os << "source_position = " << literal->start_position() << "\n";
}
code->Disassemble(debug_name.get(), os);
os << "--- End code ---\n";
}
#endif // ENABLE_DISASSEMBLER
}
} // namespace internal
} // namespace v8
|