summaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/s390/assembler-s390.cc
blob: 91653d4dc64694c5d2e66077a9fb3e6762709867 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.

#include "src/codegen/s390/assembler-s390.h"
#include <set>
#include <string>

#if V8_TARGET_ARCH_S390

#if V8_HOST_ARCH_S390
#include <elf.h>  // Required for auxv checks for STFLE support
#include <sys/auxv.h>
#endif

#include "src/base/bits.h"
#include "src/base/cpu.h"
#include "src/codegen/macro-assembler.h"
#include "src/codegen/s390/assembler-s390-inl.h"
#include "src/deoptimizer/deoptimizer.h"

namespace v8 {
namespace internal {

// Get the CPU features enabled by the build.
static unsigned CpuFeaturesImpliedByCompiler() {
  unsigned answer = 0;
  return answer;
}

static bool supportsCPUFeature(const char* feature) {
  static std::set<std::string>& features = *new std::set<std::string>();
  static std::set<std::string>& all_available_features =
      *new std::set<std::string>({"iesan3", "zarch", "stfle", "msa", "ldisp",
                                  "eimm", "dfp", "etf3eh", "highgprs", "te",
                                  "vx"});
  if (features.empty()) {
#if V8_HOST_ARCH_S390

#ifndef HWCAP_S390_VX
#define HWCAP_S390_VX 2048
#endif
#define CHECK_AVAILABILITY_FOR(mask, value) \
  if (f & mask) features.insert(value);

    // initialize feature vector
    uint64_t f = getauxval(AT_HWCAP);
    CHECK_AVAILABILITY_FOR(HWCAP_S390_ESAN3, "iesan3")
    CHECK_AVAILABILITY_FOR(HWCAP_S390_ZARCH, "zarch")
    CHECK_AVAILABILITY_FOR(HWCAP_S390_STFLE, "stfle")
    CHECK_AVAILABILITY_FOR(HWCAP_S390_MSA, "msa")
    CHECK_AVAILABILITY_FOR(HWCAP_S390_LDISP, "ldisp")
    CHECK_AVAILABILITY_FOR(HWCAP_S390_EIMM, "eimm")
    CHECK_AVAILABILITY_FOR(HWCAP_S390_DFP, "dfp")
    CHECK_AVAILABILITY_FOR(HWCAP_S390_ETF3EH, "etf3eh")
    CHECK_AVAILABILITY_FOR(HWCAP_S390_HIGH_GPRS, "highgprs")
    CHECK_AVAILABILITY_FOR(HWCAP_S390_TE, "te")
    CHECK_AVAILABILITY_FOR(HWCAP_S390_VX, "vx")
#else
    // import all features
    features.insert(all_available_features.begin(),
                    all_available_features.end());
#endif
  }
  USE(all_available_features);
  return features.find(feature) != features.end();
}

#undef CHECK_AVAILABILITY_FOR
#undef HWCAP_S390_VX

// Check whether Store Facility STFLE instruction is available on the platform.
// Instruction returns a bit vector of the enabled hardware facilities.
static bool supportsSTFLE() {
#if V8_HOST_ARCH_S390
  static bool read_tried = false;
  static uint32_t auxv_hwcap = 0;

  if (!read_tried) {
    // Open the AUXV (auxiliary vector) pseudo-file
    int fd = open("/proc/self/auxv", O_RDONLY);

    read_tried = true;
    if (fd != -1) {
#if V8_TARGET_ARCH_S390X
      static Elf64_auxv_t buffer[16];
      Elf64_auxv_t* auxv_element;
#else
      static Elf32_auxv_t buffer[16];
      Elf32_auxv_t* auxv_element;
#endif
      int bytes_read = 0;
      while (bytes_read >= 0) {
        // Read a chunk of the AUXV
        bytes_read = read(fd, buffer, sizeof(buffer));
        // Locate and read the platform field of AUXV if it is in the chunk
        for (auxv_element = buffer;
             auxv_element + sizeof(auxv_element) <= buffer + bytes_read &&
             auxv_element->a_type != AT_NULL;
             auxv_element++) {
          // We are looking for HWCAP entry in AUXV to search for STFLE support
          if (auxv_element->a_type == AT_HWCAP) {
            /* Note: Both auxv_hwcap and buffer are static */
            auxv_hwcap = auxv_element->a_un.a_val;
            goto done_reading;
          }
        }
      }
    done_reading:
      close(fd);
    }
  }

  // Did not find result
  if (0 == auxv_hwcap) {
    return false;
  }

  // HWCAP_S390_STFLE is defined to be 4 in include/asm/elf.h.  Currently
  // hardcoded in case that include file does not exist.
  const uint32_t _HWCAP_S390_STFLE = 4;
  return (auxv_hwcap & _HWCAP_S390_STFLE);
#else
  // STFLE is not available on non-s390 hosts
  return false;
#endif
}

bool CpuFeatures::SupportsWasmSimd128() {
#if V8_ENABLE_WEBASSEMBLY
  return CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_1);
#else
  return false;
#endif  // V8_ENABLE_WEBASSEMBLY
}

void CpuFeatures::ProbeImpl(bool cross_compile) {
  supported_ |= CpuFeaturesImpliedByCompiler();
  icache_line_size_ = 256;

  // Only use statically determined features for cross compile (snapshot).
  if (cross_compile) return;

#ifdef DEBUG
  initialized_ = true;
#endif

  static bool performSTFLE = supportsSTFLE();

// Need to define host, as we are generating inlined S390 assembly to test
// for facilities.
#if V8_HOST_ARCH_S390
  if (performSTFLE) {
    // STFLE D(B) requires:
    //    GPR0 to specify # of double words to update minus 1.
    //      i.e. GPR0 = 0 for 1 doubleword
    //    D(B) to specify to memory location to store the facilities bits
    // The facilities we are checking for are:
    //   Bit 45 - Distinct Operands for instructions like ARK, SRK, etc.
    // As such, we require only 1 double word
    int64_t facilities[3] = {0L};
    int16_t reg0;
    // LHI sets up GPR0
    // STFLE is specified as .insn, as opcode is not recognized.
    // We register the instructions kill r0 (LHI) and the CC (STFLE).
    asm volatile(
        "lhi   %%r0,2\n"
        ".insn s,0xb2b00000,%0\n"
        : "=Q"(facilities), "=r"(reg0)
        :
        : "cc", "r0");

    uint64_t one = static_cast<uint64_t>(1);
    // Test for Distinct Operands Facility - Bit 45
    if (facilities[0] & (one << (63 - 45))) {
      supported_ |= (1u << DISTINCT_OPS);
    }
    // Test for General Instruction Extension Facility - Bit 34
    if (facilities[0] & (one << (63 - 34))) {
      supported_ |= (1u << GENERAL_INSTR_EXT);
    }
    // Test for Floating Point Extension Facility - Bit 37
    if (facilities[0] & (one << (63 - 37))) {
      supported_ |= (1u << FLOATING_POINT_EXT);
    }
    // Test for Vector Facility - Bit 129
    if (facilities[2] & (one << (63 - (129 - 128))) &&
        supportsCPUFeature("vx")) {
      supported_ |= (1u << VECTOR_FACILITY);
    }
    // Test for Vector Enhancement Facility 1 - Bit 135
    if (facilities[2] & (one << (63 - (135 - 128))) &&
        supportsCPUFeature("vx")) {
      supported_ |= (1u << VECTOR_ENHANCE_FACILITY_1);
    }
    // Test for Vector Enhancement Facility 2 - Bit 148
    if (facilities[2] & (one << (63 - (148 - 128))) &&
        supportsCPUFeature("vx")) {
      supported_ |= (1u << VECTOR_ENHANCE_FACILITY_2);
    }
    // Test for Miscellaneous Instruction Extension Facility - Bit 58
    if (facilities[0] & (1lu << (63 - 58))) {
      supported_ |= (1u << MISC_INSTR_EXT2);
    }
  }
#else
  // All distinct ops instructions can be simulated
  supported_ |= (1u << DISTINCT_OPS);
  // RISBG can be simulated
  supported_ |= (1u << GENERAL_INSTR_EXT);
  supported_ |= (1u << FLOATING_POINT_EXT);
  supported_ |= (1u << MISC_INSTR_EXT2);
  USE(performSTFLE);  // To avoid assert
  USE(supportsCPUFeature);
  supported_ |= (1u << VECTOR_FACILITY);
  supported_ |= (1u << VECTOR_ENHANCE_FACILITY_1);
  supported_ |= (1u << VECTOR_ENHANCE_FACILITY_2);
#endif
  supported_ |= (1u << FPU);

  // Set a static value on whether Simd is supported.
  // This variable is only used for certain archs to query SupportWasmSimd128()
  // at runtime in builtins using an extern ref. Other callers should use
  // CpuFeatures::SupportWasmSimd128().
  CpuFeatures::supports_wasm_simd_128_ = CpuFeatures::SupportsWasmSimd128();
}

void CpuFeatures::PrintTarget() {
  const char* s390_arch = nullptr;

#if V8_TARGET_ARCH_S390X
  s390_arch = "s390x";
#else
  s390_arch = "s390";
#endif

  PrintF("target %s\n", s390_arch);
}

void CpuFeatures::PrintFeatures() {
  PrintF("FPU=%d\n", CpuFeatures::IsSupported(FPU));
  PrintF("FPU_EXT=%d\n", CpuFeatures::IsSupported(FLOATING_POINT_EXT));
  PrintF("GENERAL_INSTR=%d\n", CpuFeatures::IsSupported(GENERAL_INSTR_EXT));
  PrintF("DISTINCT_OPS=%d\n", CpuFeatures::IsSupported(DISTINCT_OPS));
  PrintF("VECTOR_FACILITY=%d\n", CpuFeatures::IsSupported(VECTOR_FACILITY));
  PrintF("VECTOR_ENHANCE_FACILITY_1=%d\n",
         CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_1));
  PrintF("VECTOR_ENHANCE_FACILITY_2=%d\n",
         CpuFeatures::IsSupported(VECTOR_ENHANCE_FACILITY_2));
  PrintF("MISC_INSTR_EXT2=%d\n", CpuFeatures::IsSupported(MISC_INSTR_EXT2));
}

Register ToRegister(int num) {
  DCHECK(num >= 0 && num < kNumRegisters);
  const Register kRegisters[] = {r0, r1, r2,  r3, r4, r5,  r6,  r7,
                                 r8, r9, r10, fp, ip, r13, r14, sp};
  return kRegisters[num];
}

// -----------------------------------------------------------------------------
// Implementation of RelocInfo

const int RelocInfo::kApplyMask =
    RelocInfo::ModeMask(RelocInfo::CODE_TARGET) |
    RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE);

bool RelocInfo::IsCodedSpecially() {
  // The deserializer needs to know whether a pointer is specially
  // coded.  Being specially coded on S390 means that it is an iihf/iilf
  // instruction sequence, and that is always the case inside code
  // objects.
  return true;
}

bool RelocInfo::IsInConstantPool() { return false; }

uint32_t RelocInfo::wasm_call_tag() const {
  DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
  return static_cast<uint32_t>(
      Assembler::target_address_at(pc_, constant_pool_));
}

// -----------------------------------------------------------------------------
// Implementation of Operand and MemOperand
// See assembler-s390-inl.h for inlined constructors

Operand::Operand(Handle<HeapObject> handle) {
  AllowHandleDereference using_location;
  rm_ = no_reg;
  value_.immediate = static_cast<intptr_t>(handle.address());
  rmode_ = RelocInfo::FULL_EMBEDDED_OBJECT;
}

Operand Operand::EmbeddedNumber(double value) {
  int32_t smi;
  if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi));
  Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
  result.is_heap_number_request_ = true;
  result.value_.heap_number_request = HeapNumberRequest(value);
  return result;
}

MemOperand::MemOperand(Register rn, int32_t offset)
    : baseRegister(rn), indexRegister(r0), offset_(offset) {}

MemOperand::MemOperand(Register rx, Register rb, int32_t offset)
    : baseRegister(rb), indexRegister(rx), offset_(offset) {}

void Assembler::AllocateAndInstallRequestedHeapNumbers(Isolate* isolate) {
  DCHECK_IMPLIES(isolate == nullptr, heap_number_requests_.empty());
  for (auto& request : heap_number_requests_) {
    Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset();
    Handle<HeapObject> object =
        isolate->factory()->NewHeapNumber<AllocationType::kOld>(
            request.heap_number());
    set_target_address_at(pc, kNullAddress, object.address(),
                          SKIP_ICACHE_FLUSH);
  }
}

// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.

Assembler::Assembler(const AssemblerOptions& options,
                     std::unique_ptr<AssemblerBuffer> buffer)
    : AssemblerBase(options, std::move(buffer)), scratch_register_list_({ip}) {
  reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_);
  last_bound_pos_ = 0;
  relocations_.reserve(128);
}

void Assembler::GetCode(Isolate* isolate, CodeDesc* desc,
                        SafepointTableBuilder* safepoint_table_builder,
                        int handler_table_offset) {
  // As a crutch to avoid having to add manual Align calls wherever we use a
  // raw workflow to create Code objects (mostly in tests), add another Align
  // call here. It does no harm - the end of the Code object is aligned to the
  // (larger) kCodeAlignment anyways.
  // TODO(jgruber): Consider moving responsibility for proper alignment to
  // metadata table builders (safepoint, handler, constant pool, code
  // comments).
  DataAlign(InstructionStream::kMetadataAlignment);

  EmitRelocations();

  int code_comments_size = WriteCodeComments();

  AllocateAndInstallRequestedHeapNumbers(isolate);

  // Set up code descriptor.
  // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to
  // this point to make CodeDesc initialization less fiddly.

  static constexpr int kConstantPoolSize = 0;
  const int instruction_size = pc_offset();
  const int code_comments_offset = instruction_size - code_comments_size;
  const int constant_pool_offset = code_comments_offset - kConstantPoolSize;
  const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable)
                                        ? constant_pool_offset
                                        : handler_table_offset;
  const int safepoint_table_offset =
      (safepoint_table_builder == kNoSafepointTable)
          ? handler_table_offset2
          : safepoint_table_builder->safepoint_table_offset();
  const int reloc_info_offset =
      static_cast<int>(reloc_info_writer.pos() - buffer_->start());
  CodeDesc::Initialize(desc, this, safepoint_table_offset,
                       handler_table_offset2, constant_pool_offset,
                       code_comments_offset, reloc_info_offset);
}

void Assembler::Align(int m) {
  DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m));
  while ((pc_offset() & (m - 1)) != 0) {
    nop(0);
  }
}

void Assembler::CodeTargetAlign() { Align(8); }

Condition Assembler::GetCondition(Instr instr) {
  switch (instr & kCondMask) {
    case BT:
      return eq;
    case BF:
      return ne;
    default:
      UNIMPLEMENTED();
  }
}

#if V8_TARGET_ARCH_S390X
// This code assumes a FIXED_SEQUENCE for 64bit loads (iihf/iilf)
bool Assembler::Is64BitLoadIntoIP(SixByteInstr instr1, SixByteInstr instr2) {
  // Check the instructions are the iihf/iilf load into ip
  return (((instr1 >> 32) == 0xC0C8) && ((instr2 >> 32) == 0xC0C9));
}
#else
// This code assumes a FIXED_SEQUENCE for 32bit loads (iilf)
bool Assembler::Is32BitLoadIntoIP(SixByteInstr instr) {
  // Check the instruction is an iilf load into ip/r12.
  return ((instr >> 32) == 0xC0C9);
}
#endif

// Labels refer to positions in the (to be) generated code.
// There are bound, linked, and unused labels.
//
// Bound labels refer to known positions in the already
// generated code. pos() is the position the label refers to.
//
// Linked labels refer to unknown positions in the code
// to be generated; pos() is the position of the last
// instruction using the label.

// The link chain is terminated by a negative code position (must be aligned)
const int kEndOfChain = -4;

// Returns the target address of the relative instructions, typically
// of the form: pos + imm (where immediate is in # of halfwords for
// BR* and LARL).
int Assembler::target_at(int pos) {
  SixByteInstr instr = instr_at(pos);
  // check which type of branch this is 16 or 26 bit offset
  Opcode opcode = Instruction::S390OpcodeValue(buffer_start_ + pos);

  if (BRC == opcode || BRCT == opcode || BRCTG == opcode || BRXH == opcode) {
    int16_t imm16 = SIGN_EXT_IMM16((instr & kImm16Mask));
    imm16 <<= 1;  // immediate is in # of halfwords
    if (imm16 == 0) return kEndOfChain;
    return pos + imm16;
  } else if (LLILF == opcode || BRCL == opcode || LARL == opcode ||
             BRASL == opcode || LGRL == opcode) {
    int32_t imm32 =
        static_cast<int32_t>(instr & (static_cast<uint64_t>(0xFFFFFFFF)));
    if (LLILF != opcode)
      imm32 <<= 1;  // BR* + LARL treat immediate in # of halfwords
    if (imm32 == 0) return kEndOfChain;
    return pos + imm32;
  } else if (BRXHG == opcode) {
    // offset is in bits 16-31 of 48 bit instruction
    instr = instr >> 16;
    int16_t imm16 = SIGN_EXT_IMM16((instr & kImm16Mask));
    imm16 <<= 1;  // immediate is in # of halfwords
    if (imm16 == 0) return kEndOfChain;
    return pos + imm16;
  }

  // Unknown condition
  DCHECK(false);
  return -1;
}

// Update the target address of the current relative instruction.
void Assembler::target_at_put(int pos, int target_pos, bool* is_branch) {
  SixByteInstr instr = instr_at(pos);
  Opcode opcode = Instruction::S390OpcodeValue(buffer_start_ + pos);

  if (is_branch != nullptr) {
    *is_branch =
        (opcode == BRC || opcode == BRCT || opcode == BRCTG || opcode == BRCL ||
         opcode == BRASL || opcode == BRXH || opcode == BRXHG);
  }

  if (BRC == opcode || BRCT == opcode || BRCTG == opcode || BRXH == opcode) {
    int16_t imm16 = target_pos - pos;
    instr &= (~0xFFFF);
    DCHECK(is_int16(imm16));
    instr_at_put<FourByteInstr>(pos, instr | (imm16 >> 1));
    return;
  } else if (BRCL == opcode || LARL == opcode || BRASL == opcode ||
             LGRL == opcode) {
    // Immediate is in # of halfwords
    int32_t imm32 = target_pos - pos;
    instr &= (~static_cast<uint64_t>(0xFFFFFFFF));
    instr_at_put<SixByteInstr>(pos, instr | (imm32 >> 1));
    return;
  } else if (LLILF == opcode) {
    DCHECK(target_pos == kEndOfChain || target_pos >= 0);
    // Emitted label constant, not part of a branch.
    // Make label relative to InstructionStream pointer of generated
    // InstructionStream object.
    int32_t imm32 =
        target_pos + (InstructionStream::kHeaderSize - kHeapObjectTag);
    instr &= (~static_cast<uint64_t>(0xFFFFFFFF));
    instr_at_put<SixByteInstr>(pos, instr | imm32);
    return;
  } else if (BRXHG == opcode) {
    // Immediate is in bits 16-31 of 48 bit instruction
    int32_t imm16 = target_pos - pos;
    instr &= (0xFFFF0000FFFF);  // clear bits 16-31
    imm16 &= 0xFFFF;            // clear high halfword
    imm16 <<= 16;
    // Immediate is in # of halfwords
    instr_at_put<SixByteInstr>(pos, instr | (imm16 >> 1));
    return;
  }
  DCHECK(false);
}

// Returns the maximum number of bits given instruction can address.
int Assembler::max_reach_from(int pos) {
  Opcode opcode = Instruction::S390OpcodeValue(buffer_start_ + pos);
  // Check which type of instr.  In theory, we can return
  // the values below + 1, given offset is # of halfwords
  if (BRC == opcode || BRCT == opcode || BRCTG == opcode || BRXH == opcode ||
      BRXHG == opcode) {
    return 16;
  } else if (LLILF == opcode || BRCL == opcode || LARL == opcode ||
             BRASL == opcode || LGRL == opcode) {
    return 31;  // Using 31 as workaround instead of 32 as
                // is_intn(x,32) doesn't work on 32-bit platforms.
                // llilf: Emitted label constant, not part of
                //        a branch (regexp PushBacktrack).
  }
  DCHECK(false);
  return 16;
}

void Assembler::bind_to(Label* L, int pos) {
  DCHECK(0 <= pos && pos <= pc_offset());  // must have a valid binding position
  bool is_branch = false;
  while (L->is_linked()) {
    int fixup_pos = L->pos();
#ifdef DEBUG
    int32_t offset = pos - fixup_pos;
    int maxReach = max_reach_from(fixup_pos);
#endif
    next(L);  // call next before overwriting link with target at fixup_pos
    DCHECK(is_intn(offset, maxReach));
    target_at_put(fixup_pos, pos, &is_branch);
  }
  L->bind_to(pos);

  // Keep track of the last bound label so we don't eliminate any instructions
  // before a bound label.
  if (pos > last_bound_pos_) last_bound_pos_ = pos;
}

void Assembler::bind(Label* L) {
  DCHECK(!L->is_bound());  // label can only be bound once
  bind_to(L, pc_offset());
}

void Assembler::next(Label* L) {
  DCHECK(L->is_linked());
  int link = target_at(L->pos());
  if (link == kEndOfChain) {
    L->Unuse();
  } else {
    DCHECK_GE(link, 0);
    L->link_to(link);
  }
}

int Assembler::link(Label* L) {
  int position;
  if (L->is_bound()) {
    position = L->pos();
  } else {
    if (L->is_linked()) {
      position = L->pos();  // L's link
    } else {
      // was: target_pos = kEndOfChain;
      // However, using self to mark the first reference
      // should avoid most instances of branch offset overflow.  See
      // target_at() for where this is converted back to kEndOfChain.
      position = pc_offset();
    }
    L->link_to(pc_offset());
  }

  return position;
}

void Assembler::load_label_offset(Register r1, Label* L) {
  int target_pos;
  int constant;
  if (L->is_bound()) {
    target_pos = L->pos();
    constant = target_pos + (InstructionStream::kHeaderSize - kHeapObjectTag);
  } else {
    if (L->is_linked()) {
      target_pos = L->pos();  // L's link
    } else {
      // was: target_pos = kEndOfChain;
      // However, using branch to self to mark the first reference
      // should avoid most instances of branch offset overflow.  See
      // target_at() for where this is converted back to kEndOfChain.
      target_pos = pc_offset();
    }
    L->link_to(pc_offset());

    constant = target_pos - pc_offset();
  }
  llilf(r1, Operand(constant));
}

// Pseudo op - branch on condition
void Assembler::branchOnCond(Condition c, int branch_offset, bool is_bound,
                             bool force_long_branch) {
  int offset_in_halfwords = branch_offset / 2;
  if (is_bound && is_int16(offset_in_halfwords) && !force_long_branch) {
    brc(c, Operand(offset_in_halfwords));  // short jump
  } else {
    brcl(c, Operand(offset_in_halfwords));  // long jump
  }
}

// Exception-generating instructions and debugging support.
// Stops with a non-negative code less than kNumOfWatchedStops support
// enabling/disabling and a counter feature. See simulator-s390.h .
void Assembler::stop(Condition cond, int32_t code, CRegister cr) {
  if (cond != al) {
    Label skip;
    b(NegateCondition(cond), &skip, Label::kNear);
    bkpt(0);
    bind(&skip);
  } else {
    bkpt(0);
  }
}

void Assembler::bkpt(uint32_t imm16) {
  // GDB software breakpoint instruction
  emit2bytes(0x0001);
}

// Pseudo instructions.
void Assembler::nop(int type) {
  switch (type) {
    case 0:
      lr(r0, r0);
      break;
    case DEBUG_BREAK_NOP:
      // TODO(john.yan): Use a better NOP break
      oill(r3, Operand::Zero());
      break;
    default:
      UNIMPLEMENTED();
  }
}

// -------------------------
// Load Address Instructions
// -------------------------
// Load Address Relative Long
void Assembler::larl(Register r1, Label* l) {
  larl(r1, Operand(branch_offset(l)));
}

void Assembler::lgrl(Register r1, Label* l) {
  lgrl(r1, Operand(branch_offset(l)));
}

void Assembler::EnsureSpaceFor(int space_needed) {
  if (buffer_space() <= (kGap + space_needed)) {
    GrowBuffer(space_needed);
  }
}

void Assembler::call(Handle<Code> target, RelocInfo::Mode rmode) {
  DCHECK(RelocInfo::IsCodeTarget(rmode));
  EnsureSpace ensure_space(this);

  RecordRelocInfo(rmode);
  int32_t target_index = AddCodeTarget(target);
  brasl(r14, Operand(target_index));
}

void Assembler::jump(Handle<Code> target, RelocInfo::Mode rmode,
                     Condition cond) {
  DCHECK(RelocInfo::IsRelativeCodeTarget(rmode));
  EnsureSpace ensure_space(this);

  RecordRelocInfo(rmode);
  int32_t target_index = AddCodeTarget(target);
  brcl(cond, Operand(target_index));
}

// end of S390instructions

bool Assembler::IsNop(SixByteInstr instr, int type) {
  DCHECK((0 == type) || (DEBUG_BREAK_NOP == type));
  if (DEBUG_BREAK_NOP == type) {
    return ((instr & 0xFFFFFFFF) == 0xA53B0000);  // oill r3, 0
  }
  return ((instr & 0xFFFF) == 0x1800);  // lr r0,r0
}

// dummy instruction reserved for special use.
void Assembler::dumy(int r1, int x2, int b2, int d2) {
#if defined(USE_SIMULATOR)
  int op = 0xE353;
  uint64_t code = (static_cast<uint64_t>(op & 0xFF00)) * B32 |
                  (static_cast<uint64_t>(r1) & 0xF) * B36 |
                  (static_cast<uint64_t>(x2) & 0xF) * B32 |
                  (static_cast<uint64_t>(b2) & 0xF) * B28 |
                  (static_cast<uint64_t>(d2 & 0x0FFF)) * B16 |
                  (static_cast<uint64_t>(d2 & 0x0FF000)) >> 4 |
                  (static_cast<uint64_t>(op & 0x00FF));
  emit6bytes(code);
#endif
}

void Assembler::GrowBuffer(int needed) {
  DCHECK_EQ(buffer_start_, buffer_->start());

  // Compute new buffer size.
  int old_size = buffer_->size();
  int new_size = std::min(2 * old_size, old_size + 1 * MB);
  int space = buffer_space() + (new_size - old_size);
  new_size += (space < needed) ? needed - space : 0;

  // Some internal data structures overflow for very large buffers,
  // they must ensure that kMaximalBufferSize is not too large.
  if (new_size > kMaximalBufferSize) {
    V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer");
  }

  // Set up new buffer.
  std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size);
  DCHECK_EQ(new_size, new_buffer->size());
  byte* new_start = new_buffer->start();

  // Copy the data.
  intptr_t pc_delta = new_start - buffer_start_;
  intptr_t rc_delta = (new_start + new_size) - (buffer_start_ + old_size);
  size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos();
  MemMove(new_start, buffer_start_, pc_offset());
  MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
          reloc_size);

  // Switch buffers.
  buffer_ = std::move(new_buffer);
  buffer_start_ = new_start;
  pc_ += pc_delta;
  reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
                               reloc_info_writer.last_pc() + pc_delta);

  // None of our relocation types are pc relative pointing outside the code
  // buffer nor pc absolute pointing inside the code buffer, so there is no need
  // to relocate any emitted relocation entries.
}

void Assembler::db(uint8_t data) {
  CheckBuffer();
  *reinterpret_cast<uint8_t*>(pc_) = data;
  pc_ += sizeof(uint8_t);
}

void Assembler::dd(uint32_t data, RelocInfo::Mode rmode) {
  CheckBuffer();
  if (!RelocInfo::IsNoInfo(rmode)) {
    DCHECK(RelocInfo::IsLiteralConstant(rmode));
    RecordRelocInfo(rmode);
  }
  *reinterpret_cast<uint32_t*>(pc_) = data;
  pc_ += sizeof(uint32_t);
}

void Assembler::dq(uint64_t value, RelocInfo::Mode rmode) {
  CheckBuffer();
  if (!RelocInfo::IsNoInfo(rmode)) {
    DCHECK(RelocInfo::IsLiteralConstant(rmode));
    RecordRelocInfo(rmode);
  }
  *reinterpret_cast<uint64_t*>(pc_) = value;
  pc_ += sizeof(uint64_t);
}

void Assembler::dp(uintptr_t data, RelocInfo::Mode rmode) {
  CheckBuffer();
  if (!RelocInfo::IsNoInfo(rmode)) {
    DCHECK(RelocInfo::IsLiteralConstant(rmode));
    RecordRelocInfo(rmode);
  }
  *reinterpret_cast<uintptr_t*>(pc_) = data;
  pc_ += sizeof(uintptr_t);
}

void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
  if (!ShouldRecordRelocInfo(rmode)) return;
  DeferredRelocInfo rinfo(pc_offset(), rmode, data);
  relocations_.push_back(rinfo);
}

void Assembler::emit_label_addr(Label* label) {
  CheckBuffer();
  RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
  int position = link(label);
  DCHECK(label->is_bound());
  // Keep internal references relative until EmitRelocations.
  dp(position);
}

void Assembler::EmitRelocations() {
  EnsureSpaceFor(relocations_.size() * kMaxRelocSize);

  for (std::vector<DeferredRelocInfo>::iterator it = relocations_.begin();
       it != relocations_.end(); it++) {
    RelocInfo::Mode rmode = it->rmode();
    Address pc = reinterpret_cast<Address>(buffer_start_) + it->position();
    RelocInfo rinfo(pc, rmode, it->data(), Code(), InstructionStream());

    // Fix up internal references now that they are guaranteed to be bound.
    if (RelocInfo::IsInternalReference(rmode)) {
      // Jump table entry
      Address pos = Memory<Address>(pc);
      Memory<Address>(pc) = reinterpret_cast<Address>(buffer_start_) + pos;
    } else if (RelocInfo::IsInternalReferenceEncoded(rmode)) {
      // mov sequence
      Address pos = target_address_at(pc, 0);
      set_target_address_at(pc, 0,
                            reinterpret_cast<Address>(buffer_start_) + pos,
                            SKIP_ICACHE_FLUSH);
    }

    reloc_info_writer.Write(&rinfo);
  }
}

UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler)
    : assembler_(assembler),
      old_available_(*assembler->GetScratchRegisterList()) {}

UseScratchRegisterScope::~UseScratchRegisterScope() {
  *assembler_->GetScratchRegisterList() = old_available_;
}

Register UseScratchRegisterScope::Acquire() {
  RegList* available = assembler_->GetScratchRegisterList();
  DCHECK_NOT_NULL(available);
  return available->PopFirst();
}
}  // namespace internal
}  // namespace v8
#endif  // V8_TARGET_ARCH_S390