summaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/s390/constants-s390.h
blob: 23e77c93d726bf70eb9c3ac6878564110bf7795a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_CODEGEN_S390_CONSTANTS_S390_H_
#define V8_CODEGEN_S390_CONSTANTS_S390_H_

// Get the standard printf format macros for C99 stdint types.
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>

#include <stdint.h>

#include "src/base/logging.h"
#include "src/base/macros.h"
#include "src/common/globals.h"

// UNIMPLEMENTED_ macro for S390.
#ifdef DEBUG
#define UNIMPLEMENTED_S390()                                               \
  v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n", \
                       __FILE__, __LINE__, __func__)
#else
#define UNIMPLEMENTED_S390()
#endif

namespace v8 {
namespace internal {

constexpr size_t kMaxPCRelativeCodeRangeInMB = 4096;

// Number of registers
const int kNumRegisters = 16;

// FP support.
const int kNumDoubleRegisters = 16;

const int kNoRegister = -1;

// Actual value of root register is offset from the root array's start
// to take advantage of negative displacement values.
// TODO(sigurds): Choose best value.
constexpr int kRootRegisterBias = 128;

// sign-extend the least significant 16-bits of value <imm>
#define SIGN_EXT_IMM16(imm) ((static_cast<int>(imm) << 16) >> 16)

// sign-extend the least significant 26-bits of value <imm>
#define SIGN_EXT_IMM26(imm) ((static_cast<int>(imm) << 6) >> 6)

// -----------------------------------------------------------------------------
// Conditions.

// Defines constants and accessor classes to assemble, disassemble and
// simulate z/Architecture instructions.
//
// Section references in the code refer to the "z/Architecture Principles
// Of Operation" http://publibfi.boulder.ibm.com/epubs/pdf/dz9zr009.pdf
//

// Constants for specific fields are defined in their respective named enums.
// General constants are in an anonymous enum in class Instr.
enum Condition {
  kNoCondition = -1,
  eq = 0x8,  // Equal.
  ne = 0x7,  // Not equal.
  ge = 0xa,  // Greater or equal.
  lt = 0x4,  // Less than.
  gt = 0x2,  // Greater than.
  le = 0xc,  // Less then or equal
  al = 0xf,  // Always.

  CC_NOP = 0x0,           // S390 NOP
  CC_EQ = 0x08,           // S390 condition code 0b1000
  CC_LT = 0x04,           // S390 condition code 0b0100
  CC_LE = CC_EQ | CC_LT,  // S390 condition code 0b1100
  CC_GT = 0x02,           // S390 condition code 0b0010
  CC_GE = CC_EQ | CC_GT,  // S390 condition code 0b1010
  CC_OF = 0x01,           // S390 condition code 0b0001
  CC_NOF = 0x0E,          // S390 condition code 0b1110
  CC_ALWAYS = 0x0F,       // S390 always taken branch
  unordered = CC_OF,      // Floating-point unordered
  ordered = CC_NOF,       // floating-point ordered
  overflow = CC_OF,       // Summary overflow
  nooverflow = CC_NOF,

  mask0x0 = 0,  // no jumps
  mask0x1 = 1,
  mask0x2 = 2,
  mask0x3 = 3,
  mask0x4 = 4,
  mask0x5 = 5,
  mask0x6 = 6,
  mask0x7 = 7,
  mask0x8 = 8,
  mask0x9 = 9,
  mask0xA = 10,
  mask0xB = 11,
  mask0xC = 12,
  mask0xD = 13,
  mask0xE = 14,
  mask0xF = 15
};

inline Condition NegateCondition(Condition cond) {
  DCHECK(cond != al);
  switch (cond) {
    case eq:
      return ne;
    case ne:
      return eq;
    case ge:
      return lt;
    case gt:
      return le;
    case le:
      return gt;
    case lt:
      return ge;
    case lt | gt:
      return eq;
    case le | ge:
      return CC_OF;
    case CC_OF:
      return CC_NOF;
    default:
      DCHECK(false);
  }
  return al;
}

// -----------------------------------------------------------------------------
// Instructions encoding.

// Instr is merely used by the Assembler to distinguish 32bit integers
// representing instructions from usual 32 bit values.
// Instruction objects are pointers to 32bit values, and provide methods to
// access the various ISA fields.
using Instr = int32_t;
using TwoByteInstr = uint16_t;
using FourByteInstr = uint32_t;
using SixByteInstr = uint64_t;

#define S390_RSY_A_OPCODE_LIST(V)                                              \
  V(lmg, LMG, 0xEB04)     /* type = RSY_A LOAD MULTIPLE (64)  */               \
  V(srag, SRAG, 0xEB0A)   /* type = RSY_A SHIFT RIGHT SINGLE (64)  */          \
  V(slag, SLAG, 0xEB0B)   /* type = RSY_A SHIFT LEFT SINGLE (64)  */           \
  V(srlg, SRLG, 0xEB0C)   /* type = RSY_A SHIFT RIGHT SINGLE LOGICAL (64)  */  \
  V(sllg, SLLG, 0xEB0D)   /* type = RSY_A SHIFT LEFT SINGLE LOGICAL (64)  */   \
  V(tracg, TRACG, 0xEB0F) /* type = RSY_A TRACE (64)  */                       \
  V(csy, CSY, 0xEB14)     /* type = RSY_A COMPARE AND SWAP (32)  */            \
  V(rllg, RLLG, 0xEB1C)   /* type = RSY_A ROTATE LEFT SINGLE LOGICAL (64)  */  \
  V(rll, RLL, 0xEB1D)     /* type = RSY_A ROTATE LEFT SINGLE LOGICAL (32)  */  \
  V(stmg, STMG, 0xEB24)   /* type = RSY_A STORE MULTIPLE (64)  */              \
  V(stctg, STCTG, 0xEB25) /* type = RSY_A STORE CONTROL (64)  */               \
  V(stmh, STMH, 0xEB26)   /* type = RSY_A STORE MULTIPLE HIGH (32)  */         \
  V(lctlg, LCTLG, 0xEB2F) /* type = RSY_A LOAD CONTROL (64)  */                \
  V(csg, CSG, 0xEB30)     /* type = RSY_A COMPARE AND SWAP (64)  */            \
  V(cdsy, CDSY, 0xEB31)   /* type = RSY_A COMPARE DOUBLE AND SWAP (32)  */     \
  V(cdsg, CDSG, 0xEB3E)   /* type = RSY_A COMPARE DOUBLE AND SWAP (64)  */     \
  V(bxhg, BXHG, 0xEB44)   /* type = RSY_A BRANCH ON INDEX HIGH (64)  */        \
  V(bxleg, BXLEG, 0xEB45) /* type = RSY_A BRANCH ON INDEX LOW OR EQUAL (64) */ \
  V(ecag, ECAG, 0xEB4C)   /* type = RSY_A EXTRACT CPU ATTRIBUTE  */            \
  V(mvclu, MVCLU, 0xEB8E) /* type = RSY_A MOVE LONG UNICODE  */                \
  V(clclu, CLCLU, 0xEB8F) /* type = RSY_A COMPARE LOGICAL LONG UNICODE  */     \
  V(stmy, STMY, 0xEB90)   /* type = RSY_A STORE MULTIPLE (32)  */              \
  V(lmh, LMH, 0xEB96)     /* type = RSY_A LOAD MULTIPLE HIGH (32)  */          \
  V(lmy, LMY, 0xEB98)     /* type = RSY_A LOAD MULTIPLE (32)  */               \
  V(lamy, LAMY, 0xEB9A)   /* type = RSY_A LOAD ACCESS MULTIPLE  */             \
  V(stamy, STAMY, 0xEB9B) /* type = RSY_A STORE ACCESS MULTIPLE  */            \
  V(srak, SRAK, 0xEBDC)   /* type = RSY_A SHIFT RIGHT SINGLE (32)  */          \
  V(slak, SLAK, 0xEBDD)   /* type = RSY_A SHIFT LEFT SINGLE (32)  */           \
  V(srlk, SRLK, 0xEBDE)   /* type = RSY_A SHIFT RIGHT SINGLE LOGICAL (32)  */  \
  V(sllk, SLLK, 0xEBDF)   /* type = RSY_A SHIFT LEFT SINGLE LOGICAL (32)  */   \
  V(lang, LANG, 0xEBE4)   /* type = RSY_A LOAD AND AND (64)  */                \
  V(laog, LAOG, 0xEBE6)   /* type = RSY_A LOAD AND OR (64)  */                 \
  V(laxg, LAXG, 0xEBE7)   /* type = RSY_A LOAD AND EXCLUSIVE OR (64)  */       \
  V(laag, LAAG, 0xEBE8)   /* type = RSY_A LOAD AND ADD (64)  */                \
  V(laalg, LAALG, 0xEBEA) /* type = RSY_A LOAD AND ADD LOGICAL (64)  */        \
  V(lan, LAN, 0xEBF4)     /* type = RSY_A LOAD AND AND (32)  */                \
  V(lao, LAO, 0xEBF6)     /* type = RSY_A LOAD AND OR (32)  */                 \
  V(lax, LAX, 0xEBF7)     /* type = RSY_A LOAD AND EXCLUSIVE OR (32)  */       \
  V(laa, LAA, 0xEBF8)     /* type = RSY_A LOAD AND ADD (32)  */                \
  V(laal, LAAL, 0xEBFA)   /* type = RSY_A LOAD AND ADD LOGICAL (32)  */

#define S390_RSY_B_OPCODE_LIST(V)                                              \
  V(clmh, CLMH,                                                                \
    0xEB20) /* type = RSY_B COMPARE LOGICAL CHAR. UNDER MASK (high)  */        \
  V(clmy, CLMY,                                                                \
    0xEB21) /* type = RSY_B COMPARE LOGICAL CHAR. UNDER MASK (low)  */         \
  V(clt, CLT, 0xEB23)   /* type = RSY_B COMPARE LOGICAL AND TRAP (32)  */      \
  V(clgt, CLGT, 0xEB2B) /* type = RSY_B COMPARE LOGICAL AND TRAP (64)  */      \
  V(stcmh, STCMH,                                                              \
    0xEB2C) /* type = RSY_B STORE CHARACTERS UNDER MASK (high)  */             \
  V(stcmy, STCMY, 0xEB2D) /* type = RSY_B STORE CHARACTERS UNDER MASK (low) */ \
  V(icmh, ICMH, 0xEB80) /* type = RSY_B INSERT CHARACTERS UNDER MASK (high) */ \
  V(icmy, ICMY, 0xEB81) /* type = RSY_B INSERT CHARACTERS UNDER MASK (low)  */ \
  V(locfh, LOCFH, 0xEBE0)   /* type = RSY_B LOAD HIGH ON CONDITION (32)  */    \
  V(stocfh, STOCFH, 0xEBE1) /* type = RSY_B STORE HIGH ON CONDITION  */        \
  V(locg, LOCG, 0xEBE2)     /* type = RSY_B LOAD ON CONDITION (64)  */         \
  V(stocg, STOCG, 0xEBE3)   /* type = RSY_B STORE ON CONDITION (64)  */        \
  V(loc, LOC, 0xEBF2)       /* type = RSY_B LOAD ON CONDITION (32)  */         \
  V(stoc, STOC, 0xEBF3)     /* type = RSY_B STORE ON CONDITION (32)  */

#define S390_RXE_OPCODE_LIST(V)                                                \
  V(lcbb, LCBB, 0xE727) /* type = RXE   LOAD COUNT TO BLOCK BOUNDARY  */       \
  V(ldeb, LDEB, 0xED04) /* type = RXE   LOAD LENGTHENED (short to long BFP) */ \
  V(lxdb, LXDB,                                                                \
    0xED05) /* type = RXE   LOAD LENGTHENED (long to extended BFP)  */         \
  V(lxeb, LXEB,                                                                \
    0xED06) /* type = RXE   LOAD LENGTHENED (short to extended BFP)  */        \
  V(mxdb, MXDB, 0xED07) /* type = RXE   MULTIPLY (long to extended BFP)  */    \
  V(keb, KEB, 0xED08)   /* type = RXE   COMPARE AND SIGNAL (short BFP)  */     \
  V(ceb, CEB, 0xED09)   /* type = RXE   COMPARE (short BFP)  */                \
  V(aeb, AEB, 0xED0A)   /* type = RXE   ADD (short BFP)  */                    \
  V(seb, SEB, 0xED0B)   /* type = RXE   SUBTRACT (short BFP)  */               \
  V(mdeb, MDEB, 0xED0C) /* type = RXE   MULTIPLY (short to long BFP)  */       \
  V(deb, DEB, 0xED0D)   /* type = RXE   DIVIDE (short BFP)  */                 \
  V(tceb, TCEB, 0xED10) /* type = RXE   TEST DATA CLASS (short BFP)  */        \
  V(tcdb, TCDB, 0xED11) /* type = RXE   TEST DATA CLASS (long BFP)  */         \
  V(tcxb, TCXB, 0xED12) /* type = RXE   TEST DATA CLASS (extended BFP)  */     \
  V(sqeb, SQEB, 0xED14) /* type = RXE   SQUARE ROOT (short BFP)  */            \
  V(sqdb, SQDB, 0xED15) /* type = RXE   SQUARE ROOT (long BFP)  */             \
  V(meeb, MEEB, 0xED17) /* type = RXE   MULTIPLY (short BFP)  */               \
  V(kdb, KDB, 0xED18)   /* type = RXE   COMPARE AND SIGNAL (long BFP)  */      \
  V(cdb, CDB, 0xED19)   /* type = RXE   COMPARE (long BFP)  */                 \
  V(adb, ADB, 0xED1A)   /* type = RXE   ADD (long BFP)  */                     \
  V(sdb, SDB, 0xED1B)   /* type = RXE   SUBTRACT (long BFP)  */                \
  V(mdb, MDB, 0xED1C)   /* type = RXE   MULTIPLY (long BFP)  */                \
  V(ddb, DDB, 0xED1D)   /* type = RXE   DIVIDE (long BFP)  */                  \
  V(lde, LDE, 0xED24) /* type = RXE   LOAD LENGTHENED (short to long HFP)  */  \
  V(lxd, LXD,                                                                  \
    0xED25) /* type = RXE   LOAD LENGTHENED (long to extended HFP)  */         \
  V(lxe, LXE,                                                                  \
    0xED26) /* type = RXE   LOAD LENGTHENED (short to extended HFP)  */        \
  V(sqe, SQE, 0xED34)     /* type = RXE   SQUARE ROOT (short HFP)  */          \
  V(sqd, SQD, 0xED35)     /* type = RXE   SQUARE ROOT (long HFP)  */           \
  V(mee, MEE, 0xED37)     /* type = RXE   MULTIPLY (short HFP)  */             \
  V(tdcet, TDCET, 0xED50) /* type = RXE   TEST DATA CLASS (short DFP)  */      \
  V(tdget, TDGET, 0xED51) /* type = RXE   TEST DATA GROUP (short DFP)  */      \
  V(tdcdt, TDCDT, 0xED54) /* type = RXE   TEST DATA CLASS (long DFP)  */       \
  V(tdgdt, TDGDT, 0xED55) /* type = RXE   TEST DATA GROUP (long DFP)  */       \
  V(tdcxt, TDCXT, 0xED58) /* type = RXE   TEST DATA CLASS (extended DFP)  */   \
  V(tdgxt, TDGXT, 0xED59) /* type = RXE   TEST DATA GROUP (extended DFP)  */

#define S390_RRF_A_OPCODE_LIST(V)                                           \
  V(ipte, IPTE, 0xB221)     /* type = RRF_A INVALIDATE PAGE TABLE ENTRY  */ \
  V(mdtra, MDTRA, 0xB3D0)   /* type = RRF_A MULTIPLY (long DFP)  */         \
  V(ddtra, DDTRA, 0xB3D1)   /* type = RRF_A DIVIDE (long DFP)  */           \
  V(adtra, ADTRA, 0xB3D2)   /* type = RRF_A ADD (long DFP)  */              \
  V(sdtra, SDTRA, 0xB3D3)   /* type = RRF_A SUBTRACT (long DFP)  */         \
  V(mxtra, MXTRA, 0xB3D8)   /* type = RRF_A MULTIPLY (extended DFP)  */     \
  V(msrkc, MSRKC, 0xB9FD)   /* type = RRF_A MULTIPLY (32)*/                 \
  V(msgrkc, MSGRKC, 0xB9ED) /* type = RRF_A MULTIPLY (64)*/                 \
  V(dxtra, DXTRA, 0xB3D9)   /* type = RRF_A DIVIDE (extended DFP)  */       \
  V(axtra, AXTRA, 0xB3DA)   /* type = RRF_A ADD (extended DFP)  */          \
  V(sxtra, SXTRA, 0xB3DB)   /* type = RRF_A SUBTRACT (extended DFP)  */     \
  V(ahhhr, AHHHR, 0xB9C8)   /* type = RRF_A ADD HIGH (32)  */               \
  V(shhhr, SHHHR, 0xB9C9)   /* type = RRF_A SUBTRACT HIGH (32)  */          \
  V(alhhhr, ALHHHR, 0xB9CA) /* type = RRF_A ADD LOGICAL HIGH (32)  */       \
  V(slhhhr, SLHHHR, 0xB9CB) /* type = RRF_A SUBTRACT LOGICAL HIGH (32)  */  \
  V(ahhlr, AHHLR, 0xB9D8)   /* type = RRF_A ADD HIGH (32)  */               \
  V(shhlr, SHHLR, 0xB9D9)   /* type = RRF_A SUBTRACT HIGH (32)  */          \
  V(alhhlr, ALHHLR, 0xB9DA) /* type = RRF_A ADD LOGICAL HIGH (32)  */       \
  V(slhhlr, SLHHLR, 0xB9DB) /* type = RRF_A SUBTRACT LOGICAL HIGH (32)  */  \
  V(ngrk, NGRK, 0xB9E4)     /* type = RRF_A AND (64)  */                    \
  V(ogrk, OGRK, 0xB9E6)     /* type = RRF_A OR (64)  */                     \
  V(xgrk, XGRK, 0xB9E7)     /* type = RRF_A EXCLUSIVE OR (64)  */           \
  V(agrk, AGRK, 0xB9E8)     /* type = RRF_A ADD (64)  */                    \
  V(sgrk, SGRK, 0xB9E9)     /* type = RRF_A SUBTRACT (64)  */               \
  V(algrk, ALGRK, 0xB9EA)   /* type = RRF_A ADD LOGICAL (64)  */            \
  V(slgrk, SLGRK, 0xB9EB)   /* type = RRF_A SUBTRACT LOGICAL (64)  */       \
  V(nrk, NRK, 0xB9F4)       /* type = RRF_A AND (32)  */                    \
  V(ork, ORK, 0xB9F6)       /* type = RRF_A OR (32)  */                     \
  V(xrk, XRK, 0xB9F7)       /* type = RRF_A EXCLUSIVE OR (32)  */           \
  V(ark, ARK, 0xB9F8)       /* type = RRF_A ADD (32)  */                    \
  V(srk, SRK, 0xB9F9)       /* type = RRF_A SUBTRACT (32)  */               \
  V(alrk, ALRK, 0xB9FA)     /* type = RRF_A ADD LOGICAL (32)  */            \
  V(slrk, SLRK, 0xB9FB)     /* type = RRF_A SUBTRACT LOGICAL (32)  */

#define S390_RXF_OPCODE_LIST(V)                                                \
  V(maeb, MAEB, 0xED0E) /* type = RXF   MULTIPLY AND ADD (short BFP)  */       \
  V(mseb, MSEB, 0xED0F) /* type = RXF   MULTIPLY AND SUBTRACT (short BFP)  */  \
  V(madb, MADB, 0xED1E) /* type = RXF   MULTIPLY AND ADD (long BFP)  */        \
  V(msdb, MSDB, 0xED1F) /* type = RXF   MULTIPLY AND SUBTRACT (long BFP)  */   \
  V(mae, MAE, 0xED2E)   /* type = RXF   MULTIPLY AND ADD (short HFP)  */       \
  V(mse, MSE, 0xED2F)   /* type = RXF   MULTIPLY AND SUBTRACT (short HFP)  */  \
  V(mayl, MAYL,                                                                \
    0xED38) /* type = RXF   MULTIPLY AND ADD UNNRM. (long to ext. low HFP)  */ \
  V(myl, MYL,                                                                  \
    0xED39) /* type = RXF   MULTIPLY UNNORM. (long to ext. low HFP)  */        \
  V(may, MAY,                                                                  \
    0xED3A) /* type = RXF   MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)  */ \
  V(my, MY,                                                                    \
    0xED3B) /* type = RXF   MULTIPLY UNNORMALIZED (long to ext. HFP)  */       \
  V(mayh, MAYH,                                                                \
    0xED3C) /* type = RXF   MULTIPLY AND ADD UNNRM. (long to ext. high HFP) */ \
  V(myh, MYH,                                                                  \
    0xED3D) /* type = RXF   MULTIPLY UNNORM. (long to ext. high HFP)  */       \
  V(mad, MAD, 0xED3E)   /* type = RXF   MULTIPLY AND ADD (long HFP)  */        \
  V(msd, MSD, 0xED3F)   /* type = RXF   MULTIPLY AND SUBTRACT (long HFP)  */   \
  V(sldt, SLDT, 0xED40) /* type = RXF   SHIFT SIGNIFICAND LEFT (long DFP)  */  \
  V(srdt, SRDT, 0xED41) /* type = RXF   SHIFT SIGNIFICAND RIGHT (long DFP)  */ \
  V(slxt, SLXT,                                                                \
    0xED48) /* type = RXF   SHIFT SIGNIFICAND LEFT (extended DFP)  */          \
  V(srxt, SRXT,                                                                \
    0xED49) /* type = RXF   SHIFT SIGNIFICAND RIGHT (extended DFP)  */

#define S390_IE_OPCODE_LIST(V) \
  V(niai, NIAI, 0xB2FA) /* type = IE    NEXT INSTRUCTION ACCESS INTENT  */

#define S390_RRF_B_OPCODE_LIST(V)                                           \
  V(diebr, DIEBR, 0xB353) /* type = RRF_B DIVIDE TO INTEGER (short BFP)  */ \
  V(didbr, DIDBR, 0xB35B) /* type = RRF_B DIVIDE TO INTEGER (long BFP)  */  \
  V(cpsdr, CPSDR, 0xB372) /* type = RRF_B COPY SIGN (long)  */              \
  V(qadtr, QADTR, 0xB3F5) /* type = RRF_B QUANTIZE (long DFP)  */           \
  V(iedtr, IEDTR,                                                           \
    0xB3F6) /* type = RRF_B INSERT BIASED EXPONENT (64 to long DFP)  */     \
  V(rrdtr, RRDTR, 0xB3F7) /* type = RRF_B REROUND (long DFP)  */            \
  V(qaxtr, QAXTR, 0xB3FD) /* type = RRF_B QUANTIZE (extended DFP)  */       \
  V(iextr, IEXTR,                                                           \
    0xB3FE) /* type = RRF_B INSERT BIASED EXPONENT (64 to extended DFP)  */ \
  V(rrxtr, RRXTR, 0xB3FF) /* type = RRF_B REROUND (extended DFP)  */        \
  V(kmctr, KMCTR, 0xB92D) /* type = RRF_B CIPHER MESSAGE WITH COUNTER  */   \
  V(idte, IDTE, 0xB98E)   /* type = RRF_B INVALIDATE DAT TABLE ENTRY  */    \
  V(crdte, CRDTE,                                                           \
    0xB98F) /* type = RRF_B COMPARE AND REPLACE DAT TABLE ENTRY  */         \
  V(lptea, LPTEA, 0xB9AA) /* type = RRF_B LOAD PAGE TABLE ENTRY ADDRESS  */

#define S390_RRF_C_OPCODE_LIST(V)                                           \
  V(sske, SSKE, 0xB22B)   /* type = RRF_C SET STORAGE KEY EXTENDED  */      \
  V(cu21, CU21, 0xB2A6)   /* type = RRF_C CONVERT UTF-16 TO UTF-8  */       \
  V(cu12, CU12, 0xB2A7)   /* type = RRF_C CONVERT UTF-8 TO UTF-16  */       \
  V(ppa, PPA, 0xB2E8)     /* type = RRF_C PERFORM PROCESSOR ASSIST  */      \
  V(cgrt, CGRT, 0xB960)   /* type = RRF_C COMPARE AND TRAP (64)  */         \
  V(clgrt, CLGRT, 0xB961) /* type = RRF_C COMPARE LOGICAL AND TRAP (64)  */ \
  V(crt, CRT, 0xB972)     /* type = RRF_C COMPARE AND TRAP (32)  */         \
  V(clrt, CLRT, 0xB973)   /* type = RRF_C COMPARE LOGICAL AND TRAP (32)  */ \
  V(trtt, TRTT, 0xB990)   /* type = RRF_C TRANSLATE TWO TO TWO  */          \
  V(trto, TRTO, 0xB991)   /* type = RRF_C TRANSLATE TWO TO ONE  */          \
  V(trot, TROT, 0xB992)   /* type = RRF_C TRANSLATE ONE TO TWO  */          \
  V(troo, TROO, 0xB993)   /* type = RRF_C TRANSLATE ONE TO ONE  */          \
  V(cu14, CU14, 0xB9B0)   /* type = RRF_C CONVERT UTF-8 TO UTF-32  */       \
  V(cu24, CU24, 0xB9B1)   /* type = RRF_C CONVERT UTF-16 TO UTF-32  */      \
  V(trtre, TRTRE,                                                           \
    0xB9BD) /* type = RRF_C TRANSLATE AND TEST REVERSE EXTENDED  */         \
  V(trte, TRTE, 0xB9BF)     /* type = RRF_C TRANSLATE AND TEST EXTENDED  */ \
  V(locfhr, LOCFHR, 0xB9E0) /* type = RRF_C LOAD HIGH ON CONDITION (32)  */ \
  V(locgr, LOCGR, 0xB9E2)   /* type = RRF_C LOAD ON CONDITION (64)  */      \
  V(locr, LOCR, 0xB9F2)     /* type = RRF_C LOAD ON CONDITION (32)  */

#define S390_MII_OPCODE_LIST(V) \
  V(bprp, BPRP, 0xC5) /* type = MII   BRANCH PREDICTION RELATIVE PRELOAD  */

#define S390_RRF_D_OPCODE_LIST(V)                                         \
  V(ldetr, LDETR,                                                         \
    0xB3D4) /* type = RRF_D LOAD LENGTHENED (short to long DFP)  */       \
  V(lxdtr, LXDTR,                                                         \
    0xB3DC) /* type = RRF_D LOAD LENGTHENED (long to extended DFP)  */    \
  V(csdtr, CSDTR,                                                         \
    0xB3E3) /* type = RRF_D CONVERT TO SIGNED PACKED (long DFP to 64)  */ \
  V(csxtr, CSXTR,                                                         \
    0xB3EB) /* type = RRF_D CONVERT TO SIGNED PACKED (extended DFP to 128)  */

#define S390_RRF_E_OPCODE_LIST(V)                                              \
  V(ledbra, LEDBRA,                                                            \
    0xB344) /* type = RRF_E LOAD ROUNDED (long to short BFP)  */               \
  V(ldxbra, LDXBRA,                                                            \
    0xB345) /* type = RRF_E LOAD ROUNDED (extended to long BFP)  */            \
  V(lexbra, LEXBRA,                                                            \
    0xB346) /* type = RRF_E LOAD ROUNDED (extended to short BFP)  */           \
  V(fixbra, FIXBRA, 0xB347) /* type = RRF_E LOAD FP INTEGER (extended BFP)  */ \
  V(tbedr, TBEDR,                                                              \
    0xB350)             /* type = RRF_E CONVERT HFP TO BFP (long to short)  */ \
  V(tbdr, TBDR, 0xB351) /* type = RRF_E CONVERT HFP TO BFP (long)  */          \
  V(fiebra, FIEBRA, 0xB357) /* type = RRF_E LOAD FP INTEGER (short BFP)  */    \
  V(fidbra, FIDBRA, 0xB35F) /* type = RRF_E LOAD FP INTEGER (long BFP)  */     \
  V(celfbr, CELFBR,                                                            \
    0xB390) /* type = RRF_E CONVERT FROM LOGICAL (32 to short BFP)  */         \
  V(cdlfbr, CDLFBR,                                                            \
    0xB391) /* type = RRF_E CONVERT FROM LOGICAL (32 to long BFP)  */          \
  V(cxlfbr, CXLFBR,                                                            \
    0xB392) /* type = RRF_E CONVERT FROM LOGICAL (32 to extended BFP)  */      \
  V(cefbra, CEFBRA,                                                            \
    0xB394) /* type = RRF_E CONVERT FROM FIXED (32 to short BFP)  */           \
  V(cdfbra, CDFBRA,                                                            \
    0xB395) /* type = RRF_E CONVERT FROM FIXED (32 to long BFP)  */            \
  V(cxfbra, CXFBRA,                                                            \
    0xB396) /* type = RRF_E CONVERT FROM FIXED (32 to extended BFP)  */        \
  V(cfebra, CFEBRA,                                                            \
    0xB398) /* type = RRF_E CONVERT TO FIXED (short BFP to 32)  */             \
  V(cfdbra, CFDBRA,                                                            \
    0xB399) /* type = RRF_E CONVERT TO FIXED (long BFP to 32)  */              \
  V(cfxbra, CFXBRA,                                                            \
    0xB39A) /* type = RRF_E CONVERT TO FIXED (extended BFP to 32)  */          \
  V(clfebr, CLFEBR,                                                            \
    0xB39C) /* type = RRF_E CONVERT TO LOGICAL (short BFP to 32)  */           \
  V(clfdbr, CLFDBR,                                                            \
    0xB39D) /* type = RRF_E CONVERT TO LOGICAL (long BFP to 32)  */            \
  V(clfxbr, CLFXBR,                                                            \
    0xB39E) /* type = RRF_E CONVERT TO LOGICAL (extended BFP to 32)  */        \
  V(celgbr, CELGBR,                                                            \
    0xB3A0) /* type = RRF_E CONVERT FROM LOGICAL (64 to short BFP)  */         \
  V(cdlgbr, CDLGBR,                                                            \
    0xB3A1) /* type = RRF_E CONVERT FROM LOGICAL (64 to long BFP)  */          \
  V(cxlgbr, CXLGBR,                                                            \
    0xB3A2) /* type = RRF_E CONVERT FROM LOGICAL (64 to extended BFP)  */      \
  V(cegbra, CEGBRA,                                                            \
    0xB3A4) /* type = RRF_E CONVERT FROM FIXED (64 to short BFP)  */           \
  V(cdgbra, CDGBRA,                                                            \
    0xB3A5) /* type = RRF_E CONVERT FROM FIXED (64 to long BFP)  */            \
  V(cxgbra, CXGBRA,                                                            \
    0xB3A6) /* type = RRF_E CONVERT FROM FIXED (64 to extended BFP)  */        \
  V(cgebra, CGEBRA,                                                            \
    0xB3A8) /* type = RRF_E CONVERT TO FIXED (short BFP to 64)  */             \
  V(cgdbra, CGDBRA,                                                            \
    0xB3A9) /* type = RRF_E CONVERT TO FIXED (long BFP to 64)  */              \
  V(cgxbra, CGXBRA,                                                            \
    0xB3AA) /* type = RRF_E CONVERT TO FIXED (extended BFP to 64)  */          \
  V(clgebr, CLGEBR,                                                            \
    0xB3AC) /* type = RRF_E CONVERT TO LOGICAL (short BFP to 64)  */           \
  V(clgdbr, CLGDBR,                                                            \
    0xB3AD) /* type = RRF_E CONVERT TO LOGICAL (long BFP to 64)  */            \
  V(clgxbr, CLGXBR,                                                            \
    0xB3AE) /* type = RRF_E CONVERT TO LOGICAL (extended BFP to 64)  */        \
  V(cfer, CFER, 0xB3B8) /* type = RRF_E CONVERT TO FIXED (short HFP to 32)  */ \
  V(cfdr, CFDR, 0xB3B9) /* type = RRF_E CONVERT TO FIXED (long HFP to 32)  */  \
  V(cfxr, CFXR,                                                                \
    0xB3BA) /* type = RRF_E CONVERT TO FIXED (extended HFP to 32)  */          \
  V(cger, CGER, 0xB3C8) /* type = RRF_E CONVERT TO FIXED (short HFP to 64)  */ \
  V(cgdr, CGDR, 0xB3C9) /* type = RRF_E CONVERT TO FIXED (long HFP to 64)  */  \
  V(cgxr, CGXR,                                                                \
    0xB3CA) /* type = RRF_E CONVERT TO FIXED (extended HFP to 64)  */          \
  V(ledtr, LEDTR, 0xB3D5) /* type = RRF_E LOAD ROUNDED (long to short DFP)  */ \
  V(fidtr, FIDTR, 0xB3D7) /* type = RRF_E LOAD FP INTEGER (long DFP)  */       \
  V(ldxtr, LDXTR,                                                              \
    0xB3DD) /* type = RRF_E LOAD ROUNDED (extended to long DFP)  */            \
  V(fixtr, FIXTR, 0xB3DF) /* type = RRF_E LOAD FP INTEGER (extended DFP)  */   \
  V(cgdtra, CGDTRA,                                                            \
    0xB3E1) /* type = RRF_E CONVERT TO FIXED (long DFP to 64)  */              \
  V(cgxtra, CGXTRA,                                                            \
    0xB3E9) /* type = RRF_E CONVERT TO FIXED (extended DFP to 64)  */          \
  V(cdgtra, CDGTRA,                                                            \
    0xB3F1) /* type = RRF_E CONVERT FROM FIXED (64 to long DFP)  */            \
  V(cxgtra, CXGTRA,                                                            \
    0xB3F9) /* type = RRF_E CONVERT FROM FIXED (64 to extended DFP)  */        \
  V(cfdtr, CFDTR, 0xB941) /* type = RRF_E CONVERT TO FIXED (long DFP to 32) */ \
  V(clgdtr, CLGDTR,                                                            \
    0xB942) /* type = RRF_E CONVERT TO LOGICAL (long DFP to 64)  */            \
  V(clfdtr, CLFDTR,                                                            \
    0xB943) /* type = RRF_E CONVERT TO LOGICAL (long DFP to 32)  */            \
  V(cfxtr, CFXTR,                                                              \
    0xB949) /* type = RRF_E CONVERT TO FIXED (extended DFP to 32)  */          \
  V(clgxtr, CLGXTR,                                                            \
    0xB94A) /* type = RRF_E CONVERT TO LOGICAL (extended DFP to 64)  */        \
  V(clfxtr, CLFXTR,                                                            \
    0xB94B) /* type = RRF_E CONVERT TO LOGICAL (extended DFP to 32)  */        \
  V(cdlgtr, CDLGTR,                                                            \
    0xB952) /* type = RRF_E CONVERT FROM LOGICAL (64 to long DFP)  */          \
  V(cdlftr, CDLFTR,                                                            \
    0xB953) /* type = RRF_E CONVERT FROM LOGICAL (32 to long DFP)  */          \
  V(cxlgtr, CXLGTR,                                                            \
    0xB95A) /* type = RRF_E CONVERT FROM LOGICAL (64 to extended DFP)  */      \
  V(cxlftr, CXLFTR,                                                            \
    0xB95B) /* type = RRF_E CONVERT FROM LOGICAL (32 to extended DFP)  */

#define S390_VRR_A_OPCODE_LIST(V)                                              \
  V(vpopct, VPOPCT, 0xE750) /* type = VRR_A VECTOR POPULATION COUNT  */        \
  V(vctz, VCTZ, 0xE752)     /* type = VRR_A VECTOR COUNT TRAILING ZEROS  */    \
  V(vclz, VCLZ, 0xE753)     /* type = VRR_A VECTOR COUNT LEADING ZEROS  */     \
  V(vlr, VLR, 0xE756)       /* type = VRR_A VECTOR LOAD  */                    \
  V(vistr, VISTR, 0xE75C)   /* type = VRR_A VECTOR ISOLATE STRING  */          \
  V(vseg, VSEG, 0xE75F) /* type = VRR_A VECTOR SIGN EXTEND TO DOUBLEWORD  */   \
  V(vclgd, VCLGD,                                                              \
    0xE7C0) /* type = VRR_A VECTOR FP CONVERT TO LOGICAL 64-BIT  */            \
  V(vcdlg, VCDLG,                                                              \
    0xE7C1) /* type = VRR_A VECTOR FP CONVERT FROM LOGICAL 64-BIT  */          \
  V(vcgd, VCGD, 0xE7C2) /* type = VRR_A VECTOR FP CONVERT TO FIXED 64-BIT  */  \
  V(vcdg, VCDG, 0xE7C3) /* type = VRR_A VECTOR FP CONVERT FROM FIXED 64-BIT */ \
  V(vlde, VLDE, 0xE7C4) /* type = VRR_A VECTOR FP LOAD LENGTHENED  */          \
  V(vled, VLED, 0xE7C5) /* type = VRR_A VECTOR FP LOAD ROUNDED  */             \
  V(vfi, VFI, 0xE7C7)   /* type = VRR_A VECTOR LOAD FP INTEGER  */             \
  V(wfk, WFK, 0xE7CA) /* type = VRR_A VECTOR FP COMPARE AND SIGNAL SCALAR  */  \
  V(wfc, WFC, 0xE7CB) /* type = VRR_A VECTOR FP COMPARE SCALAR  */             \
  V(vfpso, VFPSO, 0xE7CC) /* type = VRR_A VECTOR FP PERFORM SIGN OPERATION  */ \
  V(vfsq, VFSQ, 0xE7CE)   /* type = VRR_A VECTOR FP SQUARE ROOT  */            \
  V(vupll, VUPLL, 0xE7D4) /* type = VRR_A VECTOR UNPACK LOGICAL LOW  */        \
  V(vuplh, VUPLH, 0xE7D5) /* type = VRR_A VECTOR UNPACK LOGICAL HIGH  */       \
  V(vupl, VUPL, 0xE7D6)   /* type = VRR_A VECTOR UNPACK LOW  */                \
  V(vuph, VUPH, 0xE7D7)   /* type = VRR_A VECTOR UNPACK HIGH  */               \
  V(vtm, VTM, 0xE7D8)     /* type = VRR_A VECTOR TEST UNDER MASK  */           \
  V(vecl, VECL, 0xE7D9)   /* type = VRR_A VECTOR ELEMENT COMPARE LOGICAL  */   \
  V(vec, VEC, 0xE7DB)     /* type = VRR_A VECTOR ELEMENT COMPARE  */           \
  V(vlc, VLC, 0xE7DE)     /* type = VRR_A VECTOR LOAD COMPLEMENT  */           \
  V(vlp, VLP, 0xE7DF)     /* type = VRR_A VECTOR LOAD POSITIVE  */

#define S390_VRR_B_OPCODE_LIST(V)                                           \
  V(vfee, VFEE, 0xE780)   /* type = VRR_B VECTOR FIND ELEMENT EQUAL  */     \
  V(vfene, VFENE, 0xE781) /* type = VRR_B VECTOR FIND ELEMENT NOT EQUAL  */ \
  V(vfae, VFAE, 0xE782)   /* type = VRR_B VECTOR FIND ANY ELEMENT EQUAL  */ \
  V(vpkls, VPKLS, 0xE795) /* type = VRR_B VECTOR PACK LOGICAL SATURATE  */  \
  V(vpks, VPKS, 0xE797)   /* type = VRR_B VECTOR PACK SATURATE  */          \
  V(vceq, VCEQ, 0xE7F8)   /* type = VRR_B VECTOR COMPARE EQUAL  */          \
  V(vchl, VCHL, 0xE7F9)   /* type = VRR_B VECTOR COMPARE HIGH LOGICAL  */   \
  V(vch, VCH, 0xE7FB)     /* type = VRR_B VECTOR COMPARE HIGH  */

#define S390_VRR_C_OPCODE_LIST(V)                                              \
  V(vmrl, VMRL, 0xE760)   /* type = VRR_C VECTOR MERGE LOW  */                 \
  V(vmrh, VMRH, 0xE761)   /* type = VRR_C VECTOR MERGE HIGH  */                \
  V(vsum, VSUM, 0xE764)   /* type = VRR_C VECTOR SUM ACROSS WORD  */           \
  V(vsumg, VSUMG, 0xE765) /* type = VRR_C VECTOR SUM ACROSS DOUBLEWORD  */     \
  V(vcksm, VCKSM, 0xE766) /* type = VRR_C VECTOR CHECKSUM  */                  \
  V(vsumq, VSUMQ, 0xE767) /* type = VRR_C VECTOR SUM ACROSS QUADWORD  */       \
  V(vn, VN, 0xE768)       /* type = VRR_C VECTOR AND  */                       \
  V(vnc, VNC, 0xE769)     /* type = VRR_C VECTOR AND WITH COMPLEMENT  */       \
  V(vo, VO, 0xE76A)       /* type = VRR_C VECTOR OR  */                        \
  V(vno, VNO, 0xE76B)     /* type = VRR_C VECTOR NOR  */                       \
  V(vx, VX, 0xE76D)       /* type = VRR_C VECTOR EXCLUSIVE OR  */              \
  V(veslv, VESLV, 0xE770) /* type = VRR_C VECTOR ELEMENT SHIFT LEFT  */        \
  V(verllv, VERLLV,                                                            \
    0xE773)             /* type = VRR_C VECTOR ELEMENT ROTATE LEFT LOGICAL  */ \
  V(vsl, VSL, 0xE774)   /* type = VRR_C VECTOR SHIFT LEFT  */                  \
  V(vslb, VSLB, 0xE775) /* type = VRR_C VECTOR SHIFT LEFT BY BYTE  */          \
  V(vesrlv, VESRLV,                                                            \
    0xE778) /* type = VRR_C VECTOR ELEMENT SHIFT RIGHT LOGICAL  */             \
  V(vesrav, VESRAV,                                                            \
    0xE77A) /* type = VRR_C VECTOR ELEMENT SHIFT RIGHT ARITHMETIC  */          \
  V(vsrl, VSRL, 0xE77C) /* type = VRR_C VECTOR SHIFT RIGHT LOGICAL  */         \
  V(vsrlb, VSRLB,                                                              \
    0xE77D)             /* type = VRR_C VECTOR SHIFT RIGHT LOGICAL BY BYTE  */ \
  V(vsra, VSRA, 0xE77E) /* type = VRR_C VECTOR SHIFT RIGHT ARITHMETIC  */      \
  V(vsrab, VSRAB,                                                              \
    0xE77F) /* type = VRR_C VECTOR SHIFT RIGHT ARITHMETIC BY BYTE  */          \
  V(vpdi, VPDI, 0xE784) /* type = VRR_C VECTOR PERMUTE DOUBLEWORD IMMEDIATE */ \
  V(vpk, VPK, 0xE794)   /* type = VRR_C VECTOR PACK  */                        \
  V(vmlh, VMLH, 0xE7A1) /* type = VRR_C VECTOR MULTIPLY LOGICAL HIGH  */       \
  V(vml, VML, 0xE7A2)   /* type = VRR_C VECTOR MULTIPLY LOW  */                \
  V(vmh, VMH, 0xE7A3)   /* type = VRR_C VECTOR MULTIPLY HIGH  */               \
  V(vmle, VMLE, 0xE7A4) /* type = VRR_C VECTOR MULTIPLY LOGICAL EVEN  */       \
  V(vmlo, VMLO, 0xE7A5) /* type = VRR_C VECTOR MULTIPLY LOGICAL ODD  */        \
  V(vme, VME, 0xE7A6)   /* type = VRR_C VECTOR MULTIPLY EVEN  */               \
  V(vmo, VMO, 0xE7A7)   /* type = VRR_C VECTOR MULTIPLY ODD  */                \
  V(vgfm, VGFM, 0xE7B4) /* type = VRR_C VECTOR GALOIS FIELD MULTIPLY SUM  */   \
  V(vfs, VFS, 0xE7E2)   /* type = VRR_C VECTOR FP SUBTRACT  */                 \
  V(vfa, VFA, 0xE7E3)   /* type = VRR_C VECTOR FP ADD  */                      \
  V(vfd, VFD, 0xE7E5)   /* type = VRR_C VECTOR FP DIVIDE  */                   \
  V(vfm, VFM, 0xE7E7)   /* type = VRR_C VECTOR FP MULTIPLY  */                 \
  V(vfce, VFCE, 0xE7E8) /* type = VRR_C VECTOR FP COMPARE EQUAL  */            \
  V(vfche, VFCHE, 0xE7EA) /* type = VRR_C VECTOR FP COMPARE HIGH OR EQUAL  */  \
  V(vfch, VFCH, 0xE7EB)   /* type = VRR_C VECTOR FP COMPARE HIGH  */           \
  V(vfmax, VFMAX, 0xE7EF) /* type = VRR_C VECTOR FP MAXIMUM */                 \
  V(vfmin, VFMIN, 0xE7EE) /* type = VRR_C VECTOR FP MINIMUM */                 \
  V(vavgl, VAVGL, 0xE7F0) /* type = VRR_C VECTOR AVERAGE LOGICAL  */           \
  V(vacc, VACC, 0xE7F1)   /* type = VRR_C VECTOR ADD COMPUTE CARRY  */         \
  V(vavg, VAVG, 0xE7F2)   /* type = VRR_C VECTOR AVERAGE  */                   \
  V(va, VA, 0xE7F3)       /* type = VRR_C VECTOR ADD  */                       \
  V(vscbi, VSCBI,                                                              \
    0xE7F5) /* type = VRR_C VECTOR SUBTRACT COMPUTE BORROW INDICATION  */      \
  V(vs, VS, 0xE7F7)         /* type = VRR_C VECTOR SUBTRACT  */                \
  V(vmnl, VMNL, 0xE7FC)     /* type = VRR_C VECTOR MINIMUM LOGICAL  */         \
  V(vmxl, VMXL, 0xE7FD)     /* type = VRR_C VECTOR MAXIMUM LOGICAL  */         \
  V(vmn, VMN, 0xE7FE)       /* type = VRR_C VECTOR MINIMUM  */                 \
  V(vmx, VMX, 0xE7FF)       /* type = VRR_C VECTOR MAXIMUM  */                 \
  V(vbperm, VBPERM, 0xE785) /* type = VRR_C VECTOR BIT PERMUTE  */

#define S390_VRI_A_OPCODE_LIST(V)                                              \
  V(vleib, VLEIB, 0xE740) /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (8) */ \
  V(vleih, VLEIH,                                                              \
    0xE741) /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (16)  */             \
  V(vleig, VLEIG,                                                              \
    0xE742) /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (64)  */             \
  V(vleif, VLEIF,                                                              \
    0xE743)             /* type = VRI_A VECTOR LOAD ELEMENT IMMEDIATE (32)  */ \
  V(vgbm, VGBM, 0xE744) /* type = VRI_A VECTOR GENERATE BYTE MASK  */          \
  V(vrepi, VREPI, 0xE745) /* type = VRI_A VECTOR REPLICATE IMMEDIATE  */

#define S390_VRR_D_OPCODE_LIST(V)                                              \
  V(vstrc, VSTRC, 0xE78A) /* type = VRR_D VECTOR STRING RANGE COMPARE  */      \
  V(vmalh, VMALH,                                                              \
    0xE7A9) /* type = VRR_D VECTOR MULTIPLY AND ADD LOGICAL HIGH  */           \
  V(vmal, VMAL, 0xE7AA) /* type = VRR_D VECTOR MULTIPLY AND ADD LOW  */        \
  V(vmah, VMAH, 0xE7AB) /* type = VRR_D VECTOR MULTIPLY AND ADD HIGH  */       \
  V(vmale, VMALE,                                                              \
    0xE7AC) /* type = VRR_D VECTOR MULTIPLY AND ADD LOGICAL EVEN  */           \
  V(vmalo, VMALO,                                                              \
    0xE7AD) /* type = VRR_D VECTOR MULTIPLY AND ADD LOGICAL ODD  */            \
  V(vmae, VMAE, 0xE7AE) /* type = VRR_D VECTOR MULTIPLY AND ADD EVEN  */       \
  V(vmao, VMAO, 0xE7AF) /* type = VRR_D VECTOR MULTIPLY AND ADD ODD  */        \
  V(vaccc, VACCC,                                                              \
    0xE7B9)           /* type = VRR_D VECTOR ADD WITH CARRY COMPUTE CARRY  */  \
  V(vac, VAC, 0xE7BB) /* type = VRR_D VECTOR ADD WITH CARRY  */                \
  V(vgfma, VGFMA,                                                              \
    0xE7BC) /* type = VRR_D VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE */ \
  V(vsbcbi, VSBCBI, 0xE7BD) /* type = VRR_D VECTOR SUBTRACT WITH BORROW     */ \
                            /* COMPUTE BORROW INDICATION  */                   \
  V(vsbi, VSBI,                                                                \
    0xE7BF) /* type = VRR_D VECTOR SUBTRACT WITH BORROW INDICATION  */

#define S390_VRI_B_OPCODE_LIST(V) \
  V(vgm, VGM, 0xE746) /* type = VRI_B VECTOR GENERATE MASK  */

#define S390_VRR_E_OPCODE_LIST(V)                                             \
  V(vperm, VPERM, 0xE78C) /* type = VRR_E VECTOR PERMUTE  */                  \
  V(vsel, VSEL, 0xE78D)   /* type = VRR_E VECTOR SELECT  */                   \
  V(vfms, VFMS, 0xE78E)   /* type = VRR_E VECTOR FP MULTIPLY AND SUBTRACT  */ \
  V(vfnms, VFNMS,                                                             \
    0xE79E) /* type = VRR_E VECTOR FP NEGATIVE MULTIPLY AND SUBTRACT  */      \
  V(vfma, VFMA, 0xE78F) /* type = VRR_E VECTOR FP MULTIPLY AND ADD  */

#define S390_VRI_C_OPCODE_LIST(V) \
  V(vrep, VREP, 0xE74D) /* type = VRI_C VECTOR REPLICATE  */

#define S390_VRI_D_OPCODE_LIST(V)                                           \
  V(verim, VERIM,                                                           \
    0xE772) /* type = VRI_D VECTOR ELEMENT ROTATE AND INSERT UNDER MASK  */ \
  V(vsldb, VSLDB, 0xE777) /* type = VRI_D VECTOR SHIFT LEFT DOUBLE BY BYTE  */

#define S390_VRR_F_OPCODE_LIST(V) \
  V(vlvgp, VLVGP, 0xE762) /* type = VRR_F VECTOR LOAD VR FROM GRS DISJOINT  */

#define S390_RIS_OPCODE_LIST(V)                                                \
  V(cgib, CGIB,                                                                \
    0xECFC) /* type = RIS   COMPARE IMMEDIATE AND BRANCH (64<-8)  */           \
  V(clgib, CLGIB,                                                              \
    0xECFD) /* type = RIS   COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)  */   \
  V(cib, CIB, 0xECFE) /* type = RIS   COMPARE IMMEDIATE AND BRANCH (32<-8)  */ \
  V(clib, CLIB,                                                                \
    0xECFF) /* type = RIS   COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)  */

#define S390_VRI_E_OPCODE_LIST(V) \
  V(vftci, VFTCI,                 \
    0xE74A) /* type = VRI_E VECTOR FP TEST DATA CLASS IMMEDIATE  */

#define S390_RSL_A_OPCODE_LIST(V) \
  V(tp, TP, 0xEBC0) /* type = RSL_A TEST DECIMAL  */

#define S390_RSL_B_OPCODE_LIST(V)                                             \
  V(cpdt, CPDT, 0xEDAC) /* type = RSL_B CONVERT TO PACKED (from long DFP)  */ \
  V(cpxt, CPXT,                                                               \
    0xEDAD) /* type = RSL_B CONVERT TO PACKED (from extended DFP)  */         \
  V(cdpt, CDPT, 0xEDAE) /* type = RSL_B CONVERT FROM PACKED (to long DFP)  */ \
  V(cxpt, CXPT,                                                               \
    0xEDAF) /* type = RSL_B CONVERT FROM PACKED (to extended DFP)  */         \
  V(czdt, CZDT, 0xEDA8) /* type = RSL CONVERT TO ZONED (from long DFP)  */    \
  V(czxt, CZXT, 0xEDA9) /* type = RSL CONVERT TO ZONED (from extended DFP) */ \
  V(cdzt, CDZT, 0xEDAA) /* type = RSL CONVERT FROM ZONED (to long DFP)  */    \
  V(cxzt, CXZT, 0xEDAB) /* type = RSL CONVERT FROM ZONED (to extended DFP) */

#define S390_SI_OPCODE_LIST(V)                                          \
  V(tm, TM, 0x91)       /* type = SI    TEST UNDER MASK  */             \
  V(mvi, MVI, 0x92)     /* type = SI    MOVE (immediate)  */            \
  V(ni, NI, 0x94)       /* type = SI    AND (immediate)  */             \
  V(cli, CLI, 0x95)     /* type = SI    COMPARE LOGICAL (immediate)  */ \
  V(oi, OI, 0x96)       /* type = SI    OR (immediate)  */              \
  V(xi, XI, 0x97)       /* type = SI    EXCLUSIVE OR (immediate)  */    \
  V(stnsm, STNSM, 0xAC) /* type = SI    STORE THEN AND SYSTEM MASK  */  \
  V(stosm, STOSM, 0xAD) /* type = SI    STORE THEN OR SYSTEM MASK  */   \
  V(mc, MC, 0xAF)       /* type = SI    MONITOR CALL  */

#define S390_SIL_OPCODE_LIST(V)                                                \
  V(mvhhi, MVHHI, 0xE544) /* type = SIL   MOVE (16<-16)  */                    \
  V(mvghi, MVGHI, 0xE548) /* type = SIL   MOVE (64<-16)  */                    \
  V(mvhi, MVHI, 0xE54C)   /* type = SIL   MOVE (32<-16)  */                    \
  V(chhsi, CHHSI,                                                              \
    0xE554) /* type = SIL   COMPARE HALFWORD IMMEDIATE (16<-16)  */            \
  V(clhhsi, CLHHSI,                                                            \
    0xE555) /* type = SIL   COMPARE LOGICAL IMMEDIATE (16<-16)  */             \
  V(cghsi, CGHSI,                                                              \
    0xE558) /* type = SIL   COMPARE HALFWORD IMMEDIATE (64<-16)  */            \
  V(clghsi, CLGHSI,                                                            \
    0xE559)             /* type = SIL   COMPARE LOGICAL IMMEDIATE (64<-16)  */ \
  V(chsi, CHSI, 0xE55C) /* type = SIL   COMPARE HALFWORD IMMEDIATE (32<-16) */ \
  V(clfhsi, CLFHSI,                                                            \
    0xE55D) /* type = SIL   COMPARE LOGICAL IMMEDIATE (32<-16)  */             \
  V(tbegin, TBEGIN,                                                            \
    0xE560) /* type = SIL   TRANSACTION BEGIN (nonconstrained)  */             \
  V(tbeginc, TBEGINC,                                                          \
    0xE561) /* type = SIL   TRANSACTION BEGIN (constrained)  */

#define S390_VRS_A_OPCODE_LIST(V)                                            \
  V(vesl, VESL, 0xE730) /* type = VRS_A VECTOR ELEMENT SHIFT LEFT  */        \
  V(verll, VERLL,                                                            \
    0xE733)           /* type = VRS_A VECTOR ELEMENT ROTATE LEFT LOGICAL  */ \
  V(vlm, VLM, 0xE736) /* type = VRS_A VECTOR LOAD MULTIPLE  */               \
  V(vesrl, VESRL,                                                            \
    0xE738) /* type = VRS_A VECTOR ELEMENT SHIFT RIGHT LOGICAL  */           \
  V(vesra, VESRA,                                                            \
    0xE73A) /* type = VRS_A VECTOR ELEMENT SHIFT RIGHT ARITHMETIC  */        \
  V(vstm, VSTM, 0xE73E) /* type = VRS_A VECTOR STORE MULTIPLE  */

#define S390_RIL_A_OPCODE_LIST(V)                                              \
  V(lgfi, LGFI, 0xC01)   /* type = RIL_A LOAD IMMEDIATE (64<-32)  */           \
  V(xihf, XIHF, 0xC06)   /* type = RIL_A EXCLUSIVE OR IMMEDIATE (high)  */     \
  V(xilf, XILF, 0xC07)   /* type = RIL_A EXCLUSIVE OR IMMEDIATE (low)  */      \
  V(iihf, IIHF, 0xC08)   /* type = RIL_A INSERT IMMEDIATE (high)  */           \
  V(iilf, IILF, 0xC09)   /* type = RIL_A INSERT IMMEDIATE (low)  */            \
  V(nihf, NIHF, 0xC0A)   /* type = RIL_A AND IMMEDIATE (high)  */              \
  V(nilf, NILF, 0xC0B)   /* type = RIL_A AND IMMEDIATE (low)  */               \
  V(oihf, OIHF, 0xC0C)   /* type = RIL_A OR IMMEDIATE (high)  */               \
  V(oilf, OILF, 0xC0D)   /* type = RIL_A OR IMMEDIATE (low)  */                \
  V(llihf, LLIHF, 0xC0E) /* type = RIL_A LOAD LOGICAL IMMEDIATE (high)  */     \
  V(llilf, LLILF, 0xC0F) /* type = RIL_A LOAD LOGICAL IMMEDIATE (low)  */      \
  V(msgfi, MSGFI, 0xC20) /* type = RIL_A MULTIPLY SINGLE IMMEDIATE (64<-32) */ \
  V(msfi, MSFI, 0xC21)   /* type = RIL_A MULTIPLY SINGLE IMMEDIATE (32)  */    \
  V(slgfi, SLGFI,                                                              \
    0xC24)             /* type = RIL_A SUBTRACT LOGICAL IMMEDIATE (64<-32)  */ \
  V(slfi, SLFI, 0xC25) /* type = RIL_A SUBTRACT LOGICAL IMMEDIATE (32)  */     \
  V(agfi, AGFI, 0xC28) /* type = RIL_A ADD IMMEDIATE (64<-32)  */              \
  V(afi, AFI, 0xC29)   /* type = RIL_A ADD IMMEDIATE (32)  */                  \
  V(algfi, ALGFI, 0xC2A) /* type = RIL_A ADD LOGICAL IMMEDIATE (64<-32)  */    \
  V(alfi, ALFI, 0xC2B)   /* type = RIL_A ADD LOGICAL IMMEDIATE (32)  */        \
  V(cgfi, CGFI, 0xC2C)   /* type = RIL_A COMPARE IMMEDIATE (64<-32)  */        \
  V(cfi, CFI, 0xC2D)     /* type = RIL_A COMPARE IMMEDIATE (32)  */            \
  V(clgfi, CLGFI, 0xC2E) /* type = RIL_A COMPARE LOGICAL IMMEDIATE (64<-32) */ \
  V(clfi, CLFI, 0xC2F)   /* type = RIL_A COMPARE LOGICAL IMMEDIATE (32)  */    \
  V(aih, AIH, 0xCC8)     /* type = RIL_A ADD IMMEDIATE HIGH (32)  */           \
  V(alsih, ALSIH,                                                              \
    0xCCA) /* type = RIL_A ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)  */     \
  V(alsihn, ALSIHN,                                                            \
    0xCCB) /* type = RIL_A ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)  */     \
  V(cih, CIH, 0xCCD)   /* type = RIL_A COMPARE IMMEDIATE HIGH (32)  */         \
  V(clih, CLIH, 0xCCF) /* type = RIL_A COMPARE LOGICAL IMMEDIATE HIGH (32)  */

#define S390_RIL_B_OPCODE_LIST(V)                                              \
  V(larl, LARL, 0xC00)   /* type = RIL_B LOAD ADDRESS RELATIVE LONG  */        \
  V(brasl, BRASL, 0xC05) /* type = RIL_B BRANCH RELATIVE AND SAVE LONG  */     \
  V(llhrl, LLHRL,                                                              \
    0xC42) /* type = RIL_B LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)  */    \
  V(lghrl, LGHRL,                                                              \
    0xC44) /* type = RIL_B LOAD HALFWORD RELATIVE LONG (64<-16)  */            \
  V(lhrl, LHRL, 0xC45) /* type = RIL_B LOAD HALFWORD RELATIVE LONG (32<-16) */ \
  V(llghrl, LLGHRL,                                                            \
    0xC46) /* type = RIL_B LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)  */    \
  V(sthrl, STHRL, 0xC47) /* type = RIL_B STORE HALFWORD RELATIVE LONG (16)  */ \
  V(lgrl, LGRL, 0xC48)   /* type = RIL_B LOAD RELATIVE LONG (64)  */           \
  V(stgrl, STGRL, 0xC4B) /* type = RIL_B STORE RELATIVE LONG (64)  */          \
  V(lgfrl, LGFRL, 0xC4C) /* type = RIL_B LOAD RELATIVE LONG (64<-32)  */       \
  V(lrl, LRL, 0xC4D)     /* type = RIL_B LOAD RELATIVE LONG (32)  */           \
  V(llgfrl, LLGFRL,                                                            \
    0xC4E)             /* type = RIL_B LOAD LOGICAL RELATIVE LONG (64<-32)  */ \
  V(strl, STRL, 0xC4F) /* type = RIL_B STORE RELATIVE LONG (32)  */            \
  V(exrl, EXRL, 0xC60) /* type = RIL_B EXECUTE RELATIVE LONG  */               \
  V(cghrl, CGHRL,                                                              \
    0xC64) /* type = RIL_B COMPARE HALFWORD RELATIVE LONG (64<-16)  */         \
  V(chrl, CHRL,                                                                \
    0xC65) /* type = RIL_B COMPARE HALFWORD RELATIVE LONG (32<-16)  */         \
  V(clghrl, CLGHRL,                                                            \
    0xC66) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (64<-16)  */          \
  V(clhrl, CLHRL,                                                              \
    0xC67) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (32<-16)  */          \
  V(cgrl, CGRL, 0xC68)   /* type = RIL_B COMPARE RELATIVE LONG (64)  */        \
  V(clgrl, CLGRL, 0xC6A) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (64) */ \
  V(cgfrl, CGFRL, 0xC6C) /* type = RIL_B COMPARE RELATIVE LONG (64<-32)  */    \
  V(crl, CRL, 0xC6D)     /* type = RIL_B COMPARE RELATIVE LONG (32)  */        \
  V(clgfrl, CLGFRL,                                                            \
    0xC6E) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (64<-32)  */          \
  V(clrl, CLRL, 0xC6F) /* type = RIL_B COMPARE LOGICAL RELATIVE LONG (32)  */  \
  V(brcth, BRCTH, 0xCC6) /* type = RIL_B BRANCH RELATIVE ON COUNT HIGH (32) */

#define S390_VRS_B_OPCODE_LIST(V)                                          \
  V(vlvg, VLVG, 0xE722) /* type = VRS_B VECTOR LOAD VR ELEMENT FROM GR  */ \
  V(vll, VLL, 0xE737)   /* type = VRS_B VECTOR LOAD WITH LENGTH  */        \
  V(vstl, VSTL, 0xE73F) /* type = VRS_B VECTOR STORE WITH LENGTH  */

#define S390_RIL_C_OPCODE_LIST(V)                                              \
  V(brcl, BRCL, 0xC04)   /* type = RIL_C BRANCH RELATIVE ON CONDITION LONG  */ \
  V(pfdrl, PFDRL, 0xC62) /* type = RIL_C PREFETCH DATA RELATIVE LONG  */

#define S390_VRS_C_OPCODE_LIST(V) \
  V(vlgv, VLGV, 0xE721) /* type = VRS_C VECTOR LOAD GR FROM VR ELEMENT  */

#define S390_RI_A_OPCODE_LIST(V)                                               \
  V(iihh, IIHH, 0xA50)   /* type = RI_A  INSERT IMMEDIATE (high high)  */      \
  V(iihl, IIHL, 0xA51)   /* type = RI_A  INSERT IMMEDIATE (high low)  */       \
  V(iilh, IILH, 0xA52)   /* type = RI_A  INSERT IMMEDIATE (low high)  */       \
  V(iill, IILL, 0xA53)   /* type = RI_A  INSERT IMMEDIATE (low low)  */        \
  V(nihh, NIHH, 0xA54)   /* type = RI_A  AND IMMEDIATE (high high)  */         \
  V(nihl, NIHL, 0xA55)   /* type = RI_A  AND IMMEDIATE (high low)  */          \
  V(nilh, NILH, 0xA56)   /* type = RI_A  AND IMMEDIATE (low high)  */          \
  V(nill, NILL, 0xA57)   /* type = RI_A  AND IMMEDIATE (low low)  */           \
  V(oihh, OIHH, 0xA58)   /* type = RI_A  OR IMMEDIATE (high high)  */          \
  V(oihl, OIHL, 0xA59)   /* type = RI_A  OR IMMEDIATE (high low)  */           \
  V(oilh, OILH, 0xA5A)   /* type = RI_A  OR IMMEDIATE (low high)  */           \
  V(oill, OILL, 0xA5B)   /* type = RI_A  OR IMMEDIATE (low low)  */            \
  V(llihh, LLIHH, 0xA5C) /* type = RI_A  LOAD LOGICAL IMMEDIATE (high high) */ \
  V(llihl, LLIHL, 0xA5D) /* type = RI_A  LOAD LOGICAL IMMEDIATE (high low)  */ \
  V(llilh, LLILH, 0xA5E) /* type = RI_A  LOAD LOGICAL IMMEDIATE (low high)  */ \
  V(llill, LLILL, 0xA5F) /* type = RI_A  LOAD LOGICAL IMMEDIATE (low low)  */  \
  V(tmlh, TMLH, 0xA70)   /* type = RI_A  TEST UNDER MASK (low high)  */        \
  V(tmll, TMLL, 0xA71)   /* type = RI_A  TEST UNDER MASK (low low)  */         \
  V(tmhh, TMHH, 0xA72)   /* type = RI_A  TEST UNDER MASK (high high)  */       \
  V(tmhl, TMHL, 0xA73)   /* type = RI_A  TEST UNDER MASK (high low)  */        \
  V(lhi, LHI, 0xA78)     /* type = RI_A  LOAD HALFWORD IMMEDIATE (32)<-16  */  \
  V(lghi, LGHI, 0xA79)   /* type = RI_A  LOAD HALFWORD IMMEDIATE (64<-16)  */  \
  V(ahi, AHI, 0xA7A)     /* type = RI_A  ADD HALFWORD IMMEDIATE (32<-16)  */   \
  V(aghi, AGHI, 0xA7B)   /* type = RI_A  ADD HALFWORD IMMEDIATE (64<-16)  */   \
  V(mhi, MHI, 0xA7C) /* type = RI_A  MULTIPLY HALFWORD IMMEDIATE (32<-16)  */  \
  V(mghi, MGHI, 0xA7D) /* type = RI_A  MULTIPLY HALFWORD IMMEDIATE (64<-16) */ \
  V(chi, CHI, 0xA7E)   /* type = RI_A  COMPARE HALFWORD IMMEDIATE (32<-16)  */ \
  V(cghi, CGHI, 0xA7F) /* type = RI_A  COMPARE HALFWORD IMMEDIATE (64<-16)  */

#define S390_RSI_OPCODE_LIST(V)                                              \
  V(brxh, BRXH, 0x84) /* type = RSI   BRANCH RELATIVE ON INDEX HIGH (32)  */ \
  V(brxle, BRXLE,                                                            \
    0x85) /* type = RSI   BRANCH RELATIVE ON INDEX LOW OR EQ. (32)  */

#define S390_RI_B_OPCODE_LIST(V)                                           \
  V(bras, BRAS, 0xA75)   /* type = RI_B  BRANCH RELATIVE AND SAVE  */      \
  V(brct, BRCT, 0xA76)   /* type = RI_B  BRANCH RELATIVE ON COUNT (32)  */ \
  V(brctg, BRCTG, 0xA77) /* type = RI_B  BRANCH RELATIVE ON COUNT (64)  */

#define S390_RI_C_OPCODE_LIST(V) \
  V(brc, BRC, 0xA74) /* type = RI_C BRANCH RELATIVE ON CONDITION  */

#define S390_SMI_OPCODE_LIST(V) \
  V(bpp, BPP, 0xC7) /* type = SMI   BRANCH PREDICTION PRELOAD  */

#define S390_RXY_A_OPCODE_LIST(V)                                              \
  V(ltg, LTG, 0xE302)   /* type = RXY_A LOAD AND TEST (64)  */                 \
  V(lrag, LRAG, 0xE303) /* type = RXY_A LOAD REAL ADDRESS (64)  */             \
  V(lg, LG, 0xE304)     /* type = RXY_A LOAD (64)  */                          \
  V(cvby, CVBY, 0xE306) /* type = RXY_A CONVERT TO BINARY (32)  */             \
  V(ag, AG, 0xE308)     /* type = RXY_A ADD (64)  */                           \
  V(sg, SG, 0xE309)     /* type = RXY_A SUBTRACT (64)  */                      \
  V(alg, ALG, 0xE30A)   /* type = RXY_A ADD LOGICAL (64)  */                   \
  V(slg, SLG, 0xE30B)   /* type = RXY_A SUBTRACT LOGICAL (64)  */              \
  V(msg, MSG, 0xE30C)   /* type = RXY_A MULTIPLY SINGLE (64)  */               \
  V(dsg, DSG, 0xE30D)   /* type = RXY_A DIVIDE SINGLE (64)  */                 \
  V(cvbg, CVBG, 0xE30E) /* type = RXY_A CONVERT TO BINARY (64)  */             \
  V(lrvg, LRVG, 0xE30F) /* type = RXY_A LOAD REVERSED (64)  */                 \
  V(lt_z, LT, 0xE312)   /* type = RXY_A LOAD AND TEST (32)  */                 \
  V(lray, LRAY, 0xE313) /* type = RXY_A LOAD REAL ADDRESS (32)  */             \
  V(lgf, LGF, 0xE314)   /* type = RXY_A LOAD (64<-32)  */                      \
  V(lgh, LGH, 0xE315)   /* type = RXY_A LOAD HALFWORD (64<-16)  */             \
  V(llgf, LLGF, 0xE316) /* type = RXY_A LOAD LOGICAL (64<-32)  */              \
  V(llgt, LLGT,                                                                \
    0xE317) /* type = RXY_A LOAD LOGICAL THIRTY ONE BITS (64<-31)  */          \
  V(agf, AGF, 0xE318)     /* type = RXY_A ADD (64<-32)  */                     \
  V(sgf, SGF, 0xE319)     /* type = RXY_A SUBTRACT (64<-32)  */                \
  V(algf, ALGF, 0xE31A)   /* type = RXY_A ADD LOGICAL (64<-32)  */             \
  V(slgf, SLGF, 0xE31B)   /* type = RXY_A SUBTRACT LOGICAL (64<-32)  */        \
  V(msgf, MSGF, 0xE31C)   /* type = RXY_A MULTIPLY SINGLE (64<-32)  */         \
  V(dsgf, DSGF, 0xE31D)   /* type = RXY_A DIVIDE SINGLE (64<-32)  */           \
  V(lrv, LRV, 0xE31E)     /* type = RXY_A LOAD REVERSED (32)  */               \
  V(lrvh, LRVH, 0xE31F)   /* type = RXY_A LOAD REVERSED (16)  */               \
  V(cg, CG, 0xE320)       /* type = RXY_A COMPARE (64)  */                     \
  V(clg, CLG, 0xE321)     /* type = RXY_A COMPARE LOGICAL (64)  */             \
  V(stg, STG, 0xE324)     /* type = RXY_A STORE (64)  */                       \
  V(ntstg, NTSTG, 0xE325) /* type = RXY_A NONTRANSACTIONAL STORE (64)  */      \
  V(cvdy, CVDY, 0xE326)   /* type = RXY_A CONVERT TO DECIMAL (32)  */          \
  V(lzrg, LZRG, 0xE32A) /* type = RXY_A LOAD AND ZERO RIGHTMOST BYTE (64)  */  \
  V(cvdg, CVDG, 0xE32E) /* type = RXY_A CONVERT TO DECIMAL (64)  */            \
  V(strvg, STRVG, 0xE32F) /* type = RXY_A STORE REVERSED (64)  */              \
  V(cgf, CGF, 0xE330)     /* type = RXY_A COMPARE (64<-32)  */                 \
  V(clgf, CLGF, 0xE331)   /* type = RXY_A COMPARE LOGICAL (64<-32)  */         \
  V(ltgf, LTGF, 0xE332)   /* type = RXY_A LOAD AND TEST (64<-32)  */           \
  V(cgh, CGH, 0xE334)     /* type = RXY_A COMPARE HALFWORD (64<-16)  */        \
  V(llzrgf, LLZRGF,                                                            \
    0xE33A) /* type = RXY_A LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64<-32)  */  \
  V(lzrf, LZRF, 0xE33B) /* type = RXY_A LOAD AND ZERO RIGHTMOST BYTE (32)  */  \
  V(strv, STRV, 0xE33E) /* type = RXY_A STORE REVERSED (32)  */                \
  V(strvh, STRVH, 0xE33F) /* type = RXY_A STORE REVERSED (16)  */              \
  V(bctg, BCTG, 0xE346)   /* type = RXY_A BRANCH ON COUNT (64)  */             \
  V(sty, STY, 0xE350)     /* type = RXY_A STORE (32)  */                       \
  V(msy, MSY, 0xE351)     /* type = RXY_A MULTIPLY SINGLE (32)  */             \
  V(ny, NY, 0xE354)       /* type = RXY_A AND (32)  */                         \
  V(cly, CLY, 0xE355)     /* type = RXY_A COMPARE LOGICAL (32)  */             \
  V(oy, OY, 0xE356)       /* type = RXY_A OR (32)  */                          \
  V(xy, XY, 0xE357)       /* type = RXY_A EXCLUSIVE OR (32)  */                \
  V(ly, LY, 0xE358)       /* type = RXY_A LOAD (32)  */                        \
  V(cy, CY, 0xE359)       /* type = RXY_A COMPARE (32)  */                     \
  V(ay, AY, 0xE35A)       /* type = RXY_A ADD (32)  */                         \
  V(sy, SY, 0xE35B)       /* type = RXY_A SUBTRACT (32)  */                    \
  V(mfy, MFY, 0xE35C)     /* type = RXY_A MULTIPLY (64<-32)  */                \
  V(aly, ALY, 0xE35E)     /* type = RXY_A ADD LOGICAL (32)  */                 \
  V(sly, SLY, 0xE35F)     /* type = RXY_A SUBTRACT LOGICAL (32)  */            \
  V(sthy, STHY, 0xE370)   /* type = RXY_A STORE HALFWORD (16)  */              \
  V(lay, LAY, 0xE371)     /* type = RXY_A LOAD ADDRESS  */                     \
  V(stcy, STCY, 0xE372)   /* type = RXY_A STORE CHARACTER  */                  \
  V(icy, ICY, 0xE373)     /* type = RXY_A INSERT CHARACTER  */                 \
  V(laey, LAEY, 0xE375)   /* type = RXY_A LOAD ADDRESS EXTENDED  */            \
  V(lb, LB, 0xE376)       /* type = RXY_A LOAD BYTE (32<-8)  */                \
  V(lgb, LGB, 0xE377)     /* type = RXY_A LOAD BYTE (64<-8)  */                \
  V(lhy, LHY, 0xE378)     /* type = RXY_A LOAD HALFWORD (32)<-16  */           \
  V(chy, CHY, 0xE379)     /* type = RXY_A COMPARE HALFWORD (32<-16)  */        \
  V(ahy, AHY, 0xE37A)     /* type = RXY_A ADD HALFWORD (32<-16)  */            \
  V(shy, SHY, 0xE37B)     /* type = RXY_A SUBTRACT HALFWORD (32<-16)  */       \
  V(mhy, MHY, 0xE37C)     /* type = RXY_A MULTIPLY HALFWORD (32<-16)  */       \
  V(ng, NG, 0xE380)       /* type = RXY_A AND (64)  */                         \
  V(og, OG, 0xE381)       /* type = RXY_A OR (64)  */                          \
  V(xg, XG, 0xE382)       /* type = RXY_A EXCLUSIVE OR (64)  */                \
  V(lgat, LGAT, 0xE385)   /* type = RXY_A LOAD AND TRAP (64)  */               \
  V(mlg, MLG, 0xE386)     /* type = RXY_A MULTIPLY LOGICAL (128<-64)  */       \
  V(dlg, DLG, 0xE387)     /* type = RXY_A DIVIDE LOGICAL (64<-128)  */         \
  V(alcg, ALCG, 0xE388)   /* type = RXY_A ADD LOGICAL WITH CARRY (64)  */      \
  V(slbg, SLBG, 0xE389) /* type = RXY_A SUBTRACT LOGICAL WITH BORROW (64)  */  \
  V(stpq, STPQ, 0xE38E) /* type = RXY_A STORE PAIR TO QUADWORD  */             \
  V(lpq, LPQ, 0xE38F) /* type = RXY_A LOAD PAIR FROM QUADWORD (64&64<-128)  */ \
  V(llgc, LLGC, 0xE390) /* type = RXY_A LOAD LOGICAL CHARACTER (64<-8)  */     \
  V(llgh, LLGH, 0xE391) /* type = RXY_A LOAD LOGICAL HALFWORD (64<-16)  */     \
  V(llc, LLC, 0xE394)   /* type = RXY_A LOAD LOGICAL CHARACTER (32<-8)  */     \
  V(llh, LLH, 0xE395)   /* type = RXY_A LOAD LOGICAL HALFWORD (32<-16)  */     \
  V(ml, ML, 0xE396)     /* type = RXY_A MULTIPLY LOGICAL (64<-32)  */          \
  V(dl, DL, 0xE397)     /* type = RXY_A DIVIDE LOGICAL (32<-64)  */            \
  V(alc, ALC, 0xE398)   /* type = RXY_A ADD LOGICAL WITH CARRY (32)  */        \
  V(slb, SLB, 0xE399)   /* type = RXY_A SUBTRACT LOGICAL WITH BORROW (32)  */  \
  V(llgtat, LLGTAT,                                                            \
    0xE39C) /* type = RXY_A LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)  */ \
  V(llgfat, LLGFAT, 0xE39D) /* type = RXY_A LOAD LOGICAL AND TRAP (64<-32)  */ \
  V(lat, LAT, 0xE39F)       /* type = RXY_A LOAD AND TRAP (32L<-32)  */        \
  V(lbh, LBH, 0xE3C0)       /* type = RXY_A LOAD BYTE HIGH (32<-8)  */         \
  V(llch, LLCH, 0xE3C2) /* type = RXY_A LOAD LOGICAL CHARACTER HIGH (32<-8) */ \
  V(stch, STCH, 0xE3C3) /* type = RXY_A STORE CHARACTER HIGH (8)  */           \
  V(lhh, LHH, 0xE3C4)   /* type = RXY_A LOAD HALFWORD HIGH (32<-16)  */        \
  V(llhh, LLHH, 0xE3C6) /* type = RXY_A LOAD LOGICAL HALFWORD HIGH (32<-16) */ \
  V(sthh, STHH, 0xE3C7) /* type = RXY_A STORE HALFWORD HIGH (16)  */           \
  V(lfhat, LFHAT, 0xE3C8) /* type = RXY_A LOAD HIGH AND TRAP (32H<-32)  */     \
  V(lfh, LFH, 0xE3CA)     /* type = RXY_A LOAD HIGH (32)  */                   \
  V(stfh, STFH, 0xE3CB)   /* type = RXY_A STORE HIGH (32)  */                  \
  V(chf, CHF, 0xE3CD)     /* type = RXY_A COMPARE HIGH (32)  */                \
  V(clhf, CLHF, 0xE3CF)   /* type = RXY_A COMPARE LOGICAL HIGH (32)  */        \
  V(ley, LEY, 0xED64)     /* type = RXY_A LOAD (short)  */                     \
  V(ldy, LDY, 0xED65)     /* type = RXY_A LOAD (long)  */                      \
  V(stey, STEY, 0xED66)   /* type = RXY_A STORE (short)  */                    \
  V(stdy, STDY, 0xED67)   /* type = RXY_A STORE (long)  */                     \
  V(msc, MSC, 0xE353)     /* type = RSY_A MULTIPLY SINGLE (32)  */             \
  V(msgc, MSGC, 0xE383)   /* type = RSY_A MULTIPLY SINGLE (64)  */

#define S390_RXY_B_OPCODE_LIST(V) \
  V(pfd, PFD, 0xE336) /* type = RXY_B PREFETCH DATA  */

#define S390_SIY_OPCODE_LIST(V)                                           \
  V(tmy, TMY, 0xEB51)   /* type = SIY   TEST UNDER MASK  */               \
  V(mviy, MVIY, 0xEB52) /* type = SIY   MOVE (immediate)  */              \
  V(niy, NIY, 0xEB54)   /* type = SIY   AND (immediate)  */               \
  V(cliy, CLIY, 0xEB55) /* type = SIY   COMPARE LOGICAL (immediate)  */   \
  V(oiy, OIY, 0xEB56)   /* type = SIY   OR (immediate)  */                \
  V(xiy, XIY, 0xEB57)   /* type = SIY   EXCLUSIVE OR (immediate)  */      \
  V(asi, ASI, 0xEB6A)   /* type = SIY   ADD IMMEDIATE (32<-8)  */         \
  V(alsi, ALSI,                                                           \
    0xEB6E) /* type = SIY   ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)  */ \
  V(agsi, AGSI, 0xEB7A) /* type = SIY   ADD IMMEDIATE (64<-8)  */         \
  V(algsi, ALGSI,                                                         \
    0xEB7E) /* type = SIY   ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)  */

#define S390_SS_A_OPCODE_LIST(V)                                        \
  V(trtr, TRTR, 0xD0)   /* type = SS_A  TRANSLATE AND TEST REVERSE  */  \
  V(mvn, MVN, 0xD1)     /* type = SS_A  MOVE NUMERICS  */               \
  V(mvc, MVC, 0xD2)     /* type = SS_A  MOVE (character)  */            \
  V(mvz, MVZ, 0xD3)     /* type = SS_A  MOVE ZONES  */                  \
  V(nc, NC, 0xD4)       /* type = SS_A  AND (character)  */             \
  V(clc, CLC, 0xD5)     /* type = SS_A  COMPARE LOGICAL (character)  */ \
  V(oc, OC, 0xD6)       /* type = SS_A  OR (character)  */              \
  V(xc, XC, 0xD7)       /* type = SS_A  EXCLUSIVE OR (character)  */    \
  V(tr, TR, 0xDC)       /* type = SS_A  TRANSLATE  */                   \
  V(trt, TRT, 0xDD)     /* type = SS_A  TRANSLATE AND TEST  */          \
  V(ed, ED, 0xDE)       /* type = SS_A  EDIT  */                        \
  V(edmk, EDMK, 0xDF)   /* type = SS_A  EDIT AND MARK  */               \
  V(unpku, UNPKU, 0xE2) /* type = SS_A  UNPACK UNICODE  */              \
  V(mvcin, MVCIN, 0xE8) /* type = SS_A  MOVE INVERSE  */                \
  V(unpka, UNPKA, 0xEA) /* type = SS_A  UNPACK ASCII  */

#define S390_E_OPCODE_LIST(V)                                                  \
  V(pr, PR, 0x0101)       /* type = E     PROGRAM RETURN  */                   \
  V(upt, UPT, 0x0102)     /* type = E     UPDATE TREE  */                      \
  V(ptff, PTFF, 0x0104)   /* type = E     PERFORM TIMING FACILITY FUNCTION  */ \
  V(sckpf, SCKPF, 0x0107) /* type = E     SET CLOCK PROGRAMMABLE FIELD  */     \
  V(pfpo, PFPO, 0x010A)   /* type = E     PERFORM FLOATING-POINT OPERATION  */ \
  V(tam, TAM, 0x010B)     /* type = E     TEST ADDRESSING MODE  */             \
  V(sam24, SAM24, 0x010C) /* type = E     SET ADDRESSING MODE (24)  */         \
  V(sam31, SAM31, 0x010D) /* type = E     SET ADDRESSING MODE (31)  */         \
  V(sam64, SAM64, 0x010E) /* type = E     SET ADDRESSING MODE (64)  */         \
  V(trap2, TRAP2, 0x01FF) /* type = E     TRAP  */

#define S390_SS_B_OPCODE_LIST(V)                           \
  V(mvo, MVO, 0xF1)   /* type = SS_B  MOVE WITH OFFSET  */ \
  V(pack, PACK, 0xF2) /* type = SS_B  PACK  */             \
  V(unpk, UNPK, 0xF3) /* type = SS_B  UNPACK  */           \
  V(zap, ZAP, 0xF8)   /* type = SS_B  ZERO AND ADD  */     \
  V(cp, CP, 0xF9)     /* type = SS_B  COMPARE DECIMAL  */  \
  V(ap, AP, 0xFA)     /* type = SS_B  ADD DECIMAL  */      \
  V(sp, SP, 0xFB)     /* type = SS_B  SUBTRACT DECIMAL  */ \
  V(mp, MP, 0xFC)     /* type = SS_B  MULTIPLY DECIMAL  */ \
  V(dp, DP, 0xFD)     /* type = SS_B  DIVIDE DECIMAL  */

#define S390_SS_C_OPCODE_LIST(V) \
  V(srp, SRP, 0xF0) /* type = SS_C  SHIFT AND ROUND DECIMAL  */

#define S390_SS_D_OPCODE_LIST(V)                          \
  V(mvck, MVCK, 0xD9) /* type = SS_D  MOVE WITH KEY  */   \
  V(mvcp, MVCP, 0xDA) /* type = SS_D  MOVE TO PRIMARY  */ \
  V(mvcs, MVCS, 0xDB) /* type = SS_D  MOVE TO SECONDARY  */

#define S390_SS_E_OPCODE_LIST(V)                                 \
  V(plo, PLO, 0xEE) /* type = SS_E  PERFORM LOCKED OPERATION  */ \
  V(lmd, LMD, 0xEF) /* type = SS_E  LOAD MULTIPLE DISJOINT (64<-32&32)  */

#define S390_I_OPCODE_LIST(V) \
  V(svc, SVC, 0x0A) /* type = I     SUPERVISOR CALL  */

#define S390_SS_F_OPCODE_LIST(V)                     \
  V(pku, PKU, 0xE1) /* type = SS_F  PACK UNICODE  */ \
  V(pka, PKA, 0xE9) /* type = SS_F  PACK ASCII  */

#define S390_SSE_OPCODE_LIST(V)                                             \
  V(lasp, LASP, 0xE500)   /* type = SSE   LOAD ADDRESS SPACE PARAMETERS  */ \
  V(tprot, TPROT, 0xE501) /* type = SSE   TEST PROTECTION  */               \
  V(strag, STRAG, 0xE502) /* type = SSE   STORE REAL ADDRESS  */            \
  V(mvcsk, MVCSK, 0xE50E) /* type = SSE   MOVE WITH SOURCE KEY  */          \
  V(mvcdk, MVCDK, 0xE50F) /* type = SSE   MOVE WITH DESTINATION KEY  */

#define S390_SSF_OPCODE_LIST(V)                                                \
  V(mvcos, MVCOS, 0xC80) /* type = SSF   MOVE WITH OPTIONAL SPECIFICATIONS  */ \
  V(ectg, ECTG, 0xC81)   /* type = SSF   EXTRACT CPU TIME  */                  \
  V(csst, CSST, 0xC82)   /* type = SSF   COMPARE AND SWAP AND STORE  */        \
  V(lpd, LPD, 0xC84)     /* type = SSF   LOAD PAIR DISJOINT (32)  */           \
  V(lpdg, LPDG, 0xC85)   /* type = SSF   LOAD PAIR DISJOINT (64)  */

#define S390_RS_A_OPCODE_LIST(V)                                              \
  V(bxh, BXH, 0x86)     /* type = RS_A  BRANCH ON INDEX HIGH (32)  */         \
  V(bxle, BXLE, 0x87)   /* type = RS_A  BRANCH ON INDEX LOW OR EQUAL (32)  */ \
  V(srl, SRL, 0x88)     /* type = RS_A  SHIFT RIGHT SINGLE LOGICAL (32)  */   \
  V(sll, SLL, 0x89)     /* type = RS_A  SHIFT LEFT SINGLE LOGICAL (32)  */    \
  V(sra, SRA, 0x8A)     /* type = RS_A  SHIFT RIGHT SINGLE (32)  */           \
  V(sla, SLA, 0x8B)     /* type = RS_A  SHIFT LEFT SINGLE (32)  */            \
  V(srdl, SRDL, 0x8C)   /* type = RS_A  SHIFT RIGHT DOUBLE LOGICAL (64)  */   \
  V(sldl, SLDL, 0x8D)   /* type = RS_A  SHIFT LEFT DOUBLE LOGICAL (64)  */    \
  V(srda, SRDA, 0x8E)   /* type = RS_A  SHIFT RIGHT DOUBLE (64)  */           \
  V(slda, SLDA, 0x8F)   /* type = RS_A  SHIFT LEFT DOUBLE (64)  */            \
  V(stm, STM, 0x90)     /* type = RS_A  STORE MULTIPLE (32)  */               \
  V(lm, LM, 0x98)       /* type = RS_A  LOAD MULTIPLE (32)  */                \
  V(trace, TRACE, 0x99) /* type = RS_A  TRACE (32)  */                        \
  V(lam, LAM, 0x9A)     /* type = RS_A  LOAD ACCESS MULTIPLE  */              \
  V(stam, STAM, 0x9B)   /* type = RS_A  STORE ACCESS MULTIPLE  */             \
  V(mvcle, MVCLE, 0xA8) /* type = RS_A  MOVE LONG EXTENDED  */                \
  V(clcle, CLCLE, 0xA9) /* type = RS_A  COMPARE LOGICAL LONG EXTENDED  */     \
  V(sigp, SIGP, 0xAE)   /* type = RS_A  SIGNAL PROCESSOR  */                  \
  V(stctl, STCTL, 0xB6) /* type = RS_A  STORE CONTROL (32)  */                \
  V(lctl, LCTL, 0xB7)   /* type = RS_A  LOAD CONTROL (32)  */                 \
  V(cs, CS, 0xBA)       /* type = RS_A  COMPARE AND SWAP (32)  */             \
  V(cds, CDS, 0xBB)     /* type = RS_A  COMPARE DOUBLE AND SWAP (32)  */

#define S390_RS_B_OPCODE_LIST(V)                                               \
  V(clm, CLM, 0xBD) /* type = RS_B  COMPARE LOGICAL CHAR. UNDER MASK (low)  */ \
  V(stcm, STCM, 0xBE) /* type = RS_B  STORE CHARACTERS UNDER MASK (low)  */    \
  V(icm, ICM, 0xBF)   /* type = RS_B  INSERT CHARACTERS UNDER MASK (low)  */

#define S390_S_OPCODE_LIST(V)                                                  \
  V(lpsw, LPSW, 0x82)         /* type = S     LOAD PSW  */                     \
  V(diagnose, DIAGNOSE, 0x83) /* type = S     DIAGNOSE  */                     \
  V(ts, TS, 0x93)             /* type = S     TEST AND SET  */                 \
  V(stidp, STIDP, 0xB202)     /* type = S     STORE CPU ID  */                 \
  V(sck, SCK, 0xB204)         /* type = S     SET CLOCK  */                    \
  V(stck, STCK, 0xB205)       /* type = S     STORE CLOCK  */                  \
  V(sckc, SCKC, 0xB206)       /* type = S     SET CLOCK COMPARATOR  */         \
  V(stckc, STCKC, 0xB207)     /* type = S     STORE CLOCK COMPARATOR  */       \
  V(spt, SPT, 0xB208)         /* type = S     SET CPU TIMER  */                \
  V(stpt, STPT, 0xB209)       /* type = S     STORE CPU TIMER  */              \
  V(spka, SPKA, 0xB20A)       /* type = S     SET PSW KEY FROM ADDRESS  */     \
  V(ipk, IPK, 0xB20B)         /* type = S     INSERT PSW KEY  */               \
  V(ptlb, PTLB, 0xB20D)       /* type = S     PURGE TLB  */                    \
  V(spx, SPX, 0xB210)         /* type = S     SET PREFIX  */                   \
  V(stpx, STPX, 0xB211)       /* type = S     STORE PREFIX  */                 \
  V(stap, STAP, 0xB212)       /* type = S     STORE CPU ADDRESS  */            \
  V(pc, PC, 0xB218)           /* type = S     PROGRAM CALL  */                 \
  V(sac, SAC, 0xB219)         /* type = S     SET ADDRESS SPACE CONTROL  */    \
  V(cfc, CFC, 0xB21A)         /* type = S     COMPARE AND FORM CODEWORD  */    \
  V(csch, CSCH, 0xB230)       /* type = S     CLEAR SUBCHANNEL  */             \
  V(hsch, HSCH, 0xB231)       /* type = S     HALT SUBCHANNEL  */              \
  V(msch, MSCH, 0xB232)       /* type = S     MODIFY SUBCHANNEL  */            \
  V(ssch, SSCH, 0xB233)       /* type = S     START SUBCHANNEL  */             \
  V(stsch, STSCH, 0xB234)     /* type = S     STORE SUBCHANNEL  */             \
  V(tsch, TSCH, 0xB235)       /* type = S     TEST SUBCHANNEL  */              \
  V(tpi, TPI, 0xB236)         /* type = S     TEST PENDING INTERRUPTION  */    \
  V(sal, SAL, 0xB237)         /* type = S     SET ADDRESS LIMIT  */            \
  V(rsch, RSCH, 0xB238)       /* type = S     RESUME SUBCHANNEL  */            \
  V(stcrw, STCRW, 0xB239)     /* type = S     STORE CHANNEL REPORT WORD  */    \
  V(stcps, STCPS, 0xB23A)     /* type = S     STORE CHANNEL PATH STATUS  */    \
  V(rchp, RCHP, 0xB23B)       /* type = S     RESET CHANNEL PATH  */           \
  V(schm, SCHM, 0xB23C)       /* type = S     SET CHANNEL MONITOR  */          \
  V(xsch, XSCH, 0xB276)       /* type = S     CANCEL SUBCHANNEL  */            \
  V(rp, RP_Z, 0xB277)         /* type = S     RESUME PROGRAM  */               \
  V(stcke, STCKE, 0xB278)     /* type = S     STORE CLOCK EXTENDED  */         \
  V(sacf, SACF, 0xB279)     /* type = S     SET ADDRESS SPACE CONTROL FAST  */ \
  V(stckf, STCKF, 0xB27C)   /* type = S     STORE CLOCK FAST  */               \
  V(stsi, STSI, 0xB27D)     /* type = S     STORE SYSTEM INFORMATION  */       \
  V(srnm, SRNM, 0xB299)     /* type = S     SET BFP ROUNDING MODE (2 bit)  */  \
  V(stfpc, STFPC, 0xB29C)   /* type = S     STORE FPC  */                      \
  V(lfpc, LFPC, 0xB29D)     /* type = S     LOAD FPC  */                       \
  V(stfle, STFLE, 0xB2B0)   /* type = S     STORE FACILITY LIST EXTENDED  */   \
  V(stfl, STFL, 0xB2B1)     /* type = S     STORE FACILITY LIST  */            \
  V(lpswe, LPSWE, 0xB2B2)   /* type = S     LOAD PSW EXTENDED  */              \
  V(srnmb, SRNMB, 0xB2B8)   /* type = S     SET BFP ROUNDING MODE (3 bit)  */  \
  V(srnmt, SRNMT, 0xB2B9)   /* type = S     SET DFP ROUNDING MODE  */          \
  V(lfas, LFAS, 0xB2BD)     /* type = S     LOAD FPC AND SIGNAL  */            \
  V(tend, TEND, 0xB2F8)     /* type = S     TRANSACTION END  */                \
  V(tabort, TABORT, 0xB2FC) /* type = S     TRANSACTION ABORT  */              \
  V(trap4, TRAP4, 0xB2FF)   /* type = S     TRAP  */

#define S390_RX_A_OPCODE_LIST(V)                                            \
  V(la, LA, 0x41)     /* type = RX_A  LOAD ADDRESS  */                      \
  V(stc, STC, 0x42)   /* type = RX_A  STORE CHARACTER  */                   \
  V(ic_z, IC_z, 0x43) /* type = RX_A  INSERT CHARACTER  */                  \
  V(ex, EX, 0x44)     /* type = RX_A  EXECUTE  */                           \
  V(bal, BAL, 0x45)   /* type = RX_A  BRANCH AND LINK  */                   \
  V(bct, BCT, 0x46)   /* type = RX_A  BRANCH ON COUNT (32)  */              \
  V(lh, LH, 0x48)     /* type = RX_A  LOAD HALFWORD (32<-16)  */            \
  V(ch, CH, 0x49)     /* type = RX_A  COMPARE HALFWORD (32<-16)  */         \
  V(ah, AH, 0x4A)     /* type = RX_A  ADD HALFWORD (32<-16)  */             \
  V(sh, SH, 0x4B)     /* type = RX_A  SUBTRACT HALFWORD (32<-16)  */        \
  V(mh, MH, 0x4C)     /* type = RX_A  MULTIPLY HALFWORD (32<-16)  */        \
  V(bas, BAS, 0x4D)   /* type = RX_A  BRANCH AND SAVE  */                   \
  V(cvd, CVD, 0x4E)   /* type = RX_A  CONVERT TO DECIMAL (32)  */           \
  V(cvb, CVB, 0x4F)   /* type = RX_A  CONVERT TO BINARY (32)  */            \
  V(st, ST, 0x50)     /* type = RX_A  STORE (32)  */                        \
  V(lae, LAE, 0x51)   /* type = RX_A  LOAD ADDRESS EXTENDED  */             \
  V(n, N, 0x54)       /* type = RX_A  AND (32)  */                          \
  V(cl, CL, 0x55)     /* type = RX_A  COMPARE LOGICAL (32)  */              \
  V(o, O, 0x56)       /* type = RX_A  OR (32)  */                           \
  V(x, X, 0x57)       /* type = RX_A  EXCLUSIVE OR (32)  */                 \
  V(l, L, 0x58)       /* type = RX_A  LOAD (32)  */                         \
  V(c, C, 0x59)       /* type = RX_A  COMPARE (32)  */                      \
  V(a, A, 0x5A)       /* type = RX_A  ADD (32)  */                          \
  V(s, S, 0x5B)       /* type = RX_A  SUBTRACT (32)  */                     \
  V(m, M, 0x5C)       /* type = RX_A  MULTIPLY (64<-32)  */                 \
  V(d, D, 0x5D)       /* type = RX_A  DIVIDE (32<-64)  */                   \
  V(al_z, AL, 0x5E)   /* type = RX_A  ADD LOGICAL (32)  */                  \
  V(sl, SL, 0x5F)     /* type = RX_A  SUBTRACT LOGICAL (32)  */             \
  V(std, STD, 0x60)   /* type = RX_A  STORE (long)  */                      \
  V(mxd, MXD, 0x67)   /* type = RX_A  MULTIPLY (long to extended HFP)  */   \
  V(ld, LD, 0x68)     /* type = RX_A  LOAD (long)  */                       \
  V(cd, CD, 0x69)     /* type = RX_A  COMPARE (long HFP)  */                \
  V(ad, AD, 0x6A)     /* type = RX_A  ADD NORMALIZED (long HFP)  */         \
  V(sd, SD, 0x6B)     /* type = RX_A  SUBTRACT NORMALIZED (long HFP)  */    \
  V(md, MD, 0x6C)     /* type = RX_A  MULTIPLY (long HFP)  */               \
  V(dd, DD, 0x6D)     /* type = RX_A  DIVIDE (long HFP)  */                 \
  V(aw, AW, 0x6E)     /* type = RX_A  ADD UNNORMALIZED (long HFP)  */       \
  V(sw, SW, 0x6F)     /* type = RX_A  SUBTRACT UNNORMALIZED (long HFP)  */  \
  V(ste, STE, 0x70)   /* type = RX_A  STORE (short)  */                     \
  V(ms, MS, 0x71)     /* type = RX_A  MULTIPLY SINGLE (32)  */              \
  V(le_z, LE, 0x78)   /* type = RX_A  LOAD (short)  */                      \
  V(ce, CE, 0x79)     /* type = RX_A  COMPARE (short HFP)  */               \
  V(ae, AE, 0x7A)     /* type = RX_A  ADD NORMALIZED (short HFP)  */        \
  V(se, SE, 0x7B)     /* type = RX_A  SUBTRACT NORMALIZED (short HFP)  */   \
  V(mde, MDE, 0x7C)   /* type = RX_A  MULTIPLY (short to long HFP)  */      \
  V(de, DE, 0x7D)     /* type = RX_A  DIVIDE (short HFP)  */                \
  V(au, AU, 0x7E)     /* type = RX_A  ADD UNNORMALIZED (short HFP)  */      \
  V(su, SU, 0x7F)     /* type = RX_A  SUBTRACT UNNORMALIZED (short HFP)  */ \
  V(ssm, SSM, 0x80)   /* type = RX_A  SET SYSTEM MASK  */                   \
  V(lra, LRA, 0xB1)   /* type = RX_A  LOAD REAL ADDRESS (32)  */            \
  V(sth, STH, 0x40)   /* type = RX_A  STORE HALFWORD (16)  */

#define S390_RX_B_OPCODE_LIST(V) \
  V(bc, BC, 0x47) /* type = RX_B  BRANCH ON CONDITION  */

#define S390_RIE_A_OPCODE_LIST(V)                                              \
  V(cgit, CGIT, 0xEC70) /* type = RIE_A COMPARE IMMEDIATE AND TRAP (64<-16) */ \
  V(clgit, CLGIT,                                                              \
    0xEC71) /* type = RIE_A COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)  */    \
  V(cit, CIT, 0xEC72) /* type = RIE_A COMPARE IMMEDIATE AND TRAP (32<-16)  */  \
  V(clfit, CLFIT,                                                              \
    0xEC73) /* type = RIE_A COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)  */

#define S390_RRD_OPCODE_LIST(V)                                                \
  V(maebr, MAEBR, 0xB30E) /* type = RRD   MULTIPLY AND ADD (short BFP)  */     \
  V(msebr, MSEBR, 0xB30F) /* type = RRD   MULTIPLY AND SUBTRACT (short BFP) */ \
  V(madbr, MADBR, 0xB31E) /* type = RRD   MULTIPLY AND ADD (long BFP)  */      \
  V(msdbr, MSDBR, 0xB31F) /* type = RRD   MULTIPLY AND SUBTRACT (long BFP)  */ \
  V(maer, MAER, 0xB32E)   /* type = RRD   MULTIPLY AND ADD (short HFP)  */     \
  V(mser, MSER, 0xB32F) /* type = RRD   MULTIPLY AND SUBTRACT (short HFP)  */  \
  V(maylr, MAYLR,                                                              \
    0xB338) /* type = RRD   MULTIPLY AND ADD UNNRM. (long to ext. low HFP)  */ \
  V(mylr, MYLR,                                                                \
    0xB339) /* type = RRD   MULTIPLY UNNORM. (long to ext. low HFP)  */        \
  V(mayr, MAYR,                                                                \
    0xB33A) /* type = RRD   MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)  */ \
  V(myr, MYR,                                                                  \
    0xB33B) /* type = RRD   MULTIPLY UNNORMALIZED (long to ext. HFP)  */       \
  V(mayhr, MAYHR,                                                              \
    0xB33C) /* type = RRD   MULTIPLY AND ADD UNNRM. (long to ext. high HFP) */ \
  V(myhr, MYHR,                                                                \
    0xB33D) /* type = RRD   MULTIPLY UNNORM. (long to ext. high HFP)  */       \
  V(madr, MADR, 0xB33E) /* type = RRD   MULTIPLY AND ADD (long HFP)  */        \
  V(msdr, MSDR, 0xB33F) /* type = RRD   MULTIPLY AND SUBTRACT (long HFP)  */

#define S390_RIE_B_OPCODE_LIST(V)                                            \
  V(cgrj, CGRJ, 0xEC64) /* type = RIE_B COMPARE AND BRANCH RELATIVE (64)  */ \
  V(clgrj, CLGRJ,                                                            \
    0xEC65) /* type = RIE_B COMPARE LOGICAL AND BRANCH RELATIVE (64)  */     \
  V(crj, CRJ, 0xEC76) /* type = RIE_B COMPARE AND BRANCH RELATIVE (32)  */   \
  V(clrj, CLRJ,                                                              \
    0xEC77) /* type = RIE_B COMPARE LOGICAL AND BRANCH RELATIVE (32)  */

#define S390_RRE_OPCODE_LIST(V)                                                \
  V(ipm, IPM, 0xB222)     /* type = RRE   INSERT PROGRAM MASK  */              \
  V(ivsk, IVSK, 0xB223)   /* type = RRE   INSERT VIRTUAL STORAGE KEY  */       \
  V(iac, IAC, 0xB224)     /* type = RRE   INSERT ADDRESS SPACE CONTROL  */     \
  V(ssar, SSAR, 0xB225)   /* type = RRE   SET SECONDARY ASN  */                \
  V(epar, EPAR, 0xB226)   /* type = RRE   EXTRACT PRIMARY ASN  */              \
  V(esar, ESAR, 0xB227)   /* type = RRE   EXTRACT SECONDARY ASN  */            \
  V(pt, PT, 0xB228)       /* type = RRE   PROGRAM TRANSFER  */                 \
  V(iske, ISKE, 0xB229)   /* type = RRE   INSERT STORAGE KEY EXTENDED  */      \
  V(rrbe, RRBE, 0xB22A)   /* type = RRE   RESET REFERENCE BIT EXTENDED  */     \
  V(tb, TB, 0xB22C)       /* type = RRE   TEST BLOCK  */                       \
  V(dxr, DXR, 0xB22D)     /* type = RRE   DIVIDE (extended HFP)  */            \
  V(pgin, PGIN, 0xB22E)   /* type = RRE   PAGE IN  */                          \
  V(pgout, PGOUT, 0xB22F) /* type = RRE   PAGE OUT  */                         \
  V(bakr, BAKR, 0xB240)   /* type = RRE   BRANCH AND STACK  */                 \
  V(cksm, CKSM, 0xB241)   /* type = RRE   CHECKSUM  */                         \
  V(sqdr, SQDR, 0xB244)   /* type = RRE   SQUARE ROOT (long HFP)  */           \
  V(sqer, SQER, 0xB245)   /* type = RRE   SQUARE ROOT (short HFP)  */          \
  V(stura, STURA, 0xB246) /* type = RRE   STORE USING REAL ADDRESS (32)  */    \
  V(msta, MSTA, 0xB247)   /* type = RRE   MODIFY STACKED STATE  */             \
  V(palb, PALB, 0xB248)   /* type = RRE   PURGE ALB  */                        \
  V(ereg, EREG, 0xB249)   /* type = RRE   EXTRACT STACKED REGISTERS (32)  */   \
  V(esta, ESTA, 0xB24A)   /* type = RRE   EXTRACT STACKED STATE  */            \
  V(lura, LURA, 0xB24B)   /* type = RRE   LOAD USING REAL ADDRESS (32)  */     \
  V(tar, TAR, 0xB24C)     /* type = RRE   TEST ACCESS  */                      \
  V(cpya, CPYA, 0xB24D)   /* type = RRE   COPY ACCESS  */                      \
  V(sar, SAR, 0xB24E)     /* type = RRE   SET ACCESS  */                       \
  V(ear, EAR, 0xB24F)     /* type = RRE   EXTRACT ACCESS  */                   \
  V(csp, CSP, 0xB250)     /* type = RRE   COMPARE AND SWAP AND PURGE (32)  */  \
  V(msr, MSR, 0xB252)     /* type = RRE   MULTIPLY SINGLE (32)  */             \
  V(mvpg, MVPG, 0xB254)   /* type = RRE   MOVE PAGE  */                        \
  V(mvst, MVST, 0xB255)   /* type = RRE   MOVE STRING  */                      \
  V(cuse, CUSE, 0xB257)   /* type = RRE   COMPARE UNTIL SUBSTRING EQUAL  */    \
  V(bsg, BSG, 0xB258)     /* type = RRE   BRANCH IN SUBSPACE GROUP  */         \
  V(bsa, BSA, 0xB25A)     /* type = RRE   BRANCH AND SET AUTHORITY  */         \
  V(clst, CLST, 0xB25D)   /* type = RRE   COMPARE LOGICAL STRING  */           \
  V(srst, SRST, 0xB25E)   /* type = RRE   SEARCH STRING  */                    \
  V(cmpsc, CMPSC, 0xB263) /* type = RRE   COMPRESSION CALL  */                 \
  V(tre, TRE, 0xB2A5)     /* type = RRE   TRANSLATE EXTENDED  */               \
  V(etnd, ETND, 0xB2EC) /* type = RRE   EXTRACT TRANSACTION NESTING DEPTH  */  \
  V(lpebr, LPEBR, 0xB300) /* type = RRE   LOAD POSITIVE (short BFP)  */        \
  V(lnebr, LNEBR, 0xB301) /* type = RRE   LOAD NEGATIVE (short BFP)  */        \
  V(ltebr, LTEBR, 0xB302) /* type = RRE   LOAD AND TEST (short BFP)  */        \
  V(lcebr, LCEBR, 0xB303) /* type = RRE   LOAD COMPLEMENT (short BFP)  */      \
  V(ldebr, LDEBR,                                                              \
    0xB304) /* type = RRE   LOAD LENGTHENED (short to long BFP)  */            \
  V(lxdbr, LXDBR,                                                              \
    0xB305) /* type = RRE   LOAD LENGTHENED (long to extended BFP)  */         \
  V(lxebr, LXEBR,                                                              \
    0xB306) /* type = RRE   LOAD LENGTHENED (short to extended BFP)  */        \
  V(mxdbr, MXDBR, 0xB307) /* type = RRE   MULTIPLY (long to extended BFP)  */  \
  V(kebr, KEBR, 0xB308)   /* type = RRE   COMPARE AND SIGNAL (short BFP)  */   \
  V(cebr, CEBR, 0xB309)   /* type = RRE   COMPARE (short BFP)  */              \
  V(aebr, AEBR, 0xB30A)   /* type = RRE   ADD (short BFP)  */                  \
  V(sebr, SEBR, 0xB30B)   /* type = RRE   SUBTRACT (short BFP)  */             \
  V(mdebr, MDEBR, 0xB30C) /* type = RRE   MULTIPLY (short to long BFP)  */     \
  V(debr, DEBR, 0xB30D)   /* type = RRE   DIVIDE (short BFP)  */               \
  V(lpdbr, LPDBR, 0xB310) /* type = RRE   LOAD POSITIVE (long BFP)  */         \
  V(lndbr, LNDBR, 0xB311) /* type = RRE   LOAD NEGATIVE (long BFP)  */         \
  V(ltdbr, LTDBR, 0xB312) /* type = RRE   LOAD AND TEST (long BFP)  */         \
  V(lcdbr, LCDBR, 0xB313) /* type = RRE   LOAD COMPLEMENT (long BFP)  */       \
  V(sqebr, SQEBR, 0xB314) /* type = RRE   SQUARE ROOT (short BFP)  */          \
  V(sqdbr, SQDBR, 0xB315) /* type = RRE   SQUARE ROOT (long BFP)  */           \
  V(sqxbr, SQXBR, 0xB316) /* type = RRE   SQUARE ROOT (extended BFP)  */       \
  V(meebr, MEEBR, 0xB317) /* type = RRE   MULTIPLY (short BFP)  */             \
  V(kdbr, KDBR, 0xB318)   /* type = RRE   COMPARE AND SIGNAL (long BFP)  */    \
  V(cdbr, CDBR, 0xB319)   /* type = RRE   COMPARE (long BFP)  */               \
  V(adbr, ADBR, 0xB31A)   /* type = RRE   ADD (long BFP)  */                   \
  V(sdbr, SDBR, 0xB31B)   /* type = RRE   SUBTRACT (long BFP)  */              \
  V(mdbr, MDBR, 0xB31C)   /* type = RRE   MULTIPLY (long BFP)  */              \
  V(ddbr, DDBR, 0xB31D)   /* type = RRE   DIVIDE (long BFP)  */                \
  V(lder, LDER, 0xB324) /* type = RRE   LOAD LENGTHENED (short to long HFP) */ \
  V(lxdr, LXDR,                                                                \
    0xB325) /* type = RRE   LOAD LENGTHENED (long to extended HFP)  */         \
  V(lxer, LXER,                                                                \
    0xB326) /* type = RRE   LOAD LENGTHENED (short to extended HFP)  */        \
  V(sqxr, SQXR, 0xB336)   /* type = RRE   SQUARE ROOT (extended HFP)  */       \
  V(meer, MEER, 0xB337)   /* type = RRE   MULTIPLY (short HFP)  */             \
  V(lpxbr, LPXBR, 0xB340) /* type = RRE   LOAD POSITIVE (extended BFP)  */     \
  V(lnxbr, LNXBR, 0xB341) /* type = RRE   LOAD NEGATIVE (extended BFP)  */     \
  V(ltxbr, LTXBR, 0xB342) /* type = RRE   LOAD AND TEST (extended BFP)  */     \
  V(lcxbr, LCXBR, 0xB343) /* type = RRE   LOAD COMPLEMENT (extended BFP)  */   \
  V(kxbr, KXBR, 0xB348) /* type = RRE   COMPARE AND SIGNAL (extended BFP)  */  \
  V(cxbr, CXBR, 0xB349) /* type = RRE   COMPARE (extended BFP)  */             \
  V(axbr, AXBR, 0xB34A) /* type = RRE   ADD (extended BFP)  */                 \
  V(sxbr, SXBR, 0xB34B) /* type = RRE   SUBTRACT (extended BFP)  */            \
  V(mxbr, MXBR, 0xB34C) /* type = RRE   MULTIPLY (extended BFP)  */            \
  V(dxbr, DXBR, 0xB34D) /* type = RRE   DIVIDE (extended BFP)  */              \
  V(thder, THDER,                                                              \
    0xB358)             /* type = RRE   CONVERT BFP TO HFP (short to long)  */ \
  V(thdr, THDR, 0xB359) /* type = RRE   CONVERT BFP TO HFP (long)  */          \
  V(lpxr, LPXR, 0xB360) /* type = RRE   LOAD POSITIVE (extended HFP)  */       \
  V(lnxr, LNXR, 0xB361) /* type = RRE   LOAD NEGATIVE (extended HFP)  */       \
  V(ltxr, LTXR, 0xB362) /* type = RRE   LOAD AND TEST (extended HFP)  */       \
  V(lcxr, LCXR, 0xB363) /* type = RRE   LOAD COMPLEMENT (extended HFP)  */     \
  V(lxr, LXR, 0xB365)   /* type = RRE   LOAD (extended)  */                    \
  V(lexr, LEXR,                                                                \
    0xB366) /* type = RRE   LOAD ROUNDED (extended to short HFP)  */           \
  V(fixr, FIXR, 0xB367)   /* type = RRE   LOAD FP INTEGER (extended HFP)  */   \
  V(cxr, CXR, 0xB369)     /* type = RRE   COMPARE (extended HFP)  */           \
  V(lpdfr, LPDFR, 0xB370) /* type = RRE   LOAD POSITIVE (long)  */             \
  V(lndfr, LNDFR, 0xB371) /* type = RRE   LOAD NEGATIVE (long)  */             \
  V(lcdfr, LCDFR, 0xB373) /* type = RRE   LOAD COMPLEMENT (long)  */           \
  V(lzer, LZER, 0xB374)   /* type = RRE   LOAD ZERO (short)  */                \
  V(lzdr, LZDR, 0xB375)   /* type = RRE   LOAD ZERO (long)  */                 \
  V(lzxr, LZXR, 0xB376)   /* type = RRE   LOAD ZERO (extended)  */             \
  V(fier, FIER, 0xB377)   /* type = RRE   LOAD FP INTEGER (short HFP)  */      \
  V(fidr, FIDR, 0xB37F)   /* type = RRE   LOAD FP INTEGER (long HFP)  */       \
  V(sfpc, SFPC, 0xB384)   /* type = RRE   SET FPC  */                          \
  V(sfasr, SFASR, 0xB385) /* type = RRE   SET FPC AND SIGNAL  */               \
  V(efpc, EFPC, 0xB38C)   /* type = RRE   EXTRACT FPC  */                      \
  V(cefr, CEFR,                                                                \
    0xB3B4) /* type = RRE   CONVERT FROM FIXED (32 to short HFP)  */           \
  V(cdfr, CDFR, 0xB3B5) /* type = RRE   CONVERT FROM FIXED (32 to long HFP) */ \
  V(cxfr, CXFR,                                                                \
    0xB3B6) /* type = RRE   CONVERT FROM FIXED (32 to extended HFP)  */        \
  V(ldgr, LDGR, 0xB3C1) /* type = RRE   LOAD FPR FROM GR (64 to long)  */      \
  V(cegr, CEGR,                                                                \
    0xB3C4) /* type = RRE   CONVERT FROM FIXED (64 to short HFP)  */           \
  V(cdgr, CDGR, 0xB3C5) /* type = RRE   CONVERT FROM FIXED (64 to long HFP) */ \
  V(cxgr, CXGR,                                                                \
    0xB3C6) /* type = RRE   CONVERT FROM FIXED (64 to extended HFP)  */        \
  V(lgdr, LGDR, 0xB3CD)   /* type = RRE   LOAD GR FROM FPR (long to 64)  */    \
  V(ltdtr, LTDTR, 0xB3D6) /* type = RRE   LOAD AND TEST (long DFP)  */         \
  V(ltxtr, LTXTR, 0xB3DE) /* type = RRE   LOAD AND TEST (extended DFP)  */     \
  V(kdtr, KDTR, 0xB3E0)   /* type = RRE   COMPARE AND SIGNAL (long DFP)  */    \
  V(cudtr, CUDTR, 0xB3E2) /* type = RRE   CONVERT TO UNSIGNED PACKED (long */  \
                          /* DFP to 64) CUDTR  */                              \
  V(cdtr, CDTR, 0xB3E4)   /* type = RRE   COMPARE (long DFP)  */               \
  V(eedtr, EEDTR,                                                              \
    0xB3E5) /* type = RRE   EXTRACT BIASED EXPONENT (long DFP to 64)  */       \
  V(esdtr, ESDTR,                                                              \
    0xB3E7) /* type = RRE   EXTRACT SIGNIFICANCE (long DFP to 64)  */          \
  V(kxtr, KXTR, 0xB3E8) /* type = RRE   COMPARE AND SIGNAL (extended DFP)  */  \
  V(cuxtr, CUXTR,                                                              \
    0xB3EA) /* type = RRE   CONVERT TO UNSIGNED PACKED (extended DFP       */  \
            /* CUXTR to 128)  */                                               \
  V(cxtr, CXTR, 0xB3EC) /* type = RRE   COMPARE (extended DFP)  */             \
  V(eextr, EEXTR,                                                              \
    0xB3ED) /* type = RRE   EXTRACT BIASED EXPONENT (extended DFP to 64)  */   \
  V(esxtr, ESXTR,                                                              \
    0xB3EF) /* type = RRE   EXTRACT SIGNIFICANCE (extended DFP to 64)  */      \
  V(cdutr, CDUTR,                                                              \
    0xB3F2) /* type = RRE   CONVERT FROM UNSIGNED PACKED (64 to long DFP)  */  \
  V(cdstr, CDSTR,                                                              \
    0xB3F3) /* type = RRE   CONVERT FROM SIGNED PACKED (64 to long DFP)  */    \
  V(cedtr, CEDTR,                                                              \
    0xB3F4) /* type = RRE   COMPARE BIASED EXPONENT (long DFP)  */             \
  V(cxutr, CXUTR,                                                              \
    0xB3FA) /* type = RRE   CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)  */ \
  V(cxstr, CXSTR, 0xB3FB) /* type = RRE   CONVERT FROM SIGNED PACKED (128 to*/ \
                          /* extended DFP)  */                                 \
  V(cextr, CEXTR,                                                              \
    0xB3FC) /* type = RRE   COMPARE BIASED EXPONENT (extended DFP)  */         \
  V(lpgr, LPGR, 0xB900)   /* type = RRE   LOAD POSITIVE (64)  */               \
  V(lngr, LNGR, 0xB901)   /* type = RRE   LOAD NEGATIVE (64)  */               \
  V(ltgr, LTGR, 0xB902)   /* type = RRE   LOAD AND TEST (64)  */               \
  V(lcgr, LCGR, 0xB903)   /* type = RRE   LOAD COMPLEMENT (64)  */             \
  V(lgr, LGR, 0xB904)     /* type = RRE   LOAD (64)  */                        \
  V(lurag, LURAG, 0xB905) /* type = RRE   LOAD USING REAL ADDRESS (64)  */     \
  V(lgbr, LGBR, 0xB906)   /* type = RRE   LOAD BYTE (64<-8)  */                \
  V(lghr, LGHR, 0xB907)   /* type = RRE   LOAD HALFWORD (64<-16)  */           \
  V(agr, AGR, 0xB908)     /* type = RRE   ADD (64)  */                         \
  V(sgr, SGR, 0xB909)     /* type = RRE   SUBTRACT (64)  */                    \
  V(algr, ALGR, 0xB90A)   /* type = RRE   ADD LOGICAL (64)  */                 \
  V(slgr, SLGR, 0xB90B)   /* type = RRE   SUBTRACT LOGICAL (64)  */            \
  V(msgr, MSGR, 0xB90C)   /* type = RRE   MULTIPLY SINGLE (64)  */             \
  V(dsgr, DSGR, 0xB90D)   /* type = RRE   DIVIDE SINGLE (64)  */               \
  V(eregg, EREGG, 0xB90E) /* type = RRE   EXTRACT STACKED REGISTERS (64)  */   \
  V(lrvgr, LRVGR, 0xB90F) /* type = RRE   LOAD REVERSED (64)  */               \
  V(lpgfr, LPGFR, 0xB910) /* type = RRE   LOAD POSITIVE (64<-32)  */           \
  V(lngfr, LNGFR, 0xB911) /* type = RRE   LOAD NEGATIVE (64<-32)  */           \
  V(ltgfr, LTGFR, 0xB912) /* type = RRE   LOAD AND TEST (64<-32)  */           \
  V(lcgfr, LCGFR, 0xB913) /* type = RRE   LOAD COMPLEMENT (64<-32)  */         \
  V(lgfr, LGFR, 0xB914)   /* type = RRE   LOAD (64<-32)  */                    \
  V(llgfr, LLGFR, 0xB916) /* type = RRE   LOAD LOGICAL (64<-32)  */            \
  V(llgtr, LLGTR,                                                              \
    0xB917) /* type = RRE   LOAD LOGICAL THIRTY ONE BITS (64<-31)  */          \
  V(agfr, AGFR, 0xB918)   /* type = RRE   ADD (64<-32)  */                     \
  V(sgfr, SGFR, 0xB919)   /* type = RRE   SUBTRACT (64<-32)  */                \
  V(algfr, ALGFR, 0xB91A) /* type = RRE   ADD LOGICAL (64<-32)  */             \
  V(slgfr, SLGFR, 0xB91B) /* type = RRE   SUBTRACT LOGICAL (64<-32)  */        \
  V(msgfr, MSGFR, 0xB91C) /* type = RRE   MULTIPLY SINGLE (64<-32)  */         \
  V(dsgfr, DSGFR, 0xB91D) /* type = RRE   DIVIDE SINGLE (64<-32)  */           \
  V(kmac, KMAC, 0xB91E) /* type = RRE   COMPUTE MESSAGE AUTHENTICATION CODE */ \
  V(lrvr, LRVR, 0xB91F) /* type = RRE   LOAD REVERSED (32)  */                 \
  V(cgr, CGR, 0xB920)   /* type = RRE   COMPARE (64)  */                       \
  V(clgr, CLGR, 0xB921) /* type = RRE   COMPARE LOGICAL (64)  */               \
  V(sturg, STURG, 0xB925) /* type = RRE   STORE USING REAL ADDRESS (64)  */    \
  V(lbr, LBR, 0xB926)     /* type = RRE   LOAD BYTE (32<-8)  */                \
  V(lhr, LHR, 0xB927)     /* type = RRE   LOAD HALFWORD (32<-16)  */           \
  V(pckmo, PCKMO,                                                              \
    0xB928) /* type = RRE   PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS  */     \
  V(kmf, KMF, 0xB92A) /* type = RRE   CIPHER MESSAGE WITH CIPHER FEEDBACK  */  \
  V(kmo, KMO, 0xB92B) /* type = RRE   CIPHER MESSAGE WITH OUTPUT FEEDBACK  */  \
  V(pcc, PCC, 0xB92C) /* type = RRE   PERFORM CRYPTOGRAPHIC COMPUTATION  */    \
  V(km, KM, 0xB92E)   /* type = RRE   CIPHER MESSAGE  */                       \
  V(kmc, KMC, 0xB92F) /* type = RRE   CIPHER MESSAGE WITH CHAINING  */         \
  V(cgfr, CGFR, 0xB930)   /* type = RRE   COMPARE (64<-32)  */                 \
  V(clgfr, CLGFR, 0xB931) /* type = RRE   COMPARE LOGICAL (64<-32)  */         \
  V(ppno, PPNO,                                                                \
    0xB93C) /* type = RRE   PERFORM PSEUDORANDOM NUMBER OPERATION  */          \
  V(kimd, KIMD, 0xB93E) /* type = RRE   COMPUTE INTERMEDIATE MESSAGE DIGEST */ \
  V(klmd, KLMD, 0xB93F) /* type = RRE   COMPUTE LAST MESSAGE DIGEST  */        \
  V(bctgr, BCTGR, 0xB946) /* type = RRE   BRANCH ON COUNT (64)  */             \
  V(cdftr, CDFTR,                                                              \
    0xB951) /* type = RRE   CONVERT FROM FIXED (32 to long DFP)  */            \
  V(cxftr, CXFTR,                                                              \
    0xB959) /* type = RRE   CONVERT FROM FIXED (32 to extended DFP)  */        \
  V(ngr, NGR, 0xB980)     /* type = RRE   AND (64)  */                         \
  V(ogr, OGR, 0xB981)     /* type = RRE   OR (64)  */                          \
  V(xgr, XGR, 0xB982)     /* type = RRE   EXCLUSIVE OR (64)  */                \
  V(flogr, FLOGR, 0xB983) /* type = RRE   FIND LEFTMOST ONE  */                \
  V(llgcr, LLGCR, 0xB984) /* type = RRE   LOAD LOGICAL CHARACTER (64<-8)  */   \
  V(llghr, LLGHR, 0xB985) /* type = RRE   LOAD LOGICAL HALFWORD (64<-16)  */   \
  V(mlgr, MLGR, 0xB986)   /* type = RRE   MULTIPLY LOGICAL (128<-64)  */       \
  V(dlgr, DLGR, 0xB987)   /* type = RRE   DIVIDE LOGICAL (64<-128)  */         \
  V(alcgr, ALCGR, 0xB988) /* type = RRE   ADD LOGICAL WITH CARRY (64)  */      \
  V(slbgr, SLBGR, 0xB989) /* type = RRE   SUBTRACT LOGICAL WITH BORROW (64) */ \
  V(cspg, CSPG, 0xB98A)   /* type = RRE   COMPARE AND SWAP AND PURGE (64)  */  \
  V(epsw, EPSW, 0xB98D)   /* type = RRE   EXTRACT PSW  */                      \
  V(llcr, LLCR, 0xB994)   /* type = RRE   LOAD LOGICAL CHARACTER (32<-8)  */   \
  V(llhr, LLHR, 0xB995)   /* type = RRE   LOAD LOGICAL HALFWORD (32<-16)  */   \
  V(mlr, MLR, 0xB996)     /* type = RRE   MULTIPLY LOGICAL (64<-32)  */        \
  V(dlr, DLR, 0xB997)     /* type = RRE   DIVIDE LOGICAL (32<-64)  */          \
  V(alcr, ALCR, 0xB998)   /* type = RRE   ADD LOGICAL WITH CARRY (32)  */      \
  V(slbr, SLBR, 0xB999) /* type = RRE   SUBTRACT LOGICAL WITH BORROW (32)  */  \
  V(epair, EPAIR, 0xB99A) /* type = RRE   EXTRACT PRIMARY ASN AND INSTANCE  */ \
  V(esair, ESAIR,                                                              \
    0xB99B)             /* type = RRE   EXTRACT SECONDARY ASN AND INSTANCE  */ \
  V(esea, ESEA, 0xB99D) /* type = RRE   EXTRACT AND SET EXTENDED AUTHORITY  */ \
  V(pti, PTI, 0xB99E)   /* type = RRE   PROGRAM TRANSFER WITH INSTANCE  */     \
  V(ssair, SSAIR, 0xB99F) /* type = RRE   SET SECONDARY ASN WITH INSTANCE  */  \
  V(ptf, PTF, 0xB9A2)     /* type = RRE   PERFORM TOPOLOGY FUNCTION  */        \
  V(rrbm, RRBM, 0xB9AE)   /* type = RRE   RESET REFERENCE BITS MULTIPLE  */    \
  V(pfmf, PFMF, 0xB9AF) /* type = RRE   PERFORM FRAME MANAGEMENT FUNCTION  */  \
  V(cu41, CU41, 0xB9B2) /* type = RRE   CONVERT UTF-32 TO UTF-8  */            \
  V(cu42, CU42, 0xB9B3) /* type = RRE   CONVERT UTF-32 TO UTF-16  */           \
  V(srstu, SRSTU, 0xB9BE)     /* type = RRE   SEARCH STRING UNICODE  */        \
  V(chhr, CHHR, 0xB9CD)       /* type = RRE   COMPARE HIGH (32)  */            \
  V(clhhr, CLHHR, 0xB9CF)     /* type = RRE   COMPARE LOGICAL HIGH (32)  */    \
  V(chlr, CHLR, 0xB9DD)       /* type = RRE   COMPARE HIGH (32)  */            \
  V(clhlr, CLHLR, 0xB9DF)     /* type = RRE   COMPARE LOGICAL HIGH (32)  */    \
  V(popcnt, POPCNT_Z, 0xB9E1) /* type = RRE   POPULATION COUNT  */

#define S390_RIE_C_OPCODE_LIST(V)                                             \
  V(cgij, CGIJ,                                                               \
    0xEC7C) /* type = RIE_C COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)  */ \
  V(clgij, CLGIJ,                                                             \
    0xEC7D) /* type = RIE_C COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE  */ \
            /* (64<-8)  */                                                    \
  V(cij, CIJ,                                                                 \
    0xEC7E) /* type = RIE_C COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)  */ \
  V(clij, CLIJ, 0xEC7F) /* type = RIE_C COMPARE LOGICAL IMMEDIATE AND      */ \
                        /* BRANCH RELATIVE (32<-8)  */

#define S390_RIE_D_OPCODE_LIST(V)                                          \
  V(ahik, AHIK, 0xECD8)   /* type = RIE_D ADD IMMEDIATE (32<-16)  */       \
  V(aghik, AGHIK, 0xECD9) /* type = RIE_D ADD IMMEDIATE (64<-16)  */       \
  V(alhsik, ALHSIK,                                                        \
    0xECDA) /* type = RIE_D ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)  */ \
  V(alghsik, ALGHSIK,                                                      \
    0xECDB) /* type = RIE_D ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)  */

#define S390_VRV_OPCODE_LIST(V)                                           \
  V(vgeg, VGEG, 0xE712)   /* type = VRV   VECTOR GATHER ELEMENT (64)  */  \
  V(vgef, VGEF, 0xE713)   /* type = VRV   VECTOR GATHER ELEMENT (32)  */  \
  V(vsceg, VSCEG, 0xE71A) /* type = VRV   VECTOR SCATTER ELEMENT (64)  */ \
  V(vscef, VSCEF, 0xE71B) /* type = VRV   VECTOR SCATTER ELEMENT (32)  */

#define S390_RIE_E_OPCODE_LIST(V)                                  \
  V(brxhg, BRXHG,                                                  \
    0xEC44) /* type = RIE_E BRANCH RELATIVE ON INDEX HIGH (64)  */ \
  V(brxlg, BRXLG,                                                  \
    0xEC45) /* type = RIE_E BRANCH RELATIVE ON INDEX LOW OR EQ. (64)  */

#define S390_RR_OPCODE_LIST(V)                                                 \
  V(awr, AWR, 0x2E)     /* type = RR    ADD UNNORMALIZED (long HFP)  */        \
  V(spm, SPM, 0x04)     /* type = RR    SET PROGRAM MASK  */                   \
  V(balr, BALR, 0x05)   /* type = RR    BRANCH AND LINK  */                    \
  V(bctr, BCTR, 0x06)   /* type = RR    BRANCH ON COUNT (32)  */               \
  V(bcr, BCR, 0x07)     /* type = RR    BRANCH ON CONDITION  */                \
  V(bsm, BSM, 0x0B)     /* type = RR    BRANCH AND SET MODE  */                \
  V(bassm, BASSM, 0x0C) /* type = RR    BRANCH AND SAVE AND SET MODE  */       \
  V(basr, BASR, 0x0D)   /* type = RR    BRANCH AND SAVE  */                    \
  V(mvcl, MVCL, 0x0E)   /* type = RR    MOVE LONG  */                          \
  V(clcl, CLCL, 0x0F)   /* type = RR    COMPARE LOGICAL LONG  */               \
  V(lpr, LPR, 0x10)     /* type = RR    LOAD POSITIVE (32)  */                 \
  V(lnr, LNR, 0x11)     /* type = RR    LOAD NEGATIVE (32)  */                 \
  V(ltr, LTR, 0x12)     /* type = RR    LOAD AND TEST (32)  */                 \
  V(lcr, LCR, 0x13)     /* type = RR    LOAD COMPLEMENT (32)  */               \
  V(nr, NR, 0x14)       /* type = RR    AND (32)  */                           \
  V(clr, CLR, 0x15)     /* type = RR    COMPARE LOGICAL (32)  */               \
  V(or_z, OR, 0x16)     /* type = RR    OR (32)  */                            \
  V(xr, XR, 0x17)       /* type = RR    EXCLUSIVE OR (32)  */                  \
  V(lr, LR, 0x18)       /* type = RR    LOAD (32)  */                          \
  V(cr_z, CR, 0x19)     /* type = RR    COMPARE (32)  */                       \
  V(ar, AR, 0x1A)       /* type = RR    ADD (32)  */                           \
  V(sr, SR, 0x1B)       /* type = RR    SUBTRACT (32)  */                      \
  V(mr_z, MR, 0x1C)     /* type = RR    MULTIPLY (64<-32)  */                  \
  V(dr, DR, 0x1D)       /* type = RR    DIVIDE (32<-64)  */                    \
  V(alr, ALR, 0x1E)     /* type = RR    ADD LOGICAL (32)  */                   \
  V(slr, SLR, 0x1F)     /* type = RR    SUBTRACT LOGICAL (32)  */              \
  V(lpdr, LPDR, 0x20)   /* type = RR    LOAD POSITIVE (long HFP)  */           \
  V(lndr, LNDR, 0x21)   /* type = RR    LOAD NEGATIVE (long HFP)  */           \
  V(ltdr, LTDR, 0x22)   /* type = RR    LOAD AND TEST (long HFP)  */           \
  V(lcdr, LCDR, 0x23)   /* type = RR    LOAD COMPLEMENT (long HFP)  */         \
  V(hdr, HDR, 0x24)     /* type = RR    HALVE (long HFP)  */                   \
  V(ldxr, LDXR, 0x25) /* type = RR    LOAD ROUNDED (extended to long HFP)  */  \
  V(mxr, MXR, 0x26)   /* type = RR    MULTIPLY (extended HFP)  */              \
  V(mxdr, MXDR, 0x27) /* type = RR    MULTIPLY (long to extended HFP)  */      \
  V(ldr, LDR, 0x28)   /* type = RR    LOAD (long)  */                          \
  V(cdr, CDR, 0x29)   /* type = RR    COMPARE (long HFP)  */                   \
  V(adr, ADR, 0x2A)   /* type = RR    ADD NORMALIZED (long HFP)  */            \
  V(sdr, SDR, 0x2B)   /* type = RR    SUBTRACT NORMALIZED (long HFP)  */       \
  V(mdr, MDR, 0x2C)   /* type = RR    MULTIPLY (long HFP)  */                  \
  V(ddr, DDR, 0x2D)   /* type = RR    DIVIDE (long HFP)  */                    \
  V(swr, SWR, 0x2F)   /* type = RR    SUBTRACT UNNORMALIZED (long HFP)  */     \
  V(lper, LPER, 0x30) /* type = RR    LOAD POSITIVE (short HFP)  */            \
  V(lner, LNER, 0x31) /* type = RR    LOAD NEGATIVE (short HFP)  */            \
  V(lter, LTER, 0x32) /* type = RR    LOAD AND TEST (short HFP)  */            \
  V(lcer, LCER, 0x33) /* type = RR    LOAD COMPLEMENT (short HFP)  */          \
  V(her_z, HER_Z, 0x34) /* type = RR    HALVE (short HFP)  */                  \
  V(ledr, LEDR, 0x35)   /* type = RR    LOAD ROUNDED (long to short HFP)  */   \
  V(axr, AXR, 0x36)     /* type = RR    ADD NORMALIZED (extended HFP)  */      \
  V(sxr, SXR, 0x37)     /* type = RR    SUBTRACT NORMALIZED (extended HFP)  */ \
  V(ler, LER, 0x38)     /* type = RR    LOAD (short)  */                       \
  V(cer, CER, 0x39)     /* type = RR    COMPARE (short HFP)  */                \
  V(aer, AER, 0x3A)     /* type = RR    ADD NORMALIZED (short HFP)  */         \
  V(ser, SER, 0x3B)     /* type = RR    SUBTRACT NORMALIZED (short HFP)  */    \
  V(mder, MDER, 0x3C)   /* type = RR    MULTIPLY (short to long HFP)  */       \
  V(der, DER, 0x3D)     /* type = RR    DIVIDE (short HFP)  */                 \
  V(aur, AUR, 0x3E)     /* type = RR    ADD UNNORMALIZED (short HFP)  */       \
  V(sur, SUR, 0x3F)     /* type = RR    SUBTRACT UNNORMALIZED (short HFP)  */

#define S390_RIE_F_OPCODE_LIST(V)                                              \
  V(risblg, RISBLG,                                                            \
    0xEC51) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS LOW (64)  */      \
  V(rnsbg, RNSBG,                                                              \
    0xEC54) /* type = RIE_F ROTATE THEN AND SELECTED BITS (64)  */             \
  V(risbg, RISBG,                                                              \
    0xEC55) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS (64)  */          \
  V(rosbg, ROSBG, 0xEC56) /* type = RIE_F ROTATE THEN OR SELECTED BITS (64) */ \
  V(rxsbg, RXSBG,                                                              \
    0xEC57) /* type = RIE_F ROTATE THEN EXCLUSIVE OR SELECT. BITS (64)  */     \
  V(risbgn, RISBGN,                                                            \
    0xEC59) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS (64)  */          \
  V(risbhg, RISBHG,                                                            \
    0xEC5D) /* type = RIE_F ROTATE THEN INSERT SELECTED BITS HIGH (64)  */

#define S390_VRX_OPCODE_LIST(V)                                               \
  V(vleb, VLEB, 0xE700) /* type = VRX   VECTOR LOAD ELEMENT (8)  */           \
  V(vleh, VLEH, 0xE701) /* type = VRX   VECTOR LOAD ELEMENT (16)  */          \
  V(vleg, VLEG, 0xE702) /* type = VRX   VECTOR LOAD ELEMENT (64)  */          \
  V(vlef, VLEF, 0xE703) /* type = VRX   VECTOR LOAD ELEMENT (32)  */          \
  V(vllez, VLLEZ,                                                             \
    0xE704) /* type = VRX   VECTOR LOAD LOGICAL ELEMENT AND ZERO  */          \
  V(vlrep, VLREP, 0xE705) /* type = VRX   VECTOR LOAD AND REPLICATE  */       \
  V(vl, VL, 0xE706)       /* type = VRX   VECTOR LOAD  */                     \
  V(vlbb, VLBB, 0xE707)   /* type = VRX   VECTOR LOAD TO BLOCK BOUNDARY  */   \
  V(vlbr, VLBR, 0xE606) /* type = VRX   VECTOR LOAD BYTE REVERSED ELEMENTS */ \
  V(vlbrrep, VLBRREP,                                                         \
    0xE605) /* type = VRX VECTOR LOAD BYTE REVERSED ELEMENT AND REPLICATE */  \
  V(vlebrh, VLEBRH,                                                           \
    0xE601) /* type = VRX VECTOR LOAD BYTE REVERSED ELEMENT (16) */           \
  V(vlebrf, VLEBRF,                                                           \
    0xE603) /* type = VRX VECTOR LOAD BYTE REVERSED ELEMENT (32) */           \
  V(vlebrg, VLEBRG,                                                           \
    0xE602) /* type = VRX VECTOR LOAD BYTE REVERSED ELEMENT (64) */           \
  V(vsteb, VSTEB, 0xE708) /* type = VRX   VECTOR STORE ELEMENT (8)  */        \
  V(vsteh, VSTEH, 0xE709) /* type = VRX   VECTOR STORE ELEMENT (16)  */       \
  V(vsteg, VSTEG, 0xE70A) /* type = VRX   VECTOR STORE ELEMENT (64)  */       \
  V(vstef, VSTEF, 0xE70B) /* type = VRX   VECTOR STORE ELEMENT (32)  */       \
  V(vst, VST, 0xE70E)     /* type = VRX   VECTOR STORE  */                    \
  V(vstbr, VSTBR,                                                             \
    0xE60E) /* type = VRX   VECTOR STORE BYTE REVERSED ELEMENTS */            \
  V(vstebrh, VSTEBRH,                                                         \
    0xE609) /* type = VRX VECTOR STORE BYTE REVERSED ELEMENT (16) */          \
  V(vstebrf, VSTEBRF,                                                         \
    0xE60B) /* type = VRX VECTOR STORE BYTE REVERSED ELEMENT (32) */          \
  V(vstebrg, VSTEBRG,                                                         \
    0xE60A) /* type = VRX VECTOR STORE BYTE REVERSED ELEMENT (64) */

#define S390_RIE_G_OPCODE_LIST(V)                                             \
  V(lochi, LOCHI,                                                             \
    0xEC42) /* type = RIE_G LOAD HALFWORD IMMEDIATE ON CONDITION (32<-16)  */ \
  V(locghi, LOCGHI,                                                           \
    0xEC46) /* type = RIE_G LOAD HALFWORD IMMEDIATE ON CONDITION (64<-16)  */ \
  V(lochhi, LOCHHI, 0xEC4E) /* type = RIE_G LOAD HALFWORD HIGH IMMEDIATE   */ \
                            /* ON CONDITION (32<-16)  */

#define S390_RRS_OPCODE_LIST(V)                                               \
  V(cgrb, CGRB, 0xECE4)   /* type = RRS   COMPARE AND BRANCH (64)  */         \
  V(clgrb, CLGRB, 0xECE5) /* type = RRS   COMPARE LOGICAL AND BRANCH (64)  */ \
  V(crb, CRB, 0xECF6)     /* type = RRS   COMPARE AND BRANCH (32)  */         \
  V(clrb, CLRB, 0xECF7)   /* type = RRS   COMPARE LOGICAL AND BRANCH (32)  */

#define S390_OPCODE_LIST(V) \
  S390_RSY_A_OPCODE_LIST(V) \
  S390_RSY_B_OPCODE_LIST(V) \
  S390_RXE_OPCODE_LIST(V)   \
  S390_RRF_A_OPCODE_LIST(V) \
  S390_RXF_OPCODE_LIST(V)   \
  S390_IE_OPCODE_LIST(V)    \
  S390_RRF_B_OPCODE_LIST(V) \
  S390_RRF_C_OPCODE_LIST(V) \
  S390_MII_OPCODE_LIST(V)   \
  S390_RRF_D_OPCODE_LIST(V) \
  S390_RRF_E_OPCODE_LIST(V) \
  S390_VRR_A_OPCODE_LIST(V) \
  S390_VRR_B_OPCODE_LIST(V) \
  S390_VRR_C_OPCODE_LIST(V) \
  S390_VRI_A_OPCODE_LIST(V) \
  S390_VRR_D_OPCODE_LIST(V) \
  S390_VRI_B_OPCODE_LIST(V) \
  S390_VRR_E_OPCODE_LIST(V) \
  S390_VRI_C_OPCODE_LIST(V) \
  S390_VRI_D_OPCODE_LIST(V) \
  S390_VRR_F_OPCODE_LIST(V) \
  S390_RIS_OPCODE_LIST(V)   \
  S390_VRI_E_OPCODE_LIST(V) \
  S390_RSL_A_OPCODE_LIST(V) \
  S390_RSL_B_OPCODE_LIST(V) \
  S390_SI_OPCODE_LIST(V)    \
  S390_SIL_OPCODE_LIST(V)   \
  S390_VRS_A_OPCODE_LIST(V) \
  S390_RIL_A_OPCODE_LIST(V) \
  S390_RIL_B_OPCODE_LIST(V) \
  S390_VRS_B_OPCODE_LIST(V) \
  S390_RIL_C_OPCODE_LIST(V) \
  S390_VRS_C_OPCODE_LIST(V) \
  S390_RI_A_OPCODE_LIST(V)  \
  S390_RSI_OPCODE_LIST(V)   \
  S390_RI_B_OPCODE_LIST(V)  \
  S390_RI_C_OPCODE_LIST(V)  \
  S390_SMI_OPCODE_LIST(V)   \
  S390_RXY_A_OPCODE_LIST(V) \
  S390_RXY_B_OPCODE_LIST(V) \
  S390_SIY_OPCODE_LIST(V)   \
  S390_SS_A_OPCODE_LIST(V)  \
  S390_E_OPCODE_LIST(V)     \
  S390_SS_B_OPCODE_LIST(V)  \
  S390_SS_C_OPCODE_LIST(V)  \
  S390_SS_D_OPCODE_LIST(V)  \
  S390_SS_E_OPCODE_LIST(V)  \
  S390_I_OPCODE_LIST(V)     \
  S390_SS_F_OPCODE_LIST(V)  \
  S390_SSE_OPCODE_LIST(V)   \
  S390_SSF_OPCODE_LIST(V)   \
  S390_RS_A_OPCODE_LIST(V)  \
  S390_RS_B_OPCODE_LIST(V)  \
  S390_S_OPCODE_LIST(V)     \
  S390_RX_A_OPCODE_LIST(V)  \
  S390_RX_B_OPCODE_LIST(V)  \
  S390_RIE_A_OPCODE_LIST(V) \
  S390_RRD_OPCODE_LIST(V)   \
  S390_RIE_B_OPCODE_LIST(V) \
  S390_RRE_OPCODE_LIST(V)   \
  S390_RIE_C_OPCODE_LIST(V) \
  S390_RIE_D_OPCODE_LIST(V) \
  S390_VRV_OPCODE_LIST(V)   \
  S390_RIE_E_OPCODE_LIST(V) \
  S390_RR_OPCODE_LIST(V)    \
  S390_RIE_F_OPCODE_LIST(V) \
  S390_VRX_OPCODE_LIST(V)   \
  S390_RIE_G_OPCODE_LIST(V) \
  S390_RRS_OPCODE_LIST(V)

// Opcodes as defined in Appendix B-2 table
enum Opcode {
#define DECLARE_OPCODES(name, opcode_name, opcode_value) \
  opcode_name = opcode_value,
  S390_OPCODE_LIST(DECLARE_OPCODES)
#undef DECLARE_OPCODES

      BKPT = 0x0001,  // GDB Software Breakpoint
  DUMY = 0xE352       // Special dummy opcode
};

// Instruction encoding bits and masks.
enum {
  // Instruction encoding bit
  B1 = 1 << 1,
  B4 = 1 << 4,
  B5 = 1 << 5,
  B7 = 1 << 7,
  B8 = 1 << 8,
  B9 = 1 << 9,
  B12 = 1 << 12,
  B18 = 1 << 18,
  B19 = 1 << 19,
  B20 = 1 << 20,
  B22 = 1 << 22,
  B23 = 1 << 23,
  B24 = 1 << 24,
  B25 = 1 << 25,
  B26 = 1 << 26,
  B27 = 1 << 27,
  B28 = 1 << 28,

  B6 = 1 << 6,
  B10 = 1 << 10,
  B11 = 1 << 11,
  B16 = 1 << 16,
  B17 = 1 << 17,
  B21 = 1 << 21,

  // Instruction bit masks
  kCondMask = 0x1F << 21,
  kOff12Mask = (1 << 12) - 1,
  kImm24Mask = (1 << 24) - 1,
  kOff16Mask = (1 << 16) - 1,
  kImm16Mask = (1 << 16) - 1,
  kImm26Mask = (1 << 26) - 1,
  kBOfieldMask = 0x1f << 21,
  kOpcodeMask = 0x3f << 26,
  kExt2OpcodeMask = 0x1f << 1,
  kExt5OpcodeMask = 0x3 << 2,
  kBIMask = 0x1F << 16,
  kBDMask = 0x14 << 2,
  kAAMask = 0x01 << 1,
  kLKMask = 0x01,
  kRCMask = 0x01,
  kTOMask = 0x1f << 21
};

// S390 instructions requires bigger shifts,
// make them macros instead of enum because of the typing issue
#define B32 ((uint64_t)1 << 32)
#define B36 ((uint64_t)1 << 36)
#define B40 ((uint64_t)1 << 40)
const FourByteInstr kFourByteBrCondMask = 0xF << 20;
const SixByteInstr kSixByteBrCondMask = static_cast<SixByteInstr>(0xF) << 36;

// -----------------------------------------------------------------------------
// Addressing modes and instruction variants.

// Overflow Exception
enum OEBit {
  SetOE = 1 << 10,   // Set overflow exception
  LeaveOE = 0 << 10  // No overflow exception
};

// Record bit
enum RCBit {   // Bit 0
  SetRC = 1,   // LT,GT,EQ,SO
  LeaveRC = 0  // None
};

// Link bit
enum LKBit {   // Bit 0
  SetLK = 1,   // Load effective address of next instruction
  LeaveLK = 0  // No action
};

enum BOfield {        // Bits 25-21
  DCBNZF = 0 << 21,   // Decrement CTR; branch if CTR != 0 and condition false
  DCBEZF = 2 << 21,   // Decrement CTR; branch if CTR == 0 and condition false
  BF = 4 << 21,       // Branch if condition false
  DCBNZT = 8 << 21,   // Decrement CTR; branch if CTR != 0 and condition true
  DCBEZT = 10 << 21,  // Decrement CTR; branch if CTR == 0 and condition true
  BT = 12 << 21,      // Branch if condition true
  DCBNZ = 16 << 21,   // Decrement CTR; branch if CTR != 0
  DCBEZ = 18 << 21,   // Decrement CTR; branch if CTR == 0
  BA = 20 << 21       // Branch always
};

#ifdef _AIX
#undef CR_LT
#undef CR_GT
#undef CR_EQ
#undef CR_SO
#endif

enum CRBit { CR_LT = 0, CR_GT = 1, CR_EQ = 2, CR_SO = 3, CR_FU = 3 };

#define CRWIDTH 4

// -----------------------------------------------------------------------------
// Supervisor Call (svc) specific support.

// Special Software Interrupt codes when used in the presence of the S390
// simulator.
// SVC provides a 24bit immediate value. Use bits 22:0 for standard
// SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
enum SoftwareInterruptCodes {
  // Transition to C code
  kCallRtRedirected = 0x0010,
  // Breakpoint
  kBreakpoint = 0x0000,
  // Stop
  kStopCode = 1 << 23
};
const uint32_t kStopCodeMask = kStopCode - 1;
const uint32_t kMaxStopCode = kStopCode - 1;
const int32_t kDefaultStopCode = -1;

// FP rounding modes.
enum FPRoundingMode {
  CURRENT_ROUNDING_MODE = 0,
  ROUND_TO_NEAREST_AWAY_FROM_0 = 1,
  ROUND_TO_NEAREST_TO_EVEN = 4,
  ROUND_TOWARD_0 = 5,
  ROUND_TOWARD_POS_INF = 6,
  ROUND_TOWARD_NEG_INF = 7,

  // Aliases.
  kRoundToNearest = ROUND_TO_NEAREST_TO_EVEN,
  kRoundToZero = ROUND_TOWARD_0,
  kRoundToPlusInf = ROUND_TOWARD_POS_INF,
  kRoundToMinusInf = ROUND_TOWARD_NEG_INF
};

const uint32_t kFPRoundingModeMask = 3;

enum CheckForInexactConversion {
  kCheckForInexactConversion,
  kDontCheckForInexactConversion
};

// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.

// use TRAP4 to indicate redirection call for simulation mode
const Instr rtCallRedirInstr = TRAP4;

// -----------------------------------------------------------------------------
// Instruction abstraction.

// The class Instruction enables access to individual fields defined in the
// z/Architecture instruction set encoding.
class Instruction {
 public:
  // S390 Opcode Format Types
  //   Based on the first byte of the opcode, we can determine how to extract
  //   the entire opcode of the instruction.  The various favours include:
  enum OpcodeFormatType {
    ONE_BYTE_OPCODE,           // One Byte - Bits 0 to 7
    TWO_BYTE_OPCODE,           // Two Bytes - Bits 0 to 15
    TWO_BYTE_DISJOINT_OPCODE,  // Two Bytes - Bits 0 to 7, 40 to 47
    THREE_NIBBLE_OPCODE        // Three Nibbles - Bits 0 to 7, 12 to 15
  };

  static OpcodeFormatType OpcodeFormatTable[256];

  // Get the raw instruction bits.
  template <typename T>
  inline T InstructionBits() const {
    return Instruction::InstructionBits<T>(reinterpret_cast<const byte*>(this));
  }
  inline Instr InstructionBits() const {
    return *reinterpret_cast<const Instr*>(this);
  }

  // Set the raw instruction bits to value.
  template <typename T>
  inline void SetInstructionBits(T value) const {
    Instruction::SetInstructionBits<T>(reinterpret_cast<const byte*>(this),
                                       value);
  }
  inline void SetInstructionBits(Instr value) {
    *reinterpret_cast<Instr*>(this) = value;
  }

  // Read one particular bit out of the instruction bits.
  inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }

  // Read a bit field's value out of the instruction bits.
  inline int Bits(int hi, int lo) const {
    return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
  }

  // Read bits according to instruction type
  template <typename T, typename U>
  inline U Bits(int hi, int lo) const {
    return (InstructionBits<T>() >> lo) & ((2 << (hi - lo)) - 1);
  }

  // Read a bit field out of the instruction bits.
  inline int BitField(int hi, int lo) const {
    return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
  }

  // Determine the instruction length
  inline int InstructionLength() {
    return Instruction::InstructionLength(reinterpret_cast<const byte*>(this));
  }
  // Extract the Instruction Opcode
  inline Opcode S390OpcodeValue() {
    return Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(this));
  }

  // Static support.

  // Read one particular bit out of the instruction bits.
  static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; }

  // Read the value of a bit field out of the instruction bits.
  static inline int Bits(Instr instr, int hi, int lo) {
    return (instr >> lo) & ((2 << (hi - lo)) - 1);
  }

  // Read a bit field out of the instruction bits.
  static inline int BitField(Instr instr, int hi, int lo) {
    return instr & (((2 << (hi - lo)) - 1) << lo);
  }

  // Determine the instruction length of the given instruction
  static inline int InstructionLength(const byte* instr) {
    // Length can be determined by the first nibble.
    // 0x0 to 0x3 => 2-bytes
    // 0x4 to 0xB => 4-bytes
    // 0xC to 0xF => 6-bytes
    byte topNibble = (*instr >> 4) & 0xF;
    if (topNibble <= 3)
      return 2;
    else if (topNibble <= 0xB)
      return 4;
    return 6;
  }

  // Returns the instruction bits of the given instruction
  static inline uint64_t InstructionBits(const byte* instr) {
    int length = InstructionLength(instr);
    if (2 == length)
      return static_cast<uint64_t>(InstructionBits<TwoByteInstr>(instr));
    else if (4 == length)
      return static_cast<uint64_t>(InstructionBits<FourByteInstr>(instr));
    else
      return InstructionBits<SixByteInstr>(instr);
  }

  // Extract the raw instruction bits
  template <typename T>
  static inline T InstructionBits(const byte* instr) {
#if !V8_TARGET_LITTLE_ENDIAN
    if (sizeof(T) <= 4) {
      return *reinterpret_cast<const T*>(instr);
    } else {
      // We cannot read 8-byte instructon address directly, because for a
      // six-byte instruction, the extra 2-byte address might not be
      // allocated.
      uint64_t fourBytes = *reinterpret_cast<const uint32_t*>(instr);
      uint16_t twoBytes = *reinterpret_cast<const uint16_t*>(instr + 4);
      return (fourBytes << 16 | twoBytes);
    }
#else
    // Even on little endian hosts (simulation), the instructions
    // are stored as big-endian in order to decode the opcode and
    // instruction length.
    T instr_bits = 0;

    // 6-byte instrs are represented by uint64_t
    uint32_t size = (sizeof(T) == 8) ? 6 : sizeof(T);

    for (T i = 0; i < size; i++) {
      instr_bits <<= 8;
      instr_bits |= *(instr + i);
    }
    return instr_bits;
#endif
  }

  // Set the Instruction Bits to value
  template <typename T>
  static inline void SetInstructionBits(byte* instr, T value) {
#if V8_TARGET_LITTLE_ENDIAN
    // The instruction bits are stored in big endian format even on little
    // endian hosts, in order to decode instruction length and opcode.
    // The following code will reverse the bytes so that the stores later
    // (which are in native endianess) will effectively save the instruction
    // in big endian.
    if (sizeof(T) == 2) {
      // Two Byte Instruction
      value = ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
    } else if (sizeof(T) == 4) {
      // Four Byte Instruction
      value = ((value & 0x000000FF) << 24) | ((value & 0x0000FF00) << 8) |
              ((value & 0x00FF0000) >> 8) | ((value & 0xFF000000) >> 24);
    } else if (sizeof(T) == 8) {
      // Six Byte Instruction
      uint64_t orig_value = static_cast<uint64_t>(value);
      value = (static_cast<uint64_t>(orig_value & 0xFF) << 40) |
              (static_cast<uint64_t>((orig_value >> 8) & 0xFF) << 32) |
              (static_cast<uint64_t>((orig_value >> 16) & 0xFF) << 24) |
              (static_cast<uint64_t>((orig_value >> 24) & 0xFF) << 16) |
              (static_cast<uint64_t>((orig_value >> 32) & 0xFF) << 8) |
              (static_cast<uint64_t>((orig_value >> 40) & 0xFF));
    }
#endif
    if (sizeof(T) <= 4) {
      *reinterpret_cast<T*>(instr) = value;
    } else {
#if V8_TARGET_LITTLE_ENDIAN
      uint64_t orig_value = static_cast<uint64_t>(value);
      *reinterpret_cast<uint32_t*>(instr) = static_cast<uint32_t>(value);
      *reinterpret_cast<uint16_t*>(instr + 4) =
          static_cast<uint16_t>((orig_value >> 32) & 0xFFFF);
#else
      *reinterpret_cast<uint32_t*>(instr) = static_cast<uint32_t>(value >> 16);
      *reinterpret_cast<uint16_t*>(instr + 4) =
          static_cast<uint16_t>(value & 0xFFFF);
#endif
    }
  }

  // Get Instruction Format Type
  static OpcodeFormatType getOpcodeFormatType(const byte* instr) {
    const byte firstByte = *instr;
    return OpcodeFormatTable[firstByte];
  }

  // Extract the full opcode from the instruction.
  static inline Opcode S390OpcodeValue(const byte* instr) {
    OpcodeFormatType opcodeType = getOpcodeFormatType(instr);

    // The native instructions are encoded in big-endian format
    // even if running on little-endian host.  Hence, we need
    // to ensure we use byte* based bit-wise logic.
    switch (opcodeType) {
      case ONE_BYTE_OPCODE:
        // One Byte - Bits 0 to 7
        return static_cast<Opcode>(*instr);
      case TWO_BYTE_OPCODE:
        // Two Bytes - Bits 0 to 15
        return static_cast<Opcode>((*instr << 8) | (*(instr + 1)));
      case TWO_BYTE_DISJOINT_OPCODE:
        // Two Bytes - Bits 0 to 7, 40 to 47
        return static_cast<Opcode>((*instr << 8) | (*(instr + 5) & 0xFF));
      default:
        // case THREE_NIBBLE_OPCODE:
        // Three Nibbles - Bits 0 to 7, 12 to 15
        return static_cast<Opcode>((*instr << 4) | (*(instr + 1) & 0xF));
    }

    UNREACHABLE();
  }

  // Fields used in Software interrupt instructions
  inline SoftwareInterruptCodes SvcValue() const {
    return static_cast<SoftwareInterruptCodes>(Bits<FourByteInstr, int>(15, 0));
  }

  // Instructions are read of out a code stream. The only way to get a
  // reference to an instruction is to convert a pointer. There is no way
  // to allocate or create instances of class Instruction.
  // Use the At(pc) function to create references to Instruction.
  static Instruction* At(byte* pc) {
    return reinterpret_cast<Instruction*>(pc);
  }

 private:
  // We need to prevent the creation of instances of class Instruction.
  DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
};

#define DECLARE_FIELD_FOR_TWO_BYTE_INSTR(name, T, lo, hi)   \
  inline int name() const {                                 \
    return Bits<TwoByteInstr, T>(15 - (lo), 15 - (hi) + 1); \
  }

#define DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(name, T, lo, hi)   \
  inline int name() const {                                  \
    return Bits<FourByteInstr, T>(31 - (lo), 31 - (hi) + 1); \
  }

#define DECLARE_FIELD_FOR_SIX_BYTE_INSTR(name, T, lo, hi)   \
  inline int name() const {                                 \
    return Bits<SixByteInstr, T>(47 - (lo), 47 - (hi) + 1); \
  }

class TwoByteInstruction : public Instruction {
 public:
  inline int size() const { return 2; }
};

class FourByteInstruction : public Instruction {
 public:
  inline int size() const { return 4; }
};

class SixByteInstruction : public Instruction {
 public:
  inline int size() const { return 6; }
};

// I Instruction
class IInstruction : public TwoByteInstruction {
 public:
  DECLARE_FIELD_FOR_TWO_BYTE_INSTR(IValue, int, 8, 16)
};

// E Instruction
class EInstruction : public TwoByteInstruction {};

// IE Instruction
class IEInstruction : public FourByteInstruction {
 public:
  DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I1Value, int, 24, 28)
  DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I2Value, int, 28, 32)
};

// MII Instruction
class MIIInstruction : public SixByteInstruction {
 public:
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M1Value, uint32_t, 8, 12)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(RI2Value, int, 12, 24)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(RI3Value, int, 24, 47)
};

// RI Instruction
class RIInstruction : public FourByteInstruction {
 public:
  DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(R1Value, int, 8, 12)
  DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I2Value, int, 16, 32)
  DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(I2UnsignedValue, uint32_t, 16, 32)
  DECLARE_FIELD_FOR_FOUR_BYTE_INSTR(M1Value, uint32_t, 8, 12)
};

// RR Instruction
class RRInstruction : Instruction {
 public:
  inline int R1Value() const {
    // the high and low parameters of Bits is the number of bits from
    // rightmost place
    return Bits<TwoByteInstr, int>(7, 4);
  }
  inline int R2Value() const { return Bits<TwoByteInstr, int>(3, 0); }
  inline Condition M1Value() const {
    return static_cast<Condition>(Bits<TwoByteInstr, int>(7, 4));
  }

  inline int size() const { return 2; }
};

// RRE Instruction
class RREInstruction : Instruction {
 public:
  inline int R1Value() const { return Bits<FourByteInstr, int>(7, 4); }
  inline int R2Value() const { return Bits<FourByteInstr, int>(3, 0); }
  inline int M3Value() const { return Bits<FourByteInstr, int>(15, 12); }
  inline int M4Value() const { return Bits<FourByteInstr, int>(19, 16); }
  inline int size() const { return 4; }
};

// RRF Instruction
class RRFInstruction : Instruction {
 public:
  inline int R1Value() const { return Bits<FourByteInstr, int>(7, 4); }
  inline int R2Value() const { return Bits<FourByteInstr, int>(3, 0); }
  inline int R3Value() const { return Bits<FourByteInstr, int>(15, 12); }
  inline int M3Value() const { return Bits<FourByteInstr, int>(15, 12); }
  inline int M4Value() const { return Bits<FourByteInstr, int>(11, 8); }
  inline int size() const { return 4; }
};

// RRD Isntruction
class RRDInstruction : Instruction {
 public:
  inline int R1Value() const { return Bits<FourByteInstr, int>(15, 12); }
  inline int R2Value() const { return Bits<FourByteInstr, int>(3, 0); }
  inline int R3Value() const { return Bits<FourByteInstr, int>(7, 4); }
  inline int size() const { return 4; }
};

// RS Instruction
class RSInstruction : Instruction {
 public:
  inline int R1Value() const { return Bits<FourByteInstr, int>(23, 20); }
  inline int R3Value() const { return Bits<FourByteInstr, int>(19, 16); }
  inline int B2Value() const { return Bits<FourByteInstr, int>(15, 12); }
  inline unsigned int D2Value() const {
    return Bits<FourByteInstr, unsigned int>(11, 0);
  }
  inline int size() const { return 4; }
};

// RSI Instruction
class RSIInstruction : Instruction {
 public:
  inline int R1Value() const { return Bits<FourByteInstr, int>(23, 20); }
  inline int R3Value() const { return Bits<FourByteInstr, int>(19, 16); }
  inline int I2Value() const {
    return static_cast<int32_t>(Bits<FourByteInstr, int16_t>(15, 0));
  }
  inline int size() const { return 4; }
};

// RSY Instruction
class RSYInstruction : Instruction {
 public:
  inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
  inline int R3Value() const { return Bits<SixByteInstr, int>(35, 32); }
  inline int B2Value() const { return Bits<SixByteInstr, int>(31, 28); }
  inline int32_t D2Value() const {
    int32_t value = Bits<SixByteInstr, int32_t>(27, 16);
    value += Bits<SixByteInstr, int8_t>(15, 8) << 12;
    return value;
  }
  inline int size() const { return 6; }
};

// RX Instruction
class RXInstruction : Instruction {
 public:
  inline int R1Value() const { return Bits<FourByteInstr, int>(23, 20); }
  inline int X2Value() const { return Bits<FourByteInstr, int>(19, 16); }
  inline int B2Value() const { return Bits<FourByteInstr, int>(15, 12); }
  inline uint32_t D2Value() const {
    return Bits<FourByteInstr, uint32_t>(11, 0);
  }
  inline int size() const { return 4; }
};

// RXY Instruction
class RXYInstruction : Instruction {
 public:
  inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
  inline int X2Value() const { return Bits<SixByteInstr, int>(35, 32); }
  inline int B2Value() const { return Bits<SixByteInstr, int>(31, 28); }
  inline int32_t D2Value() const {
    int32_t value = Bits<SixByteInstr, uint32_t>(27, 16);
    value += Bits<SixByteInstr, int8_t>(15, 8) << 12;
    return value;
  }
  inline int size() const { return 6; }
};

// RIL Instruction
class RILInstruction : Instruction {
 public:
  inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
  inline int32_t I2Value() const { return Bits<SixByteInstr, int32_t>(31, 0); }
  inline uint32_t I2UnsignedValue() const {
    return Bits<SixByteInstr, uint32_t>(31, 0);
  }
  inline int size() const { return 6; }
};

// SI Instruction
class SIInstruction : Instruction {
 public:
  inline int B1Value() const { return Bits<FourByteInstr, int>(15, 12); }
  inline uint32_t D1Value() const {
    return Bits<FourByteInstr, uint32_t>(11, 0);
  }
  inline uint8_t I2Value() const {
    return Bits<FourByteInstr, uint8_t>(23, 16);
  }
  inline int size() const { return 4; }
};

// SIY Instruction
class SIYInstruction : Instruction {
 public:
  inline int B1Value() const { return Bits<SixByteInstr, int>(31, 28); }
  inline int32_t D1Value() const {
    int32_t value = Bits<SixByteInstr, uint32_t>(27, 16);
    value += Bits<SixByteInstr, int8_t>(15, 8) << 12;
    return value;
  }
  inline uint8_t I2Value() const { return Bits<SixByteInstr, uint8_t>(39, 32); }
  inline int size() const { return 6; }
};

// SIL Instruction
class SILInstruction : Instruction {
 public:
  inline int B1Value() const { return Bits<SixByteInstr, int>(31, 28); }
  inline int D1Value() const { return Bits<SixByteInstr, int>(27, 16); }
  inline int I2Value() const { return Bits<SixByteInstr, int>(15, 0); }
  inline int size() const { return 6; }
};

// SS Instruction
class SSInstruction : Instruction {
 public:
  inline int B1Value() const { return Bits<SixByteInstr, int>(31, 28); }
  inline int B2Value() const { return Bits<SixByteInstr, int>(15, 12); }
  inline int D1Value() const { return Bits<SixByteInstr, int>(27, 16); }
  inline int D2Value() const { return Bits<SixByteInstr, int>(11, 0); }
  inline int Length() const { return Bits<SixByteInstr, int>(39, 32); }
  inline int size() const { return 6; }
};

// RXE Instruction
class RXEInstruction : Instruction {
 public:
  inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
  inline int X2Value() const { return Bits<SixByteInstr, int>(35, 32); }
  inline int B2Value() const { return Bits<SixByteInstr, int>(31, 28); }
  inline int D2Value() const { return Bits<SixByteInstr, int>(27, 16); }
  inline int size() const { return 6; }
};

// RIE Instruction
class RIEInstruction : Instruction {
 public:
  inline int R1Value() const { return Bits<SixByteInstr, int>(39, 36); }
  inline int R2Value() const { return Bits<SixByteInstr, int>(35, 32); }
  inline int I3Value() const { return Bits<SixByteInstr, uint32_t>(31, 24); }
  inline int I4Value() const { return Bits<SixByteInstr, uint32_t>(23, 16); }
  inline int I5Value() const { return Bits<SixByteInstr, uint32_t>(15, 8); }
  inline int I6Value() const {
    return static_cast<int32_t>(Bits<SixByteInstr, int16_t>(31, 16));
  }
  inline int size() const { return 6; }
};

// VRR Instruction
class VRR_A_Instruction : SixByteInstruction {
 public:
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R2Value, int, 12, 16)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M5Value, uint32_t, 24, 28)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M4Value, uint32_t, 28, 32)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M3Value, uint32_t, 32, 36)
};

class VRR_B_Instruction : SixByteInstruction {
 public:
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R2Value, int, 12, 16)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 16, 20)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M5Value, uint32_t, 24, 28)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M4Value, uint32_t, 32, 36)
};

class VRR_C_Instruction : SixByteInstruction {
 public:
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R2Value, int, 12, 16)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 16, 20)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M6Value, uint32_t, 24, 28)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M5Value, uint32_t, 28, 32)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M4Value, uint32_t, 32, 36)
};

class VRR_E_Instruction : SixByteInstruction {
 public:
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R2Value, int, 12, 16)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 16, 20)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R4Value, int, 32, 36)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M6Value, uint32_t, 20, 24)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M5Value, uint32_t, 28, 32)
};

class VRR_F_Instruction : SixByteInstruction {
 public:
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R2Value, int, 12, 16)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 16, 20)
};

class VRX_Instruction : SixByteInstruction {
 public:
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(X2Value, int, 12, 16)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(B2Value, int, 16, 20)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(D2Value, int, 20, 32)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M3Value, uint32_t, 32, 36)
};

class VRS_Instruction : SixByteInstruction {
 public:
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 12, 16)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(B2Value, int, 16, 20)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(D2Value, int, 20, 32)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M4Value, uint32_t, 32, 36)
};

class VRI_A_Instruction : SixByteInstruction {
 public:
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(I2Value, int, 16, 32)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M3Value, uint32_t, 32, 36)
};

class VRI_C_Instruction : SixByteInstruction {
 public:
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R1Value, int, 8, 12)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(R3Value, int, 12, 16)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(I2Value, int, 16, 32)
  DECLARE_FIELD_FOR_SIX_BYTE_INSTR(M4Value, uint32_t, 32, 36)
};

// Helper functions for converting between register numbers and names.
class Registers {
 public:
  // Lookup the register number for the name provided.
  static int Number(const char* name);

 private:
  static const char* names_[kNumRegisters];
};

// Helper functions for converting between FP register numbers and names.
class DoubleRegisters {
 public:
  // Lookup the register number for the name provided.
  static int Number(const char* name);

 private:
  static const char* names_[kNumDoubleRegisters];
};

}  // namespace internal
}  // namespace v8

#endif  // V8_CODEGEN_S390_CONSTANTS_S390_H_