summaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/ppc/macro-assembler-ppc.h
blob: c9e28283b21e032bfd30442105404390e240b933 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
#error This header must be included via macro-assembler.h
#endif

#ifndef V8_CODEGEN_PPC_MACRO_ASSEMBLER_PPC_H_
#define V8_CODEGEN_PPC_MACRO_ASSEMBLER_PPC_H_

#include "src/base/numbers/double.h"
#include "src/base/platform/platform.h"
#include "src/codegen/bailout-reason.h"
#include "src/codegen/ppc/assembler-ppc.h"
#include "src/common/globals.h"
#include "src/execution/isolate-data.h"
#include "src/objects/contexts.h"

namespace v8 {
namespace internal {

enum class StackLimitKind { kInterruptStackLimit, kRealStackLimit };

// ----------------------------------------------------------------------------
// Static helper functions

// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
  return MemOperand(object, offset - kHeapObjectTag);
}

enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };

Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
                                   Register reg3 = no_reg,
                                   Register reg4 = no_reg,
                                   Register reg5 = no_reg,
                                   Register reg6 = no_reg);

// These exist to provide portability between 32 and 64bit
#if V8_TARGET_ARCH_PPC64
#define ClearLeftImm clrldi
#define ClearRightImm clrrdi
#else
#define ClearLeftImm clrlwi
#define ClearRightImm clrrwi
#endif

class V8_EXPORT_PRIVATE MacroAssembler : public MacroAssemblerBase {
 public:
  using MacroAssemblerBase::MacroAssemblerBase;

  void CallBuiltin(Builtin builtin, Condition cond = al);
  void TailCallBuiltin(Builtin builtin, Condition cond = al,
                       CRegister cr = cr7);
  void Popcnt32(Register dst, Register src);
  void Popcnt64(Register dst, Register src);
  // Converts the integer (untagged smi) in |src| to a double, storing
  // the result to |dst|
  void ConvertIntToDouble(Register src, DoubleRegister dst);

  // Converts the unsigned integer (untagged smi) in |src| to
  // a double, storing the result to |dst|
  void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);

  // Converts the integer (untagged smi) in |src| to
  // a float, storing the result in |dst|
  void ConvertIntToFloat(Register src, DoubleRegister dst);

  // Converts the unsigned integer (untagged smi) in |src| to
  // a float, storing the result in |dst|
  void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);

#if V8_TARGET_ARCH_PPC64
  void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
  void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
  void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
  void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
#endif

  // Converts the double_input to an integer.  Note that, upon return,
  // the contents of double_dst will also hold the fixed point representation.
  void ConvertDoubleToInt64(const DoubleRegister double_input,
#if !V8_TARGET_ARCH_PPC64
                            const Register dst_hi,
#endif
                            const Register dst, const DoubleRegister double_dst,
                            FPRoundingMode rounding_mode = kRoundToZero);

#if V8_TARGET_ARCH_PPC64
  // Converts the double_input to an unsigned integer.  Note that, upon return,
  // the contents of double_dst will also hold the fixed point representation.
  void ConvertDoubleToUnsignedInt64(
      const DoubleRegister double_input, const Register dst,
      const DoubleRegister double_dst,
      FPRoundingMode rounding_mode = kRoundToZero);
#endif

  // Activation support.
  void EnterFrame(StackFrame::Type type,
                  bool load_constant_pool_pointer_reg = false);

  // Returns the pc offset at which the frame ends.
  int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);

  void AllocateStackSpace(int bytes) {
    DCHECK_GE(bytes, 0);
    if (bytes == 0) return;
    AddS64(sp, sp, Operand(-bytes), r0);
  }

  void AllocateStackSpace(Register bytes) { sub(sp, sp, bytes); }

  // Push a fixed frame, consisting of lr, fp, constant pool.
  void PushCommonFrame(Register marker_reg = no_reg);

  // Generates function and stub prologue code.
  void StubPrologue(StackFrame::Type type);
  void Prologue();

  enum ArgumentsCountMode { kCountIncludesReceiver, kCountExcludesReceiver };
  enum ArgumentsCountType { kCountIsInteger, kCountIsSmi, kCountIsBytes };
  void DropArguments(Register count, ArgumentsCountType type,
                     ArgumentsCountMode mode);
  void DropArgumentsAndPushNewReceiver(Register argc, Register receiver,
                                       ArgumentsCountType type,
                                       ArgumentsCountMode mode);

  // Push a standard frame, consisting of lr, fp, constant pool,
  // context and JS function
  void PushStandardFrame(Register function_reg);

  // Restore caller's frame pointer and return address prior to being
  // overwritten by tail call stack preparation.
  void RestoreFrameStateForTailCall();

  // Get the actual activation frame alignment for target environment.
  static int ActivationFrameAlignment();

  void InitializeRootRegister() {
    ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
    mov(kRootRegister, Operand(isolate_root));
#ifdef V8_COMPRESS_POINTERS
    LoadRootRelative(kPtrComprCageBaseRegister,
                     IsolateData::cage_base_offset());
#endif
  }

  void LoadDoubleLiteral(DoubleRegister result, base::Double value,
                         Register scratch);

  // load a literal signed int value <value> to GPR <dst>
  void LoadIntLiteral(Register dst, int value);
  // load an SMI value <value> to GPR <dst>
  void LoadSmiLiteral(Register dst, Smi smi);

  void LoadPC(Register dst);
  void ComputeCodeStartAddress(Register dst);

  void CmpS64(Register src1, const Operand& src2, Register scratch,
              CRegister cr = cr7);
  void CmpS64(Register src1, Register src2, CRegister cr = cr7);
  void CmpU64(Register src1, const Operand& src2, Register scratch,
              CRegister cr = cr7);
  void CmpU64(Register src1, Register src2, CRegister cr = cr7);
  void CmpS32(Register src1, const Operand& src2, Register scratch,
              CRegister cr = cr7);
  void CmpS32(Register src1, Register src2, CRegister cr = cr7);
  void CmpU32(Register src1, const Operand& src2, Register scratch,
              CRegister cr = cr7);
  void CmpU32(Register src1, Register src2, CRegister cr = cr7);
  void CompareTagged(Register src1, Register src2, CRegister cr = cr7) {
    if (COMPRESS_POINTERS_BOOL) {
      CmpS32(src1, src2, cr);
    } else {
      CmpS64(src1, src2, cr);
    }
  }

  void MinF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
              DoubleRegister scratch = kScratchDoubleReg);
  void MaxF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
              DoubleRegister scratch = kScratchDoubleReg);

  // Set new rounding mode RN to FPSCR
  void SetRoundingMode(FPRoundingMode RN);

  // reset rounding mode to default (kRoundToNearest)
  void ResetRoundingMode();

  void AddS64(Register dst, Register src, const Operand& value,
              Register scratch = r0, OEBit s = LeaveOE, RCBit r = LeaveRC);
  void AddS64(Register dst, Register src, Register value, OEBit s = LeaveOE,
              RCBit r = LeaveRC);
  void SubS64(Register dst, Register src, const Operand& value,
              Register scratch = r0, OEBit s = LeaveOE, RCBit r = LeaveRC);
  void SubS64(Register dst, Register src, Register value, OEBit s = LeaveOE,
              RCBit r = LeaveRC);
  void AddS32(Register dst, Register src, const Operand& value,
              Register scratch = r0, RCBit r = LeaveRC);
  void AddS32(Register dst, Register src, Register value, RCBit r = LeaveRC);
  void SubS32(Register dst, Register src, const Operand& value,
              Register scratch = r0, RCBit r = LeaveRC);
  void SubS32(Register dst, Register src, Register value, RCBit r = LeaveRC);
  void MulS64(Register dst, Register src, const Operand& value,
              Register scratch = r0, OEBit s = LeaveOE, RCBit r = LeaveRC);
  void MulS64(Register dst, Register src, Register value, OEBit s = LeaveOE,
              RCBit r = LeaveRC);
  void MulS32(Register dst, Register src, const Operand& value,
              Register scratch = r0, OEBit s = LeaveOE, RCBit r = LeaveRC);
  void MulS32(Register dst, Register src, Register value, OEBit s = LeaveOE,
              RCBit r = LeaveRC);
  void DivS64(Register dst, Register src, Register value, OEBit s = LeaveOE,
              RCBit r = LeaveRC);
  void DivU64(Register dst, Register src, Register value, OEBit s = LeaveOE,
              RCBit r = LeaveRC);
  void DivS32(Register dst, Register src, Register value, OEBit s = LeaveOE,
              RCBit r = LeaveRC);
  void DivU32(Register dst, Register src, Register value, OEBit s = LeaveOE,
              RCBit r = LeaveRC);
  void ModS64(Register dst, Register src, Register value);
  void ModU64(Register dst, Register src, Register value);
  void ModS32(Register dst, Register src, Register value);
  void ModU32(Register dst, Register src, Register value);

  void AndU64(Register dst, Register src, const Operand& value,
              Register scratch = r0, RCBit r = SetRC);
  void AndU64(Register dst, Register src, Register value, RCBit r = SetRC);
  void OrU64(Register dst, Register src, const Operand& value,
             Register scratch = r0, RCBit r = SetRC);
  void OrU64(Register dst, Register src, Register value, RCBit r = LeaveRC);
  void XorU64(Register dst, Register src, const Operand& value,
              Register scratch = r0, RCBit r = SetRC);
  void XorU64(Register dst, Register src, Register value, RCBit r = LeaveRC);
  void AndU32(Register dst, Register src, const Operand& value,
              Register scratch = r0, RCBit r = SetRC);
  void AndU32(Register dst, Register src, Register value, RCBit r = SetRC);
  void OrU32(Register dst, Register src, const Operand& value,
             Register scratch = r0, RCBit r = SetRC);
  void OrU32(Register dst, Register src, Register value, RCBit r = LeaveRC);
  void XorU32(Register dst, Register src, const Operand& value,
              Register scratch = r0, RCBit r = SetRC);
  void XorU32(Register dst, Register src, Register value, RCBit r = LeaveRC);

  void ShiftLeftU64(Register dst, Register src, const Operand& value,
                    RCBit r = LeaveRC);
  void ShiftRightU64(Register dst, Register src, const Operand& value,
                     RCBit r = LeaveRC);
  void ShiftRightS64(Register dst, Register src, const Operand& value,
                     RCBit r = LeaveRC);
  void ShiftLeftU32(Register dst, Register src, const Operand& value,
                    RCBit r = LeaveRC);
  void ShiftRightU32(Register dst, Register src, const Operand& value,
                     RCBit r = LeaveRC);
  void ShiftRightS32(Register dst, Register src, const Operand& value,
                     RCBit r = LeaveRC);
  void ShiftLeftU64(Register dst, Register src, Register value,
                    RCBit r = LeaveRC);
  void ShiftRightU64(Register dst, Register src, Register value,
                     RCBit r = LeaveRC);
  void ShiftRightS64(Register dst, Register src, Register value,
                     RCBit r = LeaveRC);
  void ShiftLeftU32(Register dst, Register src, Register value,
                    RCBit r = LeaveRC);
  void ShiftRightU32(Register dst, Register src, Register value,
                     RCBit r = LeaveRC);
  void ShiftRightS32(Register dst, Register src, Register value,
                     RCBit r = LeaveRC);

  void CountLeadingZerosU32(Register dst, Register src, RCBit r = LeaveRC);
  void CountLeadingZerosU64(Register dst, Register src, RCBit r = LeaveRC);
  void CountTrailingZerosU32(Register dst, Register src, Register scratch1 = ip,
                             Register scratch2 = r0, RCBit r = LeaveRC);
  void CountTrailingZerosU64(Register dst, Register src, Register scratch1 = ip,
                             Register scratch2 = r0, RCBit r = LeaveRC);

  void ClearByteU64(Register dst, int byte_idx);
  void ReverseBitsU64(Register dst, Register src, Register scratch1,
                      Register scratch2);
  void ReverseBitsU32(Register dst, Register src, Register scratch1,
                      Register scratch2);
  void ReverseBitsInSingleByteU64(Register dst, Register src,
                                  Register scratch1, Register scratch2,
                                  int byte_idx);

  void AddF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
              RCBit r = LeaveRC);
  void SubF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
              RCBit r = LeaveRC);
  void MulF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
              RCBit r = LeaveRC);
  void DivF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
              RCBit r = LeaveRC);
  void AddF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
              RCBit r = LeaveRC);
  void SubF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
              RCBit r = LeaveRC);
  void MulF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
              RCBit r = LeaveRC);
  void DivF32(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
              RCBit r = LeaveRC);
  void CopySignF64(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs,
                   RCBit r = LeaveRC);

  template <class _type>
  void SignedExtend(Register dst, Register value) {
    switch (sizeof(_type)) {
      case 1:
        extsb(dst, value);
        break;
      case 2:
        extsh(dst, value);
        break;
      case 4:
        extsw(dst, value);
        break;
      case 8:
        if (dst != value) mr(dst, value);
        break;
      default:
        UNREACHABLE();
    }
  }

  template <class _type>
  void ZeroExtend(Register dst, Register value) {
    switch (sizeof(_type)) {
      case 1:
        ZeroExtByte(dst, value);
        break;
      case 2:
        ZeroExtHalfWord(dst, value);
        break;
      case 4:
        ZeroExtWord32(dst, value);
        break;
      case 8:
        if (dst != value) mr(dst, value);
        break;
      default:
        UNREACHABLE();
    }
  }
  template <class _type>
  void ExtendValue(Register dst, Register value) {
    if (std::is_signed<_type>::value) {
      SignedExtend<_type>(dst, value);
    } else {
      ZeroExtend<_type>(dst, value);
    }
  }

  template <class _type>
  void LoadReserve(Register output, MemOperand dst) {
    switch (sizeof(_type)) {
      case 1:
        lbarx(output, dst);
        break;
      case 2:
        lharx(output, dst);
        break;
      case 4:
        lwarx(output, dst);
        break;
      case 8:
        ldarx(output, dst);
        break;
      default:
        UNREACHABLE();
    }
    if (std::is_signed<_type>::value) {
      SignedExtend<_type>(output, output);
    }
  }

  template <class _type>
  void StoreConditional(Register value, MemOperand dst) {
    switch (sizeof(_type)) {
      case 1:
        stbcx(value, dst);
        break;
      case 2:
        sthcx(value, dst);
        break;
      case 4:
        stwcx(value, dst);
        break;
      case 8:
        stdcx(value, dst);
        break;
      default:
        UNREACHABLE();
    }
  }

  template <class _type>
  void AtomicCompareExchange(MemOperand dst, Register old_value,
                             Register new_value, Register output,
                             Register scratch) {
    Label loop;
    Label exit;
    if (sizeof(_type) != 8) {
      ExtendValue<_type>(scratch, old_value);
      old_value = scratch;
    }
    lwsync();
    bind(&loop);
    LoadReserve<_type>(output, dst);
    cmp(output, old_value, cr0);
    bne(&exit, cr0);
    StoreConditional<_type>(new_value, dst);
    bne(&loop, cr0);
    bind(&exit);
    sync();
  }

  template <class _type>
  void AtomicExchange(MemOperand dst, Register new_value, Register output) {
    Label exchange;
    lwsync();
    bind(&exchange);
    LoadReserve<_type>(output, dst);
    StoreConditional<_type>(new_value, dst);
    bne(&exchange, cr0);
    sync();
  }

  template <class _type, class bin_op>
  void AtomicOps(MemOperand dst, Register value, Register output,
                 Register result, bin_op op) {
    Label binop;
    lwsync();
    bind(&binop);
    switch (sizeof(_type)) {
      case 1:
        lbarx(output, dst);
        break;
      case 2:
        lharx(output, dst);
        break;
      case 4:
        lwarx(output, dst);
        break;
      case 8:
        ldarx(output, dst);
        break;
      default:
        UNREACHABLE();
    }
    op(result, output, value);
    switch (sizeof(_type)) {
      case 1:
        stbcx(result, dst);
        break;
      case 2:
        sthcx(result, dst);
        break;
      case 4:
        stwcx(result, dst);
        break;
      case 8:
        stdcx(result, dst);
        break;
      default:
        UNREACHABLE();
    }
    bne(&binop, cr0);
    sync();
  }

  void Push(Register src) { push(src); }
  // Push a handle.
  void Push(Handle<HeapObject> handle);
  void Push(Smi smi);

  // Push two registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2) {
    StoreU64WithUpdate(src2, MemOperand(sp, -2 * kSystemPointerSize));
    StoreU64(src1, MemOperand(sp, kSystemPointerSize));
  }

  // Push three registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3) {
    StoreU64WithUpdate(src3, MemOperand(sp, -3 * kSystemPointerSize));
    StoreU64(src2, MemOperand(sp, kSystemPointerSize));
    StoreU64(src1, MemOperand(sp, 2 * kSystemPointerSize));
  }

  // Push four registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4) {
    StoreU64WithUpdate(src4, MemOperand(sp, -4 * kSystemPointerSize));
    StoreU64(src3, MemOperand(sp, kSystemPointerSize));
    StoreU64(src2, MemOperand(sp, 2 * kSystemPointerSize));
    StoreU64(src1, MemOperand(sp, 3 * kSystemPointerSize));
  }

  // Push five registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4,
            Register src5) {
    StoreU64WithUpdate(src5, MemOperand(sp, -5 * kSystemPointerSize));
    StoreU64(src4, MemOperand(sp, kSystemPointerSize));
    StoreU64(src3, MemOperand(sp, 2 * kSystemPointerSize));
    StoreU64(src2, MemOperand(sp, 3 * kSystemPointerSize));
    StoreU64(src1, MemOperand(sp, 4 * kSystemPointerSize));
  }

  enum PushArrayOrder { kNormal, kReverse };
  void PushArray(Register array, Register size, Register scratch,
                 Register scratch2, PushArrayOrder order = kNormal);

  void Pop(Register dst) { pop(dst); }

  // Pop two registers. Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2) {
    LoadU64(src2, MemOperand(sp, 0));
    LoadU64(src1, MemOperand(sp, kSystemPointerSize));
    addi(sp, sp, Operand(2 * kSystemPointerSize));
  }

  // Pop three registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3) {
    LoadU64(src3, MemOperand(sp, 0));
    LoadU64(src2, MemOperand(sp, kSystemPointerSize));
    LoadU64(src1, MemOperand(sp, 2 * kSystemPointerSize));
    addi(sp, sp, Operand(3 * kSystemPointerSize));
  }

  // Pop four registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3, Register src4) {
    LoadU64(src4, MemOperand(sp, 0));
    LoadU64(src3, MemOperand(sp, kSystemPointerSize));
    LoadU64(src2, MemOperand(sp, 2 * kSystemPointerSize));
    LoadU64(src1, MemOperand(sp, 3 * kSystemPointerSize));
    addi(sp, sp, Operand(4 * kSystemPointerSize));
  }

  // Pop five registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3, Register src4,
           Register src5) {
    LoadU64(src5, MemOperand(sp, 0));
    LoadU64(src4, MemOperand(sp, kSystemPointerSize));
    LoadU64(src3, MemOperand(sp, 2 * kSystemPointerSize));
    LoadU64(src2, MemOperand(sp, 3 * kSystemPointerSize));
    LoadU64(src1, MemOperand(sp, 4 * kSystemPointerSize));
    addi(sp, sp, Operand(5 * kSystemPointerSize));
  }

  void MaybeSaveRegisters(RegList registers);
  void MaybeRestoreRegisters(RegList registers);

  void CallEphemeronKeyBarrier(Register object, Register slot_address,
                               SaveFPRegsMode fp_mode);

  void CallRecordWriteStubSaveRegisters(
      Register object, Register slot_address, SaveFPRegsMode fp_mode,
      StubCallMode mode = StubCallMode::kCallBuiltinPointer);
  void CallRecordWriteStub(
      Register object, Register slot_address, SaveFPRegsMode fp_mode,
      StubCallMode mode = StubCallMode::kCallBuiltinPointer);

  void MultiPush(RegList regs, Register location = sp);
  void MultiPop(RegList regs, Register location = sp);

  void MultiPushDoubles(DoubleRegList dregs, Register location = sp);
  void MultiPopDoubles(DoubleRegList dregs, Register location = sp);

  void MultiPushV128(Simd128RegList dregs, Register scratch,
                     Register location = sp);
  void MultiPopV128(Simd128RegList dregs, Register scratch,
                    Register location = sp);

  void MultiPushF64AndV128(DoubleRegList dregs, Simd128RegList simd_regs,
                           Register scratch1, Register scratch2,
                           Register location = sp);
  void MultiPopF64AndV128(DoubleRegList dregs, Simd128RegList simd_regs,
                          Register scratch1, Register scratch2,
                          Register location = sp);

  // Calculate how much stack space (in bytes) are required to store caller
  // registers excluding those specified in the arguments.
  int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
                                      Register exclusion1 = no_reg,
                                      Register exclusion2 = no_reg,
                                      Register exclusion3 = no_reg) const;

  // Push caller saved registers on the stack, and return the number of bytes
  // stack pointer is adjusted.
  int PushCallerSaved(SaveFPRegsMode fp_mode, Register scratch1,
                      Register scratch2, Register exclusion1 = no_reg,
                      Register exclusion2 = no_reg,
                      Register exclusion3 = no_reg);
  // Restore caller saved registers from the stack, and return the number of
  // bytes stack pointer is adjusted.
  int PopCallerSaved(SaveFPRegsMode fp_mode, Register scratch1,
                     Register scratch2, Register exclusion1 = no_reg,
                     Register exclusion2 = no_reg,
                     Register exclusion3 = no_reg);

  // Load an object from the root table.
  void LoadRoot(Register destination, RootIndex index) final {
    LoadRoot(destination, index, al);
  }
  void LoadRoot(Register destination, RootIndex index, Condition cond);
  void LoadTaggedRoot(Register destination, RootIndex index);

  void SwapP(Register src, Register dst, Register scratch);
  void SwapP(Register src, MemOperand dst, Register scratch);
  void SwapP(MemOperand src, MemOperand dst, Register scratch_0,
             Register scratch_1);
  void SwapFloat32(DoubleRegister src, DoubleRegister dst,
                   DoubleRegister scratch);
  void SwapFloat32(DoubleRegister src, MemOperand dst, DoubleRegister scratch);
  void SwapFloat32(MemOperand src, MemOperand dst, DoubleRegister scratch_0,
                   DoubleRegister scratch_1);
  void SwapDouble(DoubleRegister src, DoubleRegister dst,
                  DoubleRegister scratch);
  void SwapDouble(DoubleRegister src, MemOperand dst, DoubleRegister scratch);
  void SwapDouble(MemOperand src, MemOperand dst, DoubleRegister scratch_0,
                  DoubleRegister scratch_1);
  void SwapSimd128(Simd128Register src, Simd128Register dst,
                   Simd128Register scratch);
  void SwapSimd128(Simd128Register src, MemOperand dst,
                   Simd128Register scratch1, Register scratch2);
  void SwapSimd128(MemOperand src, MemOperand dst, Simd128Register scratch1,
                   Simd128Register scratch2, Register scratch3);

  void ByteReverseU16(Register dst, Register val, Register scratch);
  void ByteReverseU32(Register dst, Register val, Register scratch);
  void ByteReverseU64(Register dst, Register val, Register = r0);

  // Before calling a C-function from generated code, align arguments on stack.
  // After aligning the frame, non-register arguments must be stored in
  // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
  // are word sized. If double arguments are used, this function assumes that
  // all double arguments are stored before core registers; otherwise the
  // correct alignment of the double values is not guaranteed.
  // Some compilers/platforms require the stack to be aligned when calling
  // C++ code.
  // Needs a scratch register to do some arithmetic. This register will be
  // trashed.
  void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
                            Register scratch);
  void PrepareCallCFunction(int num_reg_arguments, Register scratch);

  // There are two ways of passing double arguments on ARM, depending on
  // whether soft or hard floating point ABI is used. These functions
  // abstract parameter passing for the three different ways we call
  // C functions from generated code.
  void MovToFloatParameter(DoubleRegister src);
  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
  void MovToFloatResult(DoubleRegister src);

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  enum class SetIsolateDataSlots {
    kNo,
    kYes,
  };
  void CallCFunction(
      ExternalReference function, int num_arguments,
      SetIsolateDataSlots set_isolate_data_slots = SetIsolateDataSlots::kYes,
      bool has_function_descriptor = true);
  void CallCFunction(
      Register function, int num_arguments,
      SetIsolateDataSlots set_isolate_data_slots = SetIsolateDataSlots::kYes,
      bool has_function_descriptor = true);
  void CallCFunction(
      ExternalReference function, int num_reg_arguments,
      int num_double_arguments,
      SetIsolateDataSlots set_isolate_data_slots = SetIsolateDataSlots::kYes,
      bool has_function_descriptor = true);
  void CallCFunction(
      Register function, int num_reg_arguments, int num_double_arguments,
      SetIsolateDataSlots set_isolate_data_slots = SetIsolateDataSlots::kYes,
      bool has_function_descriptor = true);

  void MovFromFloatParameter(DoubleRegister dst);
  void MovFromFloatResult(DoubleRegister dst);

  void Trap();
  void DebugBreak();

  // Calls Abort(msg) if the condition cond is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cond, AbortReason reason,
              CRegister cr = cr7) NOOP_UNLESS_DEBUG_CODE;

  // Like Assert(), but always enabled.
  void Check(Condition cond, AbortReason reason, CRegister cr = cr7);

  // Print a message to stdout and abort execution.
  void Abort(AbortReason reason);

#if !V8_TARGET_ARCH_PPC64
  void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
                     Register src_high, Register scratch, Register shift);
  void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
                     Register src_high, uint32_t shift);
  void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
                      Register src_high, Register scratch, Register shift);
  void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
                      Register src_high, uint32_t shift);
  void ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low,
                         Register src_high, Register scratch, Register shift);
  void ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low,
                         Register src_high, uint32_t shift);
#endif

  void LoadFromConstantsTable(Register destination, int constant_index) final;
  void LoadRootRegisterOffset(Register destination, intptr_t offset) final;
  void LoadRootRelative(Register destination, int32_t offset) final;

  // Operand pointing to an external reference.
  // May emit code to set up the scratch register. The operand is
  // only guaranteed to be correct as long as the scratch register
  // isn't changed.
  // If the operand is used more than once, use a scratch register
  // that is guaranteed not to be clobbered.
  MemOperand ExternalReferenceAsOperand(ExternalReference reference,
                                        Register scratch);

  // Jump, Call, and Ret pseudo instructions implementing inter-working.
  void Jump(Register target);
  void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
            CRegister cr = cr7);
  void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al,
            CRegister cr = cr7);
  void Jump(const ExternalReference& reference);
  void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
            CRegister cr = cr7);
  void Call(Register target);
  void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
  void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
            Condition cond = al);
  void Call(Label* target);

  // Load the builtin given by the Smi in |builtin_index| into the same
  // register.
  void LoadEntryFromBuiltinIndex(Register builtin_index);
  void LoadEntryFromBuiltin(Builtin builtin, Register destination);
  MemOperand EntryFromBuiltinAsOperand(Builtin builtin);

  // Load the code entry point from the Code object.
  void LoadCodeEntry(Register destination, Register code_object);
  void CallCodeObject(Register code_object);
  void JumpCodeObject(Register code_object,
                      JumpMode jump_mode = JumpMode::kJump);

  void CallBuiltinByIndex(Register builtin_index);
  void CallForDeoptimization(Builtin target, int deopt_id, Label* exit,
                             DeoptimizeKind kind, Label* ret,
                             Label* jump_deoptimization_entry_label);

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the sp register.
  void Drop(int count);
  void Drop(Register count, Register scratch = r0);

  void Ret() { blr(); }
  void Ret(Condition cond, CRegister cr = cr7) { bclr(cond, cr); }
  void Ret(int drop) {
    Drop(drop);
    blr();
  }

  // If the value is a NaN, canonicalize the value else, do nothing.
  void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
  void CanonicalizeNaN(const DoubleRegister value) {
    CanonicalizeNaN(value, value);
  }
  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
                     Label* condition_met);

  // Move values between integer and floating point registers.
  void MovIntToDouble(DoubleRegister dst, Register src, Register scratch);
  void MovUnsignedIntToDouble(DoubleRegister dst, Register src,
                              Register scratch);
  void MovInt64ToDouble(DoubleRegister dst,
#if !V8_TARGET_ARCH_PPC64
                        Register src_hi,
#endif
                        Register src);
#if V8_TARGET_ARCH_PPC64
  void MovInt64ComponentsToDouble(DoubleRegister dst, Register src_hi,
                                  Register src_lo, Register scratch);
#endif
  void InsertDoubleLow(DoubleRegister dst, Register src, Register scratch);
  void InsertDoubleHigh(DoubleRegister dst, Register src, Register scratch);
  void MovDoubleLowToInt(Register dst, DoubleRegister src);
  void MovDoubleHighToInt(Register dst, DoubleRegister src);
  void MovDoubleToInt64(
#if !V8_TARGET_ARCH_PPC64
      Register dst_hi,
#endif
      Register dst, DoubleRegister src);
  void MovIntToFloat(DoubleRegister dst, Register src, Register scratch);
  void MovFloatToInt(Register dst, DoubleRegister src, DoubleRegister scratch);
  // Register move. May do nothing if the registers are identical.
  void Move(Register dst, Smi smi) { LoadSmiLiteral(dst, smi); }
  void Move(Register dst, Handle<HeapObject> value,
            RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);
  void Move(Register dst, ExternalReference reference);
  void Move(Register dst, Register src, Condition cond = al);
  void Move(DoubleRegister dst, DoubleRegister src);
  void Move(Register dst, const MemOperand& src) {
    // TODO: use scratch register scope instead of r0
    LoadU64(dst, src, r0);
  }

  void SmiUntag(Register dst, const MemOperand& src, RCBit rc = LeaveRC,
                Register scratch = no_reg);
  void SmiUntag(Register reg, RCBit rc = LeaveRC) { SmiUntag(reg, reg, rc); }

  void SmiUntag(Register dst, Register src, RCBit rc = LeaveRC) {
    if (COMPRESS_POINTERS_BOOL) {
      srawi(dst, src, kSmiShift, rc);
    } else {
      ShiftRightS64(dst, src, Operand(kSmiShift), rc);
    }
  }
  void SmiToInt32(Register smi) {
    if (v8_flags.enable_slow_asserts) {
      AssertSmi(smi);
    }
    DCHECK(SmiValuesAre32Bits() || SmiValuesAre31Bits());
    SmiUntag(smi);
  }

  // Shift left by kSmiShift
  void SmiTag(Register reg, RCBit rc = LeaveRC) { SmiTag(reg, reg, rc); }
  void SmiTag(Register dst, Register src, RCBit rc = LeaveRC) {
    ShiftLeftU64(dst, src, Operand(kSmiShift), rc);
  }

  // Abort execution if argument is a smi, enabled via --debug-code.
  void AssertNotSmi(Register object) NOOP_UNLESS_DEBUG_CODE;
  void AssertSmi(Register object) NOOP_UNLESS_DEBUG_CODE;

  void ZeroExtByte(Register dst, Register src);
  void ZeroExtHalfWord(Register dst, Register src);
  void ZeroExtWord32(Register dst, Register src);

  // ---------------------------------------------------------------------------
  // Bit testing/extraction
  //
  // Bit numbering is such that the least significant bit is bit 0
  // (for consistency between 32/64-bit).

  // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
  // and, if !test, shift them into the least significant bits of dst.
  inline void ExtractBitRange(Register dst, Register src, int rangeStart,
                              int rangeEnd, RCBit rc = LeaveRC,
                              bool test = false) {
    DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerSystemPointer);
    int rotate = (rangeEnd == 0) ? 0 : kBitsPerSystemPointer - rangeEnd;
    int width = rangeStart - rangeEnd + 1;
    if (rc == SetRC && rangeStart < 16 && (rangeEnd == 0 || test)) {
      // Prefer faster andi when applicable.
      andi(dst, src, Operand(((1 << width) - 1) << rangeEnd));
    } else {
#if V8_TARGET_ARCH_PPC64
      rldicl(dst, src, rotate, kBitsPerSystemPointer - width, rc);
#else
      rlwinm(dst, src, rotate, kBitsPerSystemPointer - width,
             kBitsPerSystemPointer - 1, rc);
#endif
    }
  }

  inline void ExtractBit(Register dst, Register src, uint32_t bitNumber,
                         RCBit rc = LeaveRC, bool test = false) {
    ExtractBitRange(dst, src, bitNumber, bitNumber, rc, test);
  }

  // Extract consecutive bits (defined by mask) from src and place them
  // into the least significant bits of dst.
  inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
                             RCBit rc = LeaveRC, bool test = false) {
    int start = kBitsPerSystemPointer - 1;
    int end;
    uintptr_t bit = (1L << start);

    while (bit && (mask & bit) == 0) {
      start--;
      bit >>= 1;
    }
    end = start;
    bit >>= 1;

    while (bit && (mask & bit)) {
      end--;
      bit >>= 1;
    }

    // 1-bits in mask must be contiguous
    DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);

    ExtractBitRange(dst, src, start, end, rc, test);
  }

  // Test single bit in value.
  inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
    ExtractBitRange(scratch, value, bitNumber, bitNumber, SetRC, true);
  }

  // Test consecutive bit range in value.  Range is defined by mask.
  inline void TestBitMask(Register value, uintptr_t mask,
                          Register scratch = r0) {
    ExtractBitMask(scratch, value, mask, SetRC, true);
  }
  // Test consecutive bit range in value.  Range is defined by
  // rangeStart - rangeEnd.
  inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
                           Register scratch = r0) {
    ExtractBitRange(scratch, value, rangeStart, rangeEnd, SetRC, true);
  }

  inline void TestIfSmi(Register value, Register scratch) {
    TestBitRange(value, kSmiTagSize - 1, 0, scratch);
  }
  // Jump the register contains a smi.
  inline void JumpIfSmi(Register value, Label* smi_label) {
    TestIfSmi(value, r0);
    beq(smi_label, cr0);  // branch if SMI
  }
  void JumpIfEqual(Register x, int32_t y, Label* dest);
  void JumpIfLessThan(Register x, int32_t y, Label* dest);

  void LoadMap(Register destination, Register object);

#if V8_TARGET_ARCH_PPC64
  inline void TestIfInt32(Register value, Register scratch,
                          CRegister cr = cr7) {
    // High bits must be identical to fit into an 32-bit integer
    extsw(scratch, value);
    CmpS64(scratch, value, cr);
  }
#else
  inline void TestIfInt32(Register hi_word, Register lo_word, Register scratch,
                          CRegister cr = cr7) {
    // High bits must be identical to fit into an 32-bit integer
    srawi(scratch, lo_word, 31);
    CmpS64(scratch, hi_word, cr);
  }
#endif

  // Overflow handling functions.
  // Usage: call the appropriate arithmetic function and then call one of the
  // flow control functions with the corresponding label.

  // Compute dst = left + right, setting condition codes. dst may be same as
  // either left or right (or a unique register). left and right must not be
  // the same register.
  void AddAndCheckForOverflow(Register dst, Register left, Register right,
                              Register overflow_dst, Register scratch = r0);
  void AddAndCheckForOverflow(Register dst, Register left, intptr_t right,
                              Register overflow_dst, Register scratch = r0);

  // Compute dst = left - right, setting condition codes. dst may be same as
  // either left or right (or a unique register). left and right must not be
  // the same register.
  void SubAndCheckForOverflow(Register dst, Register left, Register right,
                              Register overflow_dst, Register scratch = r0);

  // Performs a truncating conversion of a floating point number as used by
  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
  // succeeds, otherwise falls through if result is saturated. On return
  // 'result' either holds answer, or is clobbered on fall through.
  void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
                                  Label* done);
  void TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result,
                         DoubleRegister double_input, StubCallMode stub_mode);

  void LoadConstantPoolPointerRegister();

  // Loads the constant pool pointer (kConstantPoolRegister).
  void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
      Register code_target_address);
  void AbortConstantPoolBuilding() {
#ifdef DEBUG
    // Avoid DCHECK(!is_linked()) failure in ~Label()
    bind(ConstantPoolPosition());
#endif
  }

  // Generates an instruction sequence s.t. the return address points to the
  // instruction following the call.
  // The return address on the stack is used by frame iteration.
  void StoreReturnAddressAndCall(Register target);

  // Control-flow integrity:

  // Define a function entrypoint. This doesn't emit any code for this
  // architecture, as control-flow integrity is not supported for it.
  void CodeEntry() {}
  // Define an exception handler.
  void ExceptionHandler() {}
  // Define an exception handler and bind a label.
  void BindExceptionHandler(Label* label) { bind(label); }

  // ---------------------------------------------------------------------------
  // Pointer compression Support

  void SmiToPtrArrayOffset(Register dst, Register src) {
#if defined(V8_COMPRESS_POINTERS) || defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
    static_assert(kSmiTag == 0 && kSmiShift < kSystemPointerSizeLog2);
    ShiftLeftU64(dst, src, Operand(kSystemPointerSizeLog2 - kSmiShift));
#else
    static_assert(kSmiTag == 0 && kSmiShift > kSystemPointerSizeLog2);
    ShiftRightS64(dst, src, Operand(kSmiShift - kSystemPointerSizeLog2));
#endif
  }

  // Loads a field containing any tagged value and decompresses it if necessary.
  void LoadTaggedField(const Register& destination,
                       const MemOperand& field_operand,
                       const Register& scratch = no_reg);
  void LoadTaggedSignedField(Register destination, MemOperand field_operand,
                             Register scratch);

  // Compresses and stores tagged value to given on-heap location.
  void StoreTaggedField(const Register& value,
                        const MemOperand& dst_field_operand,
                        const Register& scratch = no_reg);

  void DecompressTaggedSigned(Register destination, MemOperand field_operand);
  void DecompressTaggedSigned(Register destination, Register src);
  void DecompressTagged(Register destination, MemOperand field_operand);
  void DecompressTagged(Register destination, Register source);
  void DecompressTagged(const Register& destination, Tagged_t immediate);

  void LoadF64(DoubleRegister dst, const MemOperand& mem,
               Register scratch = no_reg);
  void LoadF32(DoubleRegister dst, const MemOperand& mem,
               Register scratch = no_reg);

  void StoreF32(DoubleRegister src, const MemOperand& mem,
                Register scratch = no_reg);
  void StoreF64(DoubleRegister src, const MemOperand& mem,
                Register scratch = no_reg);

  void LoadF32WithUpdate(DoubleRegister dst, const MemOperand& mem,
                         Register scratch = no_reg);
  void LoadF64WithUpdate(DoubleRegister dst, const MemOperand& mem,
                         Register scratch = no_reg);

  void StoreF32WithUpdate(DoubleRegister src, const MemOperand& mem,
                          Register scratch = no_reg);
  void StoreF64WithUpdate(DoubleRegister src, const MemOperand& mem,
                          Register scratch = no_reg);

  void LoadU64(Register dst, const MemOperand& mem, Register scratch = no_reg);
  void LoadU32(Register dst, const MemOperand& mem, Register scratch = no_reg);
  void LoadS32(Register dst, const MemOperand& mem, Register scratch = no_reg);
  void LoadU16(Register dst, const MemOperand& mem, Register scratch = no_reg);
  void LoadS16(Register dst, const MemOperand& mem, Register scratch = no_reg);
  void LoadU8(Register dst, const MemOperand& mem, Register scratch = no_reg);
  void LoadS8(Register dst, const MemOperand& mem, Register scratch = no_reg);

  void StoreU64(Register src, const MemOperand& mem, Register scratch = no_reg);
  void StoreU32(Register src, const MemOperand& mem, Register scratch);
  void StoreU16(Register src, const MemOperand& mem, Register scratch);
  void StoreU8(Register src, const MemOperand& mem, Register scratch);

  void LoadU64WithUpdate(Register dst, const MemOperand& mem,
                         Register scratch = no_reg);
  void StoreU64WithUpdate(Register src, const MemOperand& mem,
                          Register scratch = no_reg);

  void LoadU64LE(Register dst, const MemOperand& mem, Register scratch);
  void LoadU32LE(Register dst, const MemOperand& mem, Register scratch);
  void LoadU16LE(Register dst, const MemOperand& mem, Register scratch);
  void StoreU64LE(Register src, const MemOperand& mem, Register scratch);
  void StoreU32LE(Register src, const MemOperand& mem, Register scratch);
  void StoreU16LE(Register src, const MemOperand& mem, Register scratch);

  void LoadS32LE(Register dst, const MemOperand& mem, Register scratch);
  void LoadS16LE(Register dst, const MemOperand& mem, Register scratch);

  void LoadF64LE(DoubleRegister dst, const MemOperand& mem, Register scratch,
                 Register scratch2);
  void LoadF32LE(DoubleRegister dst, const MemOperand& mem, Register scratch,
                 Register scratch2);

  void StoreF32LE(DoubleRegister src, const MemOperand& mem, Register scratch,
                  Register scratch2);
  void StoreF64LE(DoubleRegister src, const MemOperand& mem, Register scratch,
                  Register scratch2);

  // Simd Support.
#define SIMD_BINOP_LIST(V) \
  V(F64x2Add)              \
  V(F64x2Sub)              \
  V(F64x2Mul)              \
  V(F64x2Div)              \
  V(F64x2Eq)               \
  V(F64x2Lt)               \
  V(F64x2Le)               \
  V(F32x4Add)              \
  V(F32x4Sub)              \
  V(F32x4Mul)              \
  V(F32x4Div)              \
  V(F32x4Min)              \
  V(F32x4Max)              \
  V(F32x4Eq)               \
  V(F32x4Lt)               \
  V(F32x4Le)               \
  V(I64x2Add)              \
  V(I64x2Sub)              \
  V(I64x2Eq)               \
  V(I64x2GtS)              \
  V(I32x4MinS)             \
  V(I32x4MinU)             \
  V(I32x4MaxS)             \
  V(I32x4MaxU)             \
  V(I32x4Add)              \
  V(I32x4Sub)              \
  V(I32x4Mul)              \
  V(I32x4Eq)               \
  V(I32x4GtS)              \
  V(I32x4GtU)              \
  V(I16x8Add)              \
  V(I16x8Sub)              \
  V(I16x8Mul)              \
  V(I16x8MinS)             \
  V(I16x8MinU)             \
  V(I16x8MaxS)             \
  V(I16x8MaxU)             \
  V(I16x8Eq)               \
  V(I16x8GtS)              \
  V(I16x8GtU)              \
  V(I16x8AddSatS)          \
  V(I16x8SubSatS)          \
  V(I16x8AddSatU)          \
  V(I16x8SubSatU)          \
  V(I16x8SConvertI32x4)    \
  V(I16x8UConvertI32x4)    \
  V(I16x8RoundingAverageU) \
  V(I8x16Add)              \
  V(I8x16Sub)              \
  V(I8x16MinS)             \
  V(I8x16MinU)             \
  V(I8x16MaxS)             \
  V(I8x16MaxU)             \
  V(I8x16Eq)               \
  V(I8x16GtS)              \
  V(I8x16GtU)              \
  V(I8x16AddSatS)          \
  V(I8x16SubSatS)          \
  V(I8x16AddSatU)          \
  V(I8x16SubSatU)          \
  V(I8x16SConvertI16x8)    \
  V(I8x16UConvertI16x8)    \
  V(I8x16RoundingAverageU) \
  V(S128And)               \
  V(S128Or)                \
  V(S128Xor)               \
  V(S128AndNot)

#define PROTOTYPE_SIMD_BINOP(name) \
  void name(Simd128Register dst, Simd128Register src1, Simd128Register src2);
  SIMD_BINOP_LIST(PROTOTYPE_SIMD_BINOP)
#undef PROTOTYPE_SIMD_BINOP
#undef SIMD_BINOP_LIST

#define SIMD_BINOP_WITH_SCRATCH_LIST(V) \
  V(F64x2Ne)                            \
  V(F64x2Pmin)                          \
  V(F64x2Pmax)                          \
  V(F32x4Ne)                            \
  V(F32x4Pmin)                          \
  V(F32x4Pmax)                          \
  V(I64x2Ne)                            \
  V(I64x2GeS)                           \
  V(I64x2ExtMulLowI32x4S)               \
  V(I64x2ExtMulHighI32x4S)              \
  V(I64x2ExtMulLowI32x4U)               \
  V(I64x2ExtMulHighI32x4U)              \
  V(I32x4Ne)                            \
  V(I32x4GeS)                           \
  V(I32x4GeU)                           \
  V(I32x4ExtMulLowI16x8S)               \
  V(I32x4ExtMulHighI16x8S)              \
  V(I32x4ExtMulLowI16x8U)               \
  V(I32x4ExtMulHighI16x8U)              \
  V(I32x4DotI16x8S)                     \
  V(I16x8Ne)                            \
  V(I16x8GeS)                           \
  V(I16x8GeU)                           \
  V(I16x8ExtMulLowI8x16S)               \
  V(I16x8ExtMulHighI8x16S)              \
  V(I16x8ExtMulLowI8x16U)               \
  V(I16x8ExtMulHighI8x16U)              \
  V(I16x8Q15MulRSatS)                   \
  V(I16x8DotI8x16S)                     \
  V(I8x16Ne)                            \
  V(I8x16GeS)                           \
  V(I8x16GeU)                           \
  V(I8x16Swizzle)

#define PROTOTYPE_SIMD_BINOP_WITH_SCRATCH(name)                              \
  void name(Simd128Register dst, Simd128Register src1, Simd128Register src2, \
            Simd128Register scratch);
  SIMD_BINOP_WITH_SCRATCH_LIST(PROTOTYPE_SIMD_BINOP_WITH_SCRATCH)
#undef PROTOTYPE_SIMD_BINOP_WITH_SCRATCH
#undef SIMD_BINOP_WITH_SCRATCH_LIST

#define SIMD_SHIFT_LIST(V) \
  V(I64x2Shl)              \
  V(I64x2ShrS)             \
  V(I64x2ShrU)             \
  V(I32x4Shl)              \
  V(I32x4ShrS)             \
  V(I32x4ShrU)             \
  V(I16x8Shl)              \
  V(I16x8ShrS)             \
  V(I16x8ShrU)             \
  V(I8x16Shl)              \
  V(I8x16ShrS)             \
  V(I8x16ShrU)

#define PROTOTYPE_SIMD_SHIFT(name)                                          \
  void name(Simd128Register dst, Simd128Register src1, Register src2,       \
            Simd128Register scratch);                                       \
  void name(Simd128Register dst, Simd128Register src1, const Operand& src2, \
            Register scratch1, Simd128Register scratch2);
  SIMD_SHIFT_LIST(PROTOTYPE_SIMD_SHIFT)
#undef PROTOTYPE_SIMD_SHIFT
#undef SIMD_SHIFT_LIST

#define SIMD_BITMASK_LIST(V) \
  V(I64x2BitMask)            \
  V(I32x4BitMask)            \
  V(I16x8BitMask)

#define PROTOTYPE_SIMD_BITMASK(name)                              \
  void name(Register dst, Simd128Register src, Register scratch1, \
            Simd128Register scratch2);
  SIMD_BITMASK_LIST(PROTOTYPE_SIMD_BITMASK)
#undef PROTOTYPE_SIMD_BITMASK
#undef SIMD_BITMASK_LIST

#define SIMD_UNOP_LIST(V)   \
  V(F64x2Abs)               \
  V(F64x2Neg)               \
  V(F64x2Sqrt)              \
  V(F64x2Ceil)              \
  V(F64x2Floor)             \
  V(F64x2Trunc)             \
  V(F64x2PromoteLowF32x4)   \
  V(F32x4Abs)               \
  V(F32x4Neg)               \
  V(F32x4Sqrt)              \
  V(F32x4Ceil)              \
  V(F32x4Floor)             \
  V(F32x4Trunc)             \
  V(F32x4SConvertI32x4)     \
  V(F32x4UConvertI32x4)     \
  V(I64x2Neg)               \
  V(F64x2ConvertLowI32x4S)  \
  V(I64x2SConvertI32x4Low)  \
  V(I64x2SConvertI32x4High) \
  V(I32x4Neg)               \
  V(I32x4SConvertI16x8Low)  \
  V(I32x4SConvertI16x8High) \
  V(I32x4UConvertF32x4)     \
  V(I16x8SConvertI8x16Low)  \
  V(I16x8SConvertI8x16High) \
  V(I8x16Popcnt)            \
  V(S128Not)

#define PROTOTYPE_SIMD_UNOP(name) \
  void name(Simd128Register dst, Simd128Register src);
  SIMD_UNOP_LIST(PROTOTYPE_SIMD_UNOP)
#undef PROTOTYPE_SIMD_UNOP
#undef SIMD_UNOP_LIST

#define SIMD_UNOP_WITH_SCRATCH_LIST(V) \
  V(F32x4DemoteF64x2Zero)              \
  V(I64x2Abs)                          \
  V(I32x4Abs)                          \
  V(I32x4SConvertF32x4)                \
  V(I32x4TruncSatF64x2SZero)           \
  V(I32x4TruncSatF64x2UZero)           \
  V(I16x8Abs)                          \
  V(I16x8Neg)                          \
  V(I8x16Abs)                          \
  V(I8x16Neg)

#define PROTOTYPE_SIMD_UNOP_WITH_SCRATCH(name) \
  void name(Simd128Register dst, Simd128Register src, Simd128Register scratch);
  SIMD_UNOP_WITH_SCRATCH_LIST(PROTOTYPE_SIMD_UNOP_WITH_SCRATCH)
#undef PROTOTYPE_SIMD_UNOP_WITH_SCRATCH
#undef SIMD_UNOP_WITH_SCRATCH_LIST

#define SIMD_ALL_TRUE_LIST(V) \
  V(I64x2AllTrue)             \
  V(I32x4AllTrue)             \
  V(I16x8AllTrue)             \
  V(I8x16AllTrue)

#define PROTOTYPE_SIMD_ALL_TRUE(name)                             \
  void name(Register dst, Simd128Register src, Register scratch1, \
            Register scratch2, Simd128Register scratch3);
  SIMD_ALL_TRUE_LIST(PROTOTYPE_SIMD_ALL_TRUE)
#undef PROTOTYPE_SIMD_ALL_TRUE
#undef SIMD_ALL_TRUE_LIST

#define SIMD_QFM_LIST(V) \
  V(F64x2Qfma)           \
  V(F64x2Qfms)           \
  V(F32x4Qfma)           \
  V(F32x4Qfms)
#define PROTOTYPE_SIMD_QFM(name)                                             \
  void name(Simd128Register dst, Simd128Register src1, Simd128Register src2, \
            Simd128Register src3, Simd128Register scratch);
  SIMD_QFM_LIST(PROTOTYPE_SIMD_QFM)
#undef PROTOTYPE_SIMD_QFM
#undef SIMD_QFM_LIST

#define SIMD_EXT_ADD_PAIRWISE_LIST(V) \
  V(I32x4ExtAddPairwiseI16x8S)        \
  V(I32x4ExtAddPairwiseI16x8U)        \
  V(I16x8ExtAddPairwiseI8x16S)        \
  V(I16x8ExtAddPairwiseI8x16U)
#define PROTOTYPE_SIMD_EXT_ADD_PAIRWISE(name)         \
  void name(Simd128Register dst, Simd128Register src, \
            Simd128Register scratch1, Simd128Register scratch2);
  SIMD_EXT_ADD_PAIRWISE_LIST(PROTOTYPE_SIMD_EXT_ADD_PAIRWISE)
#undef PROTOTYPE_SIMD_EXT_ADD_PAIRWISE
#undef SIMD_EXT_ADD_PAIRWISE_LIST

  void LoadSimd128(Simd128Register dst, const MemOperand& mem,
                   Register scratch);
  void StoreSimd128(Simd128Register src, const MemOperand& mem,
                    Register scratch);
  void LoadSimd128LE(Simd128Register dst, const MemOperand& mem,
                     Register scratch);
  void StoreSimd128LE(Simd128Register src, const MemOperand& mem,
                      Register scratch1, Simd128Register scratch2);
  void LoadSimd128Uint64(Simd128Register reg, const MemOperand& mem,
                         Register scratch);
  void LoadSimd128Uint32(Simd128Register reg, const MemOperand& mem,
                         Register scratch);
  void LoadSimd128Uint16(Simd128Register reg, const MemOperand& mem,
                         Register scratch);
  void LoadSimd128Uint8(Simd128Register reg, const MemOperand& mem,
                        Register scratch);
  void StoreSimd128Uint64(Simd128Register reg, const MemOperand& mem,
                          Register scratch);
  void StoreSimd128Uint32(Simd128Register reg, const MemOperand& mem,
                          Register scratch);
  void StoreSimd128Uint16(Simd128Register reg, const MemOperand& mem,
                          Register scratch);
  void StoreSimd128Uint8(Simd128Register reg, const MemOperand& mem,
                         Register scratch);
  void LoadLane64LE(Simd128Register dst, const MemOperand& mem, int lane,
                    Register scratch1, Simd128Register scratch2);
  void LoadLane32LE(Simd128Register dst, const MemOperand& mem, int lane,
                    Register scratch1, Simd128Register scratch2);
  void LoadLane16LE(Simd128Register dst, const MemOperand& mem, int lane,
                    Register scratch1, Simd128Register scratch2);
  void LoadLane8LE(Simd128Register dst, const MemOperand& mem, int lane,
                   Register scratch1, Simd128Register scratch2);
  void StoreLane64LE(Simd128Register src, const MemOperand& mem, int lane,
                     Register scratch1, Simd128Register scratch2);
  void StoreLane32LE(Simd128Register src, const MemOperand& mem, int lane,
                     Register scratch1, Simd128Register scratch2);
  void StoreLane16LE(Simd128Register src, const MemOperand& mem, int lane,
                     Register scratch1, Simd128Register scratch2);
  void StoreLane8LE(Simd128Register src, const MemOperand& mem, int lane,
                    Register scratch1, Simd128Register scratch2);
  void LoadAndSplat64x2LE(Simd128Register dst, const MemOperand& mem,
                          Register scratch);
  void LoadAndSplat32x4LE(Simd128Register dst, const MemOperand& mem,
                          Register scratch);
  void LoadAndSplat16x8LE(Simd128Register dst, const MemOperand& me,
                          Register scratch);
  void LoadAndSplat8x16LE(Simd128Register dst, const MemOperand& mem,
                          Register scratch);
  void LoadAndExtend32x2SLE(Simd128Register dst, const MemOperand& mem,
                            Register scratch);
  void LoadAndExtend32x2ULE(Simd128Register dst, const MemOperand& mem,
                            Register scratch1, Simd128Register scratch2);
  void LoadAndExtend16x4SLE(Simd128Register dst, const MemOperand& mem,
                            Register scratch);
  void LoadAndExtend16x4ULE(Simd128Register dst, const MemOperand& mem,
                            Register scratch1, Simd128Register scratch2);
  void LoadAndExtend8x8SLE(Simd128Register dst, const MemOperand& mem,
                           Register scratch);
  void LoadAndExtend8x8ULE(Simd128Register dst, const MemOperand& mem,
                           Register scratch1, Simd128Register scratch2);
  void LoadV64ZeroLE(Simd128Register dst, const MemOperand& mem,
                     Register scratch1, Simd128Register scratch2);
  void LoadV32ZeroLE(Simd128Register dst, const MemOperand& mem,
                     Register scratch1, Simd128Register scratch2);
  void F64x2Splat(Simd128Register dst, DoubleRegister src, Register scratch);
  void F32x4Splat(Simd128Register dst, DoubleRegister src,
                  DoubleRegister scratch1, Register scratch2);
  void I64x2Splat(Simd128Register dst, Register src);
  void I32x4Splat(Simd128Register dst, Register src);
  void I16x8Splat(Simd128Register dst, Register src);
  void I8x16Splat(Simd128Register dst, Register src);
  void F64x2ExtractLane(DoubleRegister dst, Simd128Register src,
                        uint8_t imm_lane_idx, Simd128Register scratch1,
                        Register scratch2);
  void F32x4ExtractLane(DoubleRegister dst, Simd128Register src,
                        uint8_t imm_lane_idx, Simd128Register scratch1,
                        Register scratch2, Register scratch3);
  void I64x2ExtractLane(Register dst, Simd128Register src, uint8_t imm_lane_idx,
                        Simd128Register scratch);
  void I32x4ExtractLane(Register dst, Simd128Register src, uint8_t imm_lane_idx,
                        Simd128Register scratch);
  void I16x8ExtractLaneU(Register dst, Simd128Register src,
                         uint8_t imm_lane_idx, Simd128Register scratch);
  void I16x8ExtractLaneS(Register dst, Simd128Register src,
                         uint8_t imm_lane_idx, Simd128Register scratch);
  void I8x16ExtractLaneU(Register dst, Simd128Register src,
                         uint8_t imm_lane_idx, Simd128Register scratch);
  void I8x16ExtractLaneS(Register dst, Simd128Register src,
                         uint8_t imm_lane_idx, Simd128Register scratch);
  void F64x2ReplaceLane(Simd128Register dst, Simd128Register src1,
                        DoubleRegister src2, uint8_t imm_lane_idx,
                        Register scratch1, Simd128Register scratch2);
  void F32x4ReplaceLane(Simd128Register dst, Simd128Register src1,
                        DoubleRegister src2, uint8_t imm_lane_idx,
                        Register scratch1, DoubleRegister scratch2,
                        Simd128Register scratch3);
  void I64x2ReplaceLane(Simd128Register dst, Simd128Register src1,
                        Register src2, uint8_t imm_lane_idx,
                        Simd128Register scratch);
  void I32x4ReplaceLane(Simd128Register dst, Simd128Register src1,
                        Register src2, uint8_t imm_lane_idx,
                        Simd128Register scratch);
  void I16x8ReplaceLane(Simd128Register dst, Simd128Register src1,
                        Register src2, uint8_t imm_lane_idx,
                        Simd128Register scratch);
  void I8x16ReplaceLane(Simd128Register dst, Simd128Register src1,
                        Register src2, uint8_t imm_lane_idx,
                        Simd128Register scratch);
  void I64x2Mul(Simd128Register dst, Simd128Register src1, Simd128Register src2,
                Register scratch1, Register scrahc2, Register scratch3,
                Simd128Register scratch4);
  void F64x2Min(Simd128Register dst, Simd128Register src1, Simd128Register src2,
                Simd128Register scratch1, Simd128Register scratch2);
  void F64x2Max(Simd128Register dst, Simd128Register src1, Simd128Register src2,
                Simd128Register scratch1, Simd128Register scratch2);
  void F64x2ConvertLowI32x4U(Simd128Register dst, Simd128Register src,
                             Register scratch1, Simd128Register scratch2);
  void I64x2UConvertI32x4Low(Simd128Register dst, Simd128Register src,
                             Register scratch1, Simd128Register scratch2);
  void I64x2UConvertI32x4High(Simd128Register dst, Simd128Register src,
                              Register scratch1, Simd128Register scratch2);
  void I32x4UConvertI16x8Low(Simd128Register dst, Simd128Register src,
                             Register scratch1, Simd128Register scratch2);
  void I32x4UConvertI16x8High(Simd128Register dst, Simd128Register src,
                              Register scratch1, Simd128Register scratch2);
  void I16x8UConvertI8x16Low(Simd128Register dst, Simd128Register src,
                             Register scratch1, Simd128Register scratch2);
  void I16x8UConvertI8x16High(Simd128Register dst, Simd128Register src,
                              Register scratch1, Simd128Register scratch2);
  void I8x16BitMask(Register dst, Simd128Register src, Register scratch1,
                    Register scratch2, Simd128Register scratch3);
  void I8x16Shuffle(Simd128Register dst, Simd128Register src1,
                    Simd128Register src2, uint64_t high, uint64_t low,
                    Register scratch1, Register scratch2,
                    Simd128Register scratch3);
  void I32x4DotI8x16AddS(Simd128Register dst, Simd128Register src1,
                         Simd128Register src2, Simd128Register src3);
  void V128AnyTrue(Register dst, Simd128Register src, Register scratch1,
                   Register scratch2, Simd128Register scratch3);
  void S128Const(Simd128Register dst, uint64_t high, uint64_t low,
                 Register scratch1, Register scratch2);
  void S128Select(Simd128Register dst, Simd128Register src1,
                  Simd128Register src2, Simd128Register mask);

  // It assumes that the arguments are located below the stack pointer.
  // argc is the number of arguments not including the receiver.
  // TODO(victorgomes): Remove this function once we stick with the reversed
  // arguments order.
  void LoadReceiver(Register dest, Register argc) {
    LoadU64(dest, MemOperand(sp, 0));
  }

  void StoreReceiver(Register rec, Register argc, Register scratch) {
    StoreU64(rec, MemOperand(sp, 0));
  }

  // ---------------------------------------------------------------------------
  // GC Support

  // Notify the garbage collector that we wrote a pointer into an object.
  // |object| is the object being stored into, |value| is the object being
  // stored.  value and scratch registers are clobbered by the operation.
  // The offset is the offset from the start of the object, not the offset from
  // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
  void RecordWriteField(Register object, int offset, Register value,
                        Register slot_address, LinkRegisterStatus lr_status,
                        SaveFPRegsMode save_fp,
                        SmiCheck smi_check = SmiCheck::kInline);

  // For a given |object| notify the garbage collector that the slot |address|
  // has been written.  |value| is the object being stored. The value and
  // address registers are clobbered by the operation.
  void RecordWrite(Register object, Register slot_address, Register value,
                   LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
                   SmiCheck smi_check = SmiCheck::kInline);

  // Enter exit frame.
  // stack_space - extra stack space, used for parameters before call to C.
  void EnterExitFrame(int stack_space, StackFrame::Type frame_type);

  // Leave the current exit frame. Expects the return value in r0.
  // Expect the number of values, pushed prior to the exit frame, to
  // remove in a register (or no_reg, if there is nothing to remove).
  void LeaveExitFrame(Register argument_count, bool argument_count_is_length);

  // Load the global proxy from the current context.
  void LoadGlobalProxy(Register dst) {
    LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX);
  }

  void LoadNativeContextSlot(Register dst, int index);

  // ----------------------------------------------------------------
  // new PPC macro-assembler interfaces that are slightly higher level
  // than assembler-ppc and may generate variable length sequences

  // load a literal double value <value> to FPR <result>

  void AddSmiLiteral(Register dst, Register src, Smi smi, Register scratch);
  void SubSmiLiteral(Register dst, Register src, Smi smi, Register scratch);
  void CmpSmiLiteral(Register src1, Smi smi, Register scratch,
                     CRegister cr = cr7);
  void CmplSmiLiteral(Register src1, Smi smi, Register scratch,
                      CRegister cr = cr7);
  void AndSmiLiteral(Register dst, Register src, Smi smi, Register scratch,
                     RCBit rc = LeaveRC);

  // ---------------------------------------------------------------------------
  // JavaScript invokes

  // Removes current frame and its arguments from the stack preserving
  // the arguments and a return address pushed to the stack for the next call.
  // Both |callee_args_count| and |caller_args_countg| do not include
  // receiver. |callee_args_count| is not modified. |caller_args_count|
  // is trashed.

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeFunctionCode(Register function, Register new_target,
                          Register expected_parameter_count,
                          Register actual_parameter_count, InvokeType type);

  // On function call, call into the debugger if necessary.
  void CheckDebugHook(Register fun, Register new_target,
                      Register expected_parameter_count,
                      Register actual_parameter_count);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunctionWithNewTarget(Register function, Register new_target,
                                   Register actual_parameter_count,
                                   InvokeType type);
  void InvokeFunction(Register function, Register expected_parameter_count,
                      Register actual_parameter_count, InvokeType type);

  // Exception handling

  // Push a new stack handler and link into stack handler chain.
  void PushStackHandler();

  // Unlink the stack handler on top of the stack from the stack handler chain.
  // Must preserve the result register.
  void PopStackHandler();

  // ---------------------------------------------------------------------------
  // Support functions.

  // Compare object type for heap object.  heap_object contains a non-Smi
  // whose object type should be compared with the given type.  This both
  // sets the flags and leaves the object type in the type_reg register.
  // It leaves the map in the map register (unless the type_reg and map register
  // are the same register).  It leaves the heap object in the heap_object
  // register unless the heap_object register is the same register as one of the
  // other registers.
  // Type_reg can be no_reg. In that case ip is used.
  void CompareObjectType(Register heap_object, Register map, Register type_reg,
                         InstanceType type);

  // Compare instance type in a map.  map contains a valid map object whose
  // object type should be compared with the given type.  This both
  // sets the flags and leaves the object type in the type_reg register.
  void CompareInstanceType(Register map, Register type_reg, InstanceType type);

  // Compare instance type ranges for a map (lower_limit and higher_limit
  // inclusive).
  //
  // Always use unsigned comparisons: ls for a positive result.
  void CompareInstanceTypeRange(Register map, Register type_reg,
                                InstanceType lower_limit,
                                InstanceType higher_limit);

  // Compare the object in a register to a value from the root list.
  // Uses the ip register as scratch.
  void CompareRoot(Register obj, RootIndex index);
  void PushRoot(RootIndex index) {
    LoadRoot(r0, index);
    Push(r0);
  }

  // Compare the object in a register to a value and jump if they are equal.
  void JumpIfRoot(Register with, RootIndex index, Label* if_equal) {
    CompareRoot(with, index);
    beq(if_equal);
  }

  // Compare the object in a register to a value and jump if they are not equal.
  void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal) {
    CompareRoot(with, index);
    bne(if_not_equal);
  }

  // Checks if value is in range [lower_limit, higher_limit] using a single
  // comparison.
  void CompareRange(Register value, unsigned lower_limit,
                    unsigned higher_limit);
  void JumpIfIsInRange(Register value, unsigned lower_limit,
                       unsigned higher_limit, Label* on_in_range);

  // Tiering support.
  void AssertFeedbackVector(Register object,
                            Register scratch) NOOP_UNLESS_DEBUG_CODE;
  void ReplaceClosureCodeWithOptimizedCode(Register optimized_code,
                                           Register closure, Register scratch1,
                                           Register slot_address);
  void GenerateTailCallToReturnedCode(Runtime::FunctionId function_id);
  void LoadFeedbackVectorFlagsAndJumpIfNeedsProcessing(
      Register flags, Register feedback_vector, CodeKind current_code_kind,
      Label* flags_need_processing);
  void OptimizeCodeOrTailCallOptimizedCodeSlot(Register flags,
                                               Register feedback_vector);

  // ---------------------------------------------------------------------------
  // Runtime calls

  static int CallSizeNotPredictableCodeSize(Address target,
                                            RelocInfo::Mode rmode,
                                            Condition cond = al);
  void CallJSEntry(Register target);

  // Call a runtime routine.
  void CallRuntime(const Runtime::Function* f, int num_arguments);

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid) {
    const Runtime::Function* function = Runtime::FunctionForId(fid);
    CallRuntime(function, function->nargs);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid, int num_arguments) {
    CallRuntime(Runtime::FunctionForId(fid), num_arguments);
  }

  // Convenience function: tail call a runtime routine (jump).
  void TailCallRuntime(Runtime::FunctionId fid);

  // Jump to a runtime routine.
  void JumpToExternalReference(const ExternalReference& builtin,
                               bool builtin_exit_frame = false);

  // ---------------------------------------------------------------------------
  // In-place weak references.
  void LoadWeakValue(Register out, Register in, Label* target_if_cleared);

  // ---------------------------------------------------------------------------
  // StatsCounter support

  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2) {
    if (!v8_flags.native_code_counters) return;
    EmitIncrementCounter(counter, value, scratch1, scratch2);
  }
  void EmitIncrementCounter(StatsCounter* counter, int value, Register scratch1,
                            Register scratch2);
  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2) {
    if (!v8_flags.native_code_counters) return;
    EmitDecrementCounter(counter, value, scratch1, scratch2);
  }
  void EmitDecrementCounter(StatsCounter* counter, int value, Register scratch1,
                            Register scratch2);

  // ---------------------------------------------------------------------------
  // Stack limit utilities

  void StackOverflowCheck(Register num_args, Register scratch,
                          Label* stack_overflow);
  void LoadStackLimit(Register destination, StackLimitKind kind);

  // ---------------------------------------------------------------------------
  // Smi utilities

  // Jump if either of the registers contain a non-smi.
  inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
    TestIfSmi(value, r0);
    bne(not_smi_label, cr0);
  }

#if !defined(V8_COMPRESS_POINTERS) && !defined(V8_31BIT_SMIS_ON_64BIT_ARCH)
  // Ensure it is permissible to read/write int value directly from
  // upper half of the smi.
  static_assert(kSmiTag == 0);
  static_assert(kSmiTagSize + kSmiShiftSize == 32);
#endif
#if V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN
#define SmiWordOffset(offset) (offset + kSystemPointerSize / 2)
#else
#define SmiWordOffset(offset) offset
#endif

  // Abort execution if argument is not a Constructor, enabled via --debug-code.
  void AssertConstructor(Register object) NOOP_UNLESS_DEBUG_CODE;

  // Abort execution if argument is not a JSFunction, enabled via --debug-code.
  void AssertFunction(Register object) NOOP_UNLESS_DEBUG_CODE;

  // Abort execution if argument is not a callable JSFunction, enabled via
  // --debug-code.
  void AssertCallableFunction(Register object) NOOP_UNLESS_DEBUG_CODE;

  // Abort execution if argument is not a JSBoundFunction,
  // enabled via --debug-code.
  void AssertBoundFunction(Register object) NOOP_UNLESS_DEBUG_CODE;

  // Abort execution if argument is not a JSGeneratorObject (or subclass),
  // enabled via --debug-code.
  void AssertGeneratorObject(Register object) NOOP_UNLESS_DEBUG_CODE;

  // Abort execution if argument is not undefined or an AllocationSite, enabled
  // via --debug-code.
  void AssertUndefinedOrAllocationSite(Register object,
                                       Register scratch) NOOP_UNLESS_DEBUG_CODE;

  // ---------------------------------------------------------------------------
  // Patching helpers.

  template <typename Field>
  void DecodeField(Register dst, Register src, RCBit rc = LeaveRC) {
    ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift,
                    rc);
  }

  template <typename Field>
  void DecodeField(Register reg, RCBit rc = LeaveRC) {
    DecodeField<Field>(reg, reg, rc);
  }

  void TestCodeIsMarkedForDeoptimization(Register code, Register scratch1,
                                         Register scratch2);
  Operand ClearedValue() const;

 private:
  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;

  int CalculateStackPassedWords(int num_reg_arguments,
                                int num_double_arguments);
  void CallCFunctionHelper(Register function, int num_reg_arguments,
                           int num_double_arguments,
                           SetIsolateDataSlots set_isolate_data_slots,
                           bool has_function_descriptor);

  // Helper functions for generating invokes.
  void InvokePrologue(Register expected_parameter_count,
                      Register actual_parameter_count, Label* done,
                      InvokeType type);

  DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
};

struct MoveCycleState {
  // Whether a move in the cycle needs a double scratch register.
  bool pending_double_scratch_register_use = false;
};

#define ACCESS_MASM(masm) masm->

}  // namespace internal
}  // namespace v8

#endif  // V8_CODEGEN_PPC_MACRO_ASSEMBLER_PPC_H_