1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/codegen/register-configuration.h"
#include "src/base/lazy-instance.h"
#include "src/codegen/cpu-features.h"
#include "src/codegen/register-arch.h"
#include "src/common/globals.h"
namespace v8 {
namespace internal {
namespace {
#define REGISTER_COUNT(R) 1 +
static const int kMaxAllocatableGeneralRegisterCount =
ALLOCATABLE_GENERAL_REGISTERS(REGISTER_COUNT) 0;
static const int kMaxAllocatableDoubleRegisterCount =
ALLOCATABLE_DOUBLE_REGISTERS(REGISTER_COUNT) 0;
static const int kAllocatableGeneralCodes[] = {
#define REGISTER_CODE(R) kRegCode_##R,
ALLOCATABLE_GENERAL_REGISTERS(REGISTER_CODE)};
#undef REGISTER_CODE
#define REGISTER_CODE(R) kDoubleCode_##R,
static const int kAllocatableDoubleCodes[] = {
ALLOCATABLE_DOUBLE_REGISTERS(REGISTER_CODE)};
#if V8_TARGET_ARCH_ARM
static const int kAllocatableNoVFP32DoubleCodes[] = {
ALLOCATABLE_NO_VFP32_DOUBLE_REGISTERS(REGISTER_CODE)};
#endif // V8_TARGET_ARCH_ARM
#undef REGISTER_CODE
STATIC_ASSERT(RegisterConfiguration::kMaxGeneralRegisters >=
Register::kNumRegisters);
STATIC_ASSERT(RegisterConfiguration::kMaxFPRegisters >=
FloatRegister::kNumRegisters);
STATIC_ASSERT(RegisterConfiguration::kMaxFPRegisters >=
DoubleRegister::kNumRegisters);
STATIC_ASSERT(RegisterConfiguration::kMaxFPRegisters >=
Simd128Register::kNumRegisters);
static int get_num_allocatable_double_registers() {
return
#if V8_TARGET_ARCH_IA32
kMaxAllocatableDoubleRegisterCount;
#elif V8_TARGET_ARCH_X64
kMaxAllocatableDoubleRegisterCount;
#elif V8_TARGET_ARCH_ARM
CpuFeatures::IsSupported(VFP32DREGS)
? kMaxAllocatableDoubleRegisterCount
: (ALLOCATABLE_NO_VFP32_DOUBLE_REGISTERS(REGISTER_COUNT) 0);
#elif V8_TARGET_ARCH_ARM64
kMaxAllocatableDoubleRegisterCount;
#elif V8_TARGET_ARCH_MIPS
kMaxAllocatableDoubleRegisterCount;
#elif V8_TARGET_ARCH_MIPS64
kMaxAllocatableDoubleRegisterCount;
#elif V8_TARGET_ARCH_PPC
kMaxAllocatableDoubleRegisterCount;
#elif V8_TARGET_ARCH_PPC64
kMaxAllocatableDoubleRegisterCount;
#elif V8_TARGET_ARCH_S390
kMaxAllocatableDoubleRegisterCount;
#else
#error Unsupported target architecture.
#endif
}
#undef REGISTER_COUNT
static const int* get_allocatable_double_codes() {
return
#if V8_TARGET_ARCH_ARM
CpuFeatures::IsSupported(VFP32DREGS) ? kAllocatableDoubleCodes
: kAllocatableNoVFP32DoubleCodes;
#else
kAllocatableDoubleCodes;
#endif
}
class ArchDefaultRegisterConfiguration : public RegisterConfiguration {
public:
ArchDefaultRegisterConfiguration()
: RegisterConfiguration(
Register::kNumRegisters, DoubleRegister::kNumRegisters,
kMaxAllocatableGeneralRegisterCount,
get_num_allocatable_double_registers(), kAllocatableGeneralCodes,
get_allocatable_double_codes(),
kSimpleFPAliasing ? AliasingKind::OVERLAP : AliasingKind::COMBINE) {
}
};
DEFINE_LAZY_LEAKY_OBJECT_GETTER(ArchDefaultRegisterConfiguration,
GetDefaultRegisterConfiguration)
// Allocatable registers with the masking register removed.
class ArchDefaultPoisoningRegisterConfiguration : public RegisterConfiguration {
public:
ArchDefaultPoisoningRegisterConfiguration()
: RegisterConfiguration(
Register::kNumRegisters, DoubleRegister::kNumRegisters,
kMaxAllocatableGeneralRegisterCount - 1,
get_num_allocatable_double_registers(),
InitializeGeneralRegisterCodes(), get_allocatable_double_codes(),
kSimpleFPAliasing ? AliasingKind::OVERLAP : AliasingKind::COMBINE) {
}
private:
static const int* InitializeGeneralRegisterCodes() {
int filtered_index = 0;
for (int i = 0; i < kMaxAllocatableGeneralRegisterCount; ++i) {
if (kAllocatableGeneralCodes[i] != kSpeculationPoisonRegister.code()) {
allocatable_general_codes_[filtered_index] =
kAllocatableGeneralCodes[i];
filtered_index++;
}
}
DCHECK_EQ(filtered_index, kMaxAllocatableGeneralRegisterCount - 1);
return allocatable_general_codes_;
}
static int
allocatable_general_codes_[kMaxAllocatableGeneralRegisterCount - 1];
};
int ArchDefaultPoisoningRegisterConfiguration::allocatable_general_codes_
[kMaxAllocatableGeneralRegisterCount - 1];
DEFINE_LAZY_LEAKY_OBJECT_GETTER(ArchDefaultPoisoningRegisterConfiguration,
GetDefaultPoisoningRegisterConfiguration)
// RestrictedRegisterConfiguration uses the subset of allocatable general
// registers the architecture support, which results into generating assembly
// to use less registers. Currently, it's only used by RecordWrite code stub.
class RestrictedRegisterConfiguration : public RegisterConfiguration {
public:
RestrictedRegisterConfiguration(
int num_allocatable_general_registers,
std::unique_ptr<int[]> allocatable_general_register_codes,
std::unique_ptr<char const*[]> allocatable_general_register_names)
: RegisterConfiguration(
Register::kNumRegisters, DoubleRegister::kNumRegisters,
num_allocatable_general_registers,
get_num_allocatable_double_registers(),
allocatable_general_register_codes.get(),
get_allocatable_double_codes(),
kSimpleFPAliasing ? AliasingKind::OVERLAP : AliasingKind::COMBINE),
allocatable_general_register_codes_(
std::move(allocatable_general_register_codes)),
allocatable_general_register_names_(
std::move(allocatable_general_register_names)) {
for (int i = 0; i < num_allocatable_general_registers; ++i) {
DCHECK(
IsAllocatableGeneralRegister(allocatable_general_register_codes_[i]));
}
}
bool IsAllocatableGeneralRegister(int code) {
for (int i = 0; i < kMaxAllocatableGeneralRegisterCount; ++i) {
if (code == kAllocatableGeneralCodes[i]) {
return true;
}
}
return false;
}
private:
std::unique_ptr<int[]> allocatable_general_register_codes_;
std::unique_ptr<char const*[]> allocatable_general_register_names_;
};
} // namespace
const RegisterConfiguration* RegisterConfiguration::Default() {
return GetDefaultRegisterConfiguration();
}
const RegisterConfiguration* RegisterConfiguration::Poisoning() {
return GetDefaultPoisoningRegisterConfiguration();
}
const RegisterConfiguration* RegisterConfiguration::RestrictGeneralRegisters(
RegList registers) {
int num = NumRegs(registers);
std::unique_ptr<int[]> codes{new int[num]};
std::unique_ptr<char const* []> names { new char const*[num] };
int counter = 0;
for (int i = 0; i < Default()->num_allocatable_general_registers(); ++i) {
auto reg = Register::from_code(Default()->GetAllocatableGeneralCode(i));
if (reg.bit() & registers) {
DCHECK(counter < num);
codes[counter] = reg.code();
names[counter] = RegisterName(Register::from_code(i));
counter++;
}
}
return new RestrictedRegisterConfiguration(num, std::move(codes),
std::move(names));
}
RegisterConfiguration::RegisterConfiguration(
int num_general_registers, int num_double_registers,
int num_allocatable_general_registers, int num_allocatable_double_registers,
const int* allocatable_general_codes, const int* allocatable_double_codes,
AliasingKind fp_aliasing_kind)
: num_general_registers_(num_general_registers),
num_float_registers_(0),
num_double_registers_(num_double_registers),
num_simd128_registers_(0),
num_allocatable_general_registers_(num_allocatable_general_registers),
num_allocatable_float_registers_(0),
num_allocatable_double_registers_(num_allocatable_double_registers),
num_allocatable_simd128_registers_(0),
allocatable_general_codes_mask_(0),
allocatable_float_codes_mask_(0),
allocatable_double_codes_mask_(0),
allocatable_simd128_codes_mask_(0),
allocatable_general_codes_(allocatable_general_codes),
allocatable_double_codes_(allocatable_double_codes),
fp_aliasing_kind_(fp_aliasing_kind) {
DCHECK_LE(num_general_registers_,
RegisterConfiguration::kMaxGeneralRegisters);
DCHECK_LE(num_double_registers_, RegisterConfiguration::kMaxFPRegisters);
for (int i = 0; i < num_allocatable_general_registers_; ++i) {
allocatable_general_codes_mask_ |= (1 << allocatable_general_codes_[i]);
}
for (int i = 0; i < num_allocatable_double_registers_; ++i) {
allocatable_double_codes_mask_ |= (1 << allocatable_double_codes_[i]);
}
if (fp_aliasing_kind_ == COMBINE) {
num_float_registers_ = num_double_registers_ * 2 <= kMaxFPRegisters
? num_double_registers_ * 2
: kMaxFPRegisters;
num_allocatable_float_registers_ = 0;
for (int i = 0; i < num_allocatable_double_registers_; i++) {
int base_code = allocatable_double_codes_[i] * 2;
if (base_code >= kMaxFPRegisters) continue;
allocatable_float_codes_[num_allocatable_float_registers_++] = base_code;
allocatable_float_codes_[num_allocatable_float_registers_++] =
base_code + 1;
allocatable_float_codes_mask_ |= (0x3 << base_code);
}
num_simd128_registers_ = num_double_registers_ / 2;
num_allocatable_simd128_registers_ = 0;
int last_simd128_code = allocatable_double_codes_[0] / 2;
for (int i = 1; i < num_allocatable_double_registers_; i++) {
int next_simd128_code = allocatable_double_codes_[i] / 2;
// This scheme assumes allocatable_double_codes_ are strictly increasing.
DCHECK_GE(next_simd128_code, last_simd128_code);
if (last_simd128_code == next_simd128_code) {
allocatable_simd128_codes_[num_allocatable_simd128_registers_++] =
next_simd128_code;
allocatable_simd128_codes_mask_ |= (0x1 << next_simd128_code);
}
last_simd128_code = next_simd128_code;
}
} else {
DCHECK(fp_aliasing_kind_ == OVERLAP);
num_float_registers_ = num_simd128_registers_ = num_double_registers_;
num_allocatable_float_registers_ = num_allocatable_simd128_registers_ =
num_allocatable_double_registers_;
for (int i = 0; i < num_allocatable_float_registers_; ++i) {
allocatable_float_codes_[i] = allocatable_simd128_codes_[i] =
allocatable_double_codes_[i];
}
allocatable_float_codes_mask_ = allocatable_simd128_codes_mask_ =
allocatable_double_codes_mask_;
}
}
// Assert that kFloat32, kFloat64, and kSimd128 are consecutive values.
STATIC_ASSERT(static_cast<int>(MachineRepresentation::kSimd128) ==
static_cast<int>(MachineRepresentation::kFloat64) + 1);
STATIC_ASSERT(static_cast<int>(MachineRepresentation::kFloat64) ==
static_cast<int>(MachineRepresentation::kFloat32) + 1);
int RegisterConfiguration::GetAliases(MachineRepresentation rep, int index,
MachineRepresentation other_rep,
int* alias_base_index) const {
DCHECK(fp_aliasing_kind_ == COMBINE);
DCHECK(IsFloatingPoint(rep) && IsFloatingPoint(other_rep));
if (rep == other_rep) {
*alias_base_index = index;
return 1;
}
int rep_int = static_cast<int>(rep);
int other_rep_int = static_cast<int>(other_rep);
if (rep_int > other_rep_int) {
int shift = rep_int - other_rep_int;
int base_index = index << shift;
if (base_index >= kMaxFPRegisters) {
// Alias indices would be out of FP register range.
return 0;
}
*alias_base_index = base_index;
return 1 << shift;
}
int shift = other_rep_int - rep_int;
*alias_base_index = index >> shift;
return 1;
}
bool RegisterConfiguration::AreAliases(MachineRepresentation rep, int index,
MachineRepresentation other_rep,
int other_index) const {
DCHECK(fp_aliasing_kind_ == COMBINE);
DCHECK(IsFloatingPoint(rep) && IsFloatingPoint(other_rep));
if (rep == other_rep) {
return index == other_index;
}
int rep_int = static_cast<int>(rep);
int other_rep_int = static_cast<int>(other_rep);
if (rep_int > other_rep_int) {
int shift = rep_int - other_rep_int;
return index == other_index >> shift;
}
int shift = other_rep_int - rep_int;
return index >> shift == other_index;
}
} // namespace internal
} // namespace v8
|