summaryrefslogtreecommitdiff
path: root/deps/v8/src/codegen/x64/macro-assembler-x64.h
blob: df87c076384be8500aff07a43926969dae2cecf0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef INCLUDED_FROM_MACRO_ASSEMBLER_H
#error This header must be included via macro-assembler.h
#endif

#ifndef V8_CODEGEN_X64_MACRO_ASSEMBLER_X64_H_
#define V8_CODEGEN_X64_MACRO_ASSEMBLER_X64_H_

#include "src/base/flags.h"
#include "src/codegen/bailout-reason.h"
#include "src/codegen/x64/assembler-x64.h"
#include "src/common/globals.h"
#include "src/objects/contexts.h"

namespace v8 {
namespace internal {

// Convenience for platform-independent signatures.
using MemOperand = Operand;

class StringConstantBase;

enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };

struct SmiIndex {
  SmiIndex(Register index_register, ScaleFactor scale)
      : reg(index_register), scale(scale) {}
  Register reg;
  ScaleFactor scale;
};

// TODO(victorgomes): Move definition to macro-assembler.h, once all other
// platforms are updated.
enum class StackLimitKind { kInterruptStackLimit, kRealStackLimit };

// Convenient class to access arguments below the stack pointer.
class StackArgumentsAccessor {
 public:
  // argc = the number of arguments not including the receiver.
  explicit StackArgumentsAccessor(Register argc) : argc_(argc) {
    DCHECK_NE(argc_, no_reg);
  }

  // Argument 0 is the receiver (despite argc not including the receiver).
  Operand operator[](int index) const { return GetArgumentOperand(index); }

  Operand GetArgumentOperand(int index) const;
  Operand GetReceiverOperand() const { return GetArgumentOperand(0); }

 private:
  const Register argc_;

  DISALLOW_IMPLICIT_CONSTRUCTORS(StackArgumentsAccessor);
};

class V8_EXPORT_PRIVATE TurboAssembler : public TurboAssemblerBase {
 public:
  using TurboAssemblerBase::TurboAssemblerBase;

  template <typename Dst, typename... Args>
  struct AvxHelper {
    Assembler* assm;
    base::Optional<CpuFeature> feature = base::nullopt;
    // Call a method where the AVX version expects the dst argument to be
    // duplicated.
    template <void (Assembler::*avx)(Dst, Dst, Args...),
              void (Assembler::*no_avx)(Dst, Args...)>
    void emit(Dst dst, Args... args) {
      if (CpuFeatures::IsSupported(AVX)) {
        CpuFeatureScope scope(assm, AVX);
        (assm->*avx)(dst, dst, args...);
      } else if (feature.has_value()) {
        DCHECK(CpuFeatures::IsSupported(*feature));
        CpuFeatureScope scope(assm, *feature);
        (assm->*no_avx)(dst, args...);
      } else {
        (assm->*no_avx)(dst, args...);
      }
    }

    // Call a method where the AVX version expects no duplicated dst argument.
    template <void (Assembler::*avx)(Dst, Args...),
              void (Assembler::*no_avx)(Dst, Args...)>
    void emit(Dst dst, Args... args) {
      if (CpuFeatures::IsSupported(AVX)) {
        CpuFeatureScope scope(assm, AVX);
        (assm->*avx)(dst, args...);
      } else if (feature.has_value()) {
        DCHECK(CpuFeatures::IsSupported(*feature));
        CpuFeatureScope scope(assm, *feature);
        (assm->*no_avx)(dst, args...);
      } else {
        (assm->*no_avx)(dst, args...);
      }
    }
  };

#define AVX_OP(macro_name, name)                                             \
  template <typename Dst, typename... Args>                                  \
  void macro_name(Dst dst, Args... args) {                                   \
    AvxHelper<Dst, Args...>{this}                                            \
        .template emit<&Assembler::v##name, &Assembler::name>(dst, args...); \
  }

#define AVX_OP_SSE3(macro_name, name)                                        \
  template <typename Dst, typename... Args>                                  \
  void macro_name(Dst dst, Args... args) {                                   \
    AvxHelper<Dst, Args...>{this, base::Optional<CpuFeature>(SSE3)}          \
        .template emit<&Assembler::v##name, &Assembler::name>(dst, args...); \
  }

#define AVX_OP_SSSE3(macro_name, name)                                       \
  template <typename Dst, typename... Args>                                  \
  void macro_name(Dst dst, Args... args) {                                   \
    AvxHelper<Dst, Args...>{this, base::Optional<CpuFeature>(SSSE3)}         \
        .template emit<&Assembler::v##name, &Assembler::name>(dst, args...); \
  }

#define AVX_OP_SSE4_1(macro_name, name)                                      \
  template <typename Dst, typename... Args>                                  \
  void macro_name(Dst dst, Args... args) {                                   \
    AvxHelper<Dst, Args...>{this, base::Optional<CpuFeature>(SSE4_1)}        \
        .template emit<&Assembler::v##name, &Assembler::name>(dst, args...); \
  }
#define AVX_OP_SSE4_2(macro_name, name)                                      \
  template <typename Dst, typename... Args>                                  \
  void macro_name(Dst dst, Args... args) {                                   \
    AvxHelper<Dst, Args...>{this, base::Optional<CpuFeature>(SSE4_2)}        \
        .template emit<&Assembler::v##name, &Assembler::name>(dst, args...); \
  }
  AVX_OP(Subsd, subsd)
  AVX_OP(Divss, divss)
  AVX_OP(Divsd, divsd)
  AVX_OP(Orps, orps)
  AVX_OP(Xorps, xorps)
  AVX_OP(Xorpd, xorpd)
  AVX_OP(Movd, movd)
  AVX_OP(Movq, movq)
  AVX_OP(Movaps, movaps)
  AVX_OP(Movups, movups)
  AVX_OP(Movmskps, movmskps)
  AVX_OP(Movmskpd, movmskpd)
  AVX_OP(Pmovmskb, pmovmskb)
  AVX_OP(Movss, movss)
  AVX_OP(Movsd, movsd)
  AVX_OP(Movhlps, movhlps)
  AVX_OP(Movlps, movlps)
  AVX_OP(Movhps, movhps)
  AVX_OP(Pcmpeqb, pcmpeqb)
  AVX_OP(Pcmpeqw, pcmpeqw)
  AVX_OP(Pcmpeqd, pcmpeqd)
  AVX_OP(Pcmpgtb, pcmpgtb)
  AVX_OP(Pcmpgtw, pcmpgtw)
  AVX_OP(Pmaxsw, pmaxsw)
  AVX_OP(Pmaxub, pmaxub)
  AVX_OP(Pminsw, pminsw)
  AVX_OP(Pminub, pminub)
  AVX_OP(Addss, addss)
  AVX_OP(Addsd, addsd)
  AVX_OP(Mulsd, mulsd)
  AVX_OP(Andps, andps)
  AVX_OP(Andnps, andnps)
  AVX_OP(Andpd, andpd)
  AVX_OP(Andnpd, andnpd)
  AVX_OP(Orpd, orpd)
  AVX_OP(Cmpeqps, cmpeqps)
  AVX_OP(Cmpltps, cmpltps)
  AVX_OP(Cmpleps, cmpleps)
  AVX_OP(Cmpneqps, cmpneqps)
  AVX_OP(Cmpnltps, cmpnltps)
  AVX_OP(Cmpnleps, cmpnleps)
  AVX_OP(Cmpeqpd, cmpeqpd)
  AVX_OP(Cmpltpd, cmpltpd)
  AVX_OP(Cmplepd, cmplepd)
  AVX_OP(Cmpneqpd, cmpneqpd)
  AVX_OP(Cmpnltpd, cmpnltpd)
  AVX_OP(Cmpnlepd, cmpnlepd)
  AVX_OP(Sqrtss, sqrtss)
  AVX_OP(Sqrtsd, sqrtsd)
  AVX_OP(Sqrtps, sqrtps)
  AVX_OP(Sqrtpd, sqrtpd)
  AVX_OP(Cvttps2dq, cvttps2dq)
  AVX_OP(Ucomiss, ucomiss)
  AVX_OP(Ucomisd, ucomisd)
  AVX_OP(Pand, pand)
  AVX_OP(Por, por)
  AVX_OP(Pxor, pxor)
  AVX_OP(Psubb, psubb)
  AVX_OP(Psubw, psubw)
  AVX_OP(Psubd, psubd)
  AVX_OP(Psubq, psubq)
  AVX_OP(Psubsb, psubsb)
  AVX_OP(Psubsw, psubsw)
  AVX_OP(Psubusb, psubusb)
  AVX_OP(Psubusw, psubusw)
  AVX_OP(Pslld, pslld)
  AVX_OP(Pavgb, pavgb)
  AVX_OP(Pavgw, pavgw)
  AVX_OP(Psraw, psraw)
  AVX_OP(Psrad, psrad)
  AVX_OP(Psllw, psllw)
  AVX_OP(Psllq, psllq)
  AVX_OP(Psrlw, psrlw)
  AVX_OP(Psrld, psrld)
  AVX_OP(Psrlq, psrlq)
  AVX_OP(Paddb, paddb)
  AVX_OP(Paddw, paddw)
  AVX_OP(Paddd, paddd)
  AVX_OP(Paddq, paddq)
  AVX_OP(Paddsb, paddsb)
  AVX_OP(Paddsw, paddsw)
  AVX_OP(Paddusb, paddusb)
  AVX_OP(Paddusw, paddusw)
  AVX_OP(Pcmpgtd, pcmpgtd)
  AVX_OP(Pmullw, pmullw)
  AVX_OP(Pmuludq, pmuludq)
  AVX_OP(Addpd, addpd)
  AVX_OP(Subpd, subpd)
  AVX_OP(Mulpd, mulpd)
  AVX_OP(Minps, minps)
  AVX_OP(Minpd, minpd)
  AVX_OP(Divpd, divpd)
  AVX_OP(Maxps, maxps)
  AVX_OP(Maxpd, maxpd)
  AVX_OP(Cvtdq2ps, cvtdq2ps)
  AVX_OP(Rcpps, rcpps)
  AVX_OP(Rsqrtps, rsqrtps)
  AVX_OP(Addps, addps)
  AVX_OP(Subps, subps)
  AVX_OP(Mulps, mulps)
  AVX_OP(Divps, divps)
  AVX_OP(Pshuflw, pshuflw)
  AVX_OP(Pshufhw, pshufhw)
  AVX_OP(Packsswb, packsswb)
  AVX_OP(Packuswb, packuswb)
  AVX_OP(Packssdw, packssdw)
  AVX_OP(Punpcklbw, punpcklbw)
  AVX_OP(Punpcklwd, punpcklwd)
  AVX_OP(Punpckldq, punpckldq)
  AVX_OP(Punpckhbw, punpckhbw)
  AVX_OP(Punpckhwd, punpckhwd)
  AVX_OP(Punpckhdq, punpckhdq)
  AVX_OP(Punpcklqdq, punpcklqdq)
  AVX_OP(Punpckhqdq, punpckhqdq)
  AVX_OP(Pshufd, pshufd)
  AVX_OP(Cmpps, cmpps)
  AVX_OP(Cmppd, cmppd)
  AVX_OP(Movlhps, movlhps)
  AVX_OP_SSE3(Haddps, haddps)
  AVX_OP_SSE3(Movddup, movddup)
  AVX_OP_SSE3(Movshdup, movshdup)
  AVX_OP_SSSE3(Phaddd, phaddd)
  AVX_OP_SSSE3(Phaddw, phaddw)
  AVX_OP_SSSE3(Pshufb, pshufb)
  AVX_OP_SSSE3(Psignb, psignb)
  AVX_OP_SSSE3(Psignw, psignw)
  AVX_OP_SSSE3(Psignd, psignd)
  AVX_OP_SSSE3(Palignr, palignr)
  AVX_OP_SSSE3(Pabsb, pabsb)
  AVX_OP_SSSE3(Pabsw, pabsw)
  AVX_OP_SSSE3(Pabsd, pabsd)
  AVX_OP_SSE4_1(Pcmpeqq, pcmpeqq)
  AVX_OP_SSE4_1(Packusdw, packusdw)
  AVX_OP_SSE4_1(Pminsb, pminsb)
  AVX_OP_SSE4_1(Pminsd, pminsd)
  AVX_OP_SSE4_1(Pminuw, pminuw)
  AVX_OP_SSE4_1(Pminud, pminud)
  AVX_OP_SSE4_1(Pmaxsb, pmaxsb)
  AVX_OP_SSE4_1(Pmaxsd, pmaxsd)
  AVX_OP_SSE4_1(Pmaxuw, pmaxuw)
  AVX_OP_SSE4_1(Pmaxud, pmaxud)
  AVX_OP_SSE4_1(Pmulld, pmulld)
  AVX_OP_SSE4_1(Extractps, extractps)
  AVX_OP_SSE4_1(Insertps, insertps)
  AVX_OP_SSE4_1(Pinsrq, pinsrq)
  AVX_OP_SSE4_1(Pblendw, pblendw)
  AVX_OP_SSE4_1(Ptest, ptest)
  AVX_OP_SSE4_1(Pmovsxbw, pmovsxbw)
  AVX_OP_SSE4_1(Pmovsxwd, pmovsxwd)
  AVX_OP_SSE4_1(Pmovsxdq, pmovsxdq)
  AVX_OP_SSE4_1(Pmovzxbw, pmovzxbw)
  AVX_OP_SSE4_1(Pmovzxwd, pmovzxwd)
  AVX_OP_SSE4_1(Pmovzxdq, pmovzxdq)
  AVX_OP_SSE4_1(Pextrb, pextrb)
  AVX_OP_SSE4_1(Pextrw, pextrw)
  AVX_OP_SSE4_1(Pextrq, pextrq)
  AVX_OP_SSE4_1(Roundps, roundps)
  AVX_OP_SSE4_1(Roundpd, roundpd)
  AVX_OP_SSE4_1(Roundss, roundss)
  AVX_OP_SSE4_1(Roundsd, roundsd)
  AVX_OP_SSE4_2(Pcmpgtq, pcmpgtq)

#undef AVX_OP

  void PushReturnAddressFrom(Register src) { pushq(src); }
  void PopReturnAddressTo(Register dst) { popq(dst); }

  void Ret();

  // Return and drop arguments from stack, where the number of arguments
  // may be bigger than 2^16 - 1.  Requires a scratch register.
  void Ret(int bytes_dropped, Register scratch);

  // Load a register with a long value as efficiently as possible.
  void Set(Register dst, int64_t x);
  void Set(Operand dst, intptr_t x);

  // Operations on roots in the root-array.
  void LoadRoot(Register destination, RootIndex index) override;
  void LoadRoot(Operand destination, RootIndex index) {
    LoadRoot(kScratchRegister, index);
    movq(destination, kScratchRegister);
  }

  void Push(Register src);
  void Push(Operand src);
  void Push(Immediate value);
  void Push(Smi smi);
  void Push(Handle<HeapObject> source);

  enum class PushArrayOrder { kNormal, kReverse };
  // `array` points to the first element (the lowest address).
  // `array` and `size` are not modified.
  void PushArray(Register array, Register size, Register scratch,
                 PushArrayOrder order = PushArrayOrder::kNormal);

  // Before calling a C-function from generated code, align arguments on stack.
  // After aligning the frame, arguments must be stored in rsp[0], rsp[8],
  // etc., not pushed. The argument count assumes all arguments are word sized.
  // The number of slots reserved for arguments depends on platform. On Windows
  // stack slots are reserved for the arguments passed in registers. On other
  // platforms stack slots are only reserved for the arguments actually passed
  // on the stack.
  void PrepareCallCFunction(int num_arguments);

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_arguments);
  void CallCFunction(Register function, int num_arguments);

  // Calculate the number of stack slots to reserve for arguments when calling a
  // C function.
  int ArgumentStackSlotsForCFunctionCall(int num_arguments);

  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
                     Label* condition_met,
                     Label::Distance condition_met_distance = Label::kFar);

  void Movapd(XMMRegister dst, XMMRegister src);
  void Movdqa(XMMRegister dst, XMMRegister src);

  template <typename Dst, typename Src>
  void Movdqu(Dst dst, Src src);

  void Cvtss2sd(XMMRegister dst, XMMRegister src);
  void Cvtss2sd(XMMRegister dst, Operand src);
  void Cvtsd2ss(XMMRegister dst, XMMRegister src);
  void Cvtsd2ss(XMMRegister dst, Operand src);
  void Cvttsd2si(Register dst, XMMRegister src);
  void Cvttsd2si(Register dst, Operand src);
  void Cvttsd2siq(Register dst, XMMRegister src);
  void Cvttsd2siq(Register dst, Operand src);
  void Cvttss2si(Register dst, XMMRegister src);
  void Cvttss2si(Register dst, Operand src);
  void Cvttss2siq(Register dst, XMMRegister src);
  void Cvttss2siq(Register dst, Operand src);
  void Cvtlui2ss(XMMRegister dst, Register src);
  void Cvtlui2ss(XMMRegister dst, Operand src);
  void Cvtlui2sd(XMMRegister dst, Register src);
  void Cvtlui2sd(XMMRegister dst, Operand src);
  void Cvtqui2ss(XMMRegister dst, Register src);
  void Cvtqui2ss(XMMRegister dst, Operand src);
  void Cvtqui2sd(XMMRegister dst, Register src);
  void Cvtqui2sd(XMMRegister dst, Operand src);
  void Cvttsd2uiq(Register dst, Operand src, Label* fail = nullptr);
  void Cvttsd2uiq(Register dst, XMMRegister src, Label* fail = nullptr);
  void Cvttss2uiq(Register dst, Operand src, Label* fail = nullptr);
  void Cvttss2uiq(Register dst, XMMRegister src, Label* fail = nullptr);

  // cvtsi2sd and cvtsi2ss instructions only write to the low 64/32-bit of dst
  // register, which hinders register renaming and makes dependence chains
  // longer. So we use xorpd to clear the dst register before cvtsi2sd for
  // non-AVX and a scratch XMM register as first src for AVX to solve this
  // issue.
  void Cvtqsi2ss(XMMRegister dst, Register src);
  void Cvtqsi2ss(XMMRegister dst, Operand src);
  void Cvtqsi2sd(XMMRegister dst, Register src);
  void Cvtqsi2sd(XMMRegister dst, Operand src);
  void Cvtlsi2ss(XMMRegister dst, Register src);
  void Cvtlsi2ss(XMMRegister dst, Operand src);
  void Cvtlsi2sd(XMMRegister dst, Register src);
  void Cvtlsi2sd(XMMRegister dst, Operand src);

  void Lzcntq(Register dst, Register src);
  void Lzcntq(Register dst, Operand src);
  void Lzcntl(Register dst, Register src);
  void Lzcntl(Register dst, Operand src);
  void Tzcntq(Register dst, Register src);
  void Tzcntq(Register dst, Operand src);
  void Tzcntl(Register dst, Register src);
  void Tzcntl(Register dst, Operand src);
  void Popcntl(Register dst, Register src);
  void Popcntl(Register dst, Operand src);
  void Popcntq(Register dst, Register src);
  void Popcntq(Register dst, Operand src);

  // Is the value a tagged smi.
  Condition CheckSmi(Register src);
  Condition CheckSmi(Operand src);

  // Jump to label if the value is a tagged smi.
  void JumpIfSmi(Register src, Label* on_smi,
                 Label::Distance near_jump = Label::kFar);

  void JumpIfEqual(Register a, int32_t b, Label* dest) {
    cmpl(a, Immediate(b));
    j(equal, dest);
  }

  void JumpIfLessThan(Register a, int32_t b, Label* dest) {
    cmpl(a, Immediate(b));
    j(less, dest);
  }

  void LoadMap(Register destination, Register object);

  void Move(Register dst, Smi source);

  void Move(Operand dst, Smi source) {
    Register constant = GetSmiConstant(source);
    movq(dst, constant);
  }

  void Move(Register dst, ExternalReference ext);

  void Move(XMMRegister dst, uint32_t src);
  void Move(XMMRegister dst, uint64_t src);
  void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
  void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
  void Move(XMMRegister dst, uint64_t high, uint64_t low);

  // Move if the registers are not identical.
  void Move(Register target, Register source);
  void Move(XMMRegister target, XMMRegister source);

  void Move(Register dst, Handle<HeapObject> source,
            RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);
  void Move(Operand dst, Handle<HeapObject> source,
            RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);

  // Loads a pointer into a register with a relocation mode.
  void Move(Register dst, Address ptr, RelocInfo::Mode rmode) {
    // This method must not be used with heap object references. The stored
    // address is not GC safe. Use the handle version instead.
    DCHECK(rmode == RelocInfo::NONE || rmode > RelocInfo::LAST_GCED_ENUM);
    movq(dst, Immediate64(ptr, rmode));
  }

  // Move src0 to dst0 and src1 to dst1, handling possible overlaps.
  void MovePair(Register dst0, Register src0, Register dst1, Register src1);

  void MoveStringConstant(
      Register result, const StringConstantBase* string,
      RelocInfo::Mode rmode = RelocInfo::FULL_EMBEDDED_OBJECT);

  // Convert smi to word-size sign-extended value.
  void SmiUntag(Register reg);
  // Requires dst != src
  void SmiUntag(Register dst, Register src);
  void SmiUntag(Register dst, Operand src);

  // Loads the address of the external reference into the destination
  // register.
  void LoadAddress(Register destination, ExternalReference source);

  void LoadFromConstantsTable(Register destination,
                              int constant_index) override;
  void LoadRootRegisterOffset(Register destination, intptr_t offset) override;
  void LoadRootRelative(Register destination, int32_t offset) override;

  // Operand pointing to an external reference.
  // May emit code to set up the scratch register. The operand is
  // only guaranteed to be correct as long as the scratch register
  // isn't changed.
  // If the operand is used more than once, use a scratch register
  // that is guaranteed not to be clobbered.
  Operand ExternalReferenceAsOperand(ExternalReference reference,
                                     Register scratch = kScratchRegister);

  void Call(Register reg) { call(reg); }
  void Call(Operand op);
  void Call(Handle<Code> code_object, RelocInfo::Mode rmode);
  void Call(Address destination, RelocInfo::Mode rmode);
  void Call(ExternalReference ext);
  void Call(Label* target) { call(target); }

  Operand EntryFromBuiltinIndexAsOperand(Builtins::Name builtin_index);
  Operand EntryFromBuiltinIndexAsOperand(Register builtin_index);
  void CallBuiltinByIndex(Register builtin_index) override;
  void CallBuiltin(int builtin_index);

  void LoadCodeObjectEntry(Register destination, Register code_object) override;
  void CallCodeObject(Register code_object) override;
  void JumpCodeObject(Register code_object) override;

  void RetpolineCall(Register reg);
  void RetpolineCall(Address destination, RelocInfo::Mode rmode);

  void Jump(Address destination, RelocInfo::Mode rmode);
  void Jump(const ExternalReference& reference) override;
  void Jump(Operand op);
  void Jump(Handle<Code> code_object, RelocInfo::Mode rmode,
            Condition cc = always);

  void RetpolineJump(Register reg);

  void CallForDeoptimization(Builtins::Name target, int deopt_id, Label* exit,
                             DeoptimizeKind kind, Label* ret,
                             Label* jump_deoptimization_entry_label);

  void Trap() override;
  void DebugBreak() override;

  // Supports both AVX (dst != src1) and SSE (checks that dst == src1).
  void Pmaddwd(XMMRegister dst, XMMRegister src1, XMMRegister src2);
  void Pmaddubsw(XMMRegister dst, XMMRegister src1, XMMRegister src2);

  // Shufps that will mov src1 into dst if AVX is not supported.
  void Shufps(XMMRegister dst, XMMRegister src1, XMMRegister src2, byte imm8);

  // Non-SSE2 instructions.
  void Pextrd(Register dst, XMMRegister src, uint8_t imm8);

  void Pinsrb(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8);
  void Pinsrb(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8);
  void Pinsrw(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8);
  void Pinsrw(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8);
  void Pinsrd(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8);
  void Pinsrd(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8);
  void Pinsrd(XMMRegister dst, Register src2, uint8_t imm8);
  void Pinsrd(XMMRegister dst, Operand src2, uint8_t imm8);
  void Pinsrq(XMMRegister dst, XMMRegister src1, Register src2, uint8_t imm8);
  void Pinsrq(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t imm8);

  void Psllq(XMMRegister dst, int imm8) { Psllq(dst, static_cast<byte>(imm8)); }
  void Psllq(XMMRegister dst, byte imm8);
  void Psrlq(XMMRegister dst, int imm8) { Psrlq(dst, static_cast<byte>(imm8)); }
  void Psrlq(XMMRegister dst, byte imm8);
  void Pslld(XMMRegister dst, byte imm8);
  void Psrld(XMMRegister dst, byte imm8);

  // Supports both AVX (dst != src1) and SSE (checks that dst == src1).
  void Psrld(XMMRegister dst, XMMRegister src, byte imm8);

  void Pblendvb(XMMRegister dst, XMMRegister src1, XMMRegister src2,
                XMMRegister mask);
  void Blendvps(XMMRegister dst, XMMRegister src1, XMMRegister src2,
                XMMRegister mask);
  void Blendvpd(XMMRegister dst, XMMRegister src1, XMMRegister src2,
                XMMRegister mask);

  // Supports both SSE and AVX. Move src1 to dst if they are not equal on SSE.
  void Pshufb(XMMRegister dst, XMMRegister src1, XMMRegister src2);
  void Pmulhrsw(XMMRegister dst, XMMRegister src1, XMMRegister src2);

  // These Wasm SIMD ops do not have direct lowerings on x64. These
  // helpers are optimized to produce the fastest and smallest codegen.
  // Defined here to allow usage on both TurboFan and Liftoff.
  void I16x8SConvertI8x16High(XMMRegister dst, XMMRegister src);
  void I16x8UConvertI8x16High(XMMRegister dst, XMMRegister src);
  void I32x4SConvertI16x8High(XMMRegister dst, XMMRegister src);
  void I32x4UConvertI16x8High(XMMRegister dst, XMMRegister src);

  // Requires dst == mask when AVX is not supported.
  void S128Select(XMMRegister dst, XMMRegister mask, XMMRegister src1,
                  XMMRegister src2);

  void I64x2ExtMul(XMMRegister dst, XMMRegister src1, XMMRegister src2,
                   bool low, bool is_signed);
  // Requires that dst == src1 if AVX is not supported.
  void I32x4ExtMul(XMMRegister dst, XMMRegister src1, XMMRegister src2,
                   bool low, bool is_signed);
  void I16x8ExtMul(XMMRegister dst, XMMRegister src1, XMMRegister src2,
                   bool low, bool is_signed);

  void Abspd(XMMRegister dst);
  void Negpd(XMMRegister dst);

  void CompareRoot(Register with, RootIndex index);
  void CompareRoot(Operand with, RootIndex index);

  // Generates function and stub prologue code.
  void StubPrologue(StackFrame::Type type);
  void Prologue();

  // Calls Abort(msg) if the condition cc is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cc, AbortReason reason);

  // Like Assert(), but without condition.
  // Use --debug_code to enable.
  void AssertUnreachable(AbortReason reason);

  // Abort execution if a 64 bit register containing a 32 bit payload does not
  // have zeros in the top 32 bits, enabled via --debug-code.
  void AssertZeroExtended(Register reg);

  // Like Assert(), but always enabled.
  void Check(Condition cc, AbortReason reason);

  // Print a message to stdout and abort execution.
  void Abort(AbortReason msg);

  // Check that the stack is aligned.
  void CheckStackAlignment();

  // Activation support.
  void EnterFrame(StackFrame::Type type);
  void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) {
    // Out-of-line constant pool not implemented on x64.
    UNREACHABLE();
  }
  void LeaveFrame(StackFrame::Type type);

// Allocate stack space of given size (i.e. decrement {rsp} by the value
// stored in the given register, or by a constant). If you need to perform a
// stack check, do it before calling this function because this function may
// write into the newly allocated space. It may also overwrite the given
// register's value, in the version that takes a register.
#ifdef V8_TARGET_OS_WIN
  void AllocateStackSpace(Register bytes_scratch);
  void AllocateStackSpace(int bytes);
#else
  void AllocateStackSpace(Register bytes) { subq(rsp, bytes); }
  void AllocateStackSpace(int bytes) { subq(rsp, Immediate(bytes)); }
#endif

  // Removes current frame and its arguments from the stack preserving the
  // arguments and a return address pushed to the stack for the next call.  Both
  // |callee_args_count| and |caller_args_count| do not include receiver.
  // |callee_args_count| is not modified. |caller_args_count| is trashed.
  void PrepareForTailCall(Register callee_args_count,
                          Register caller_args_count, Register scratch0,
                          Register scratch1);

  void InitializeRootRegister() {
    ExternalReference isolate_root = ExternalReference::isolate_root(isolate());
    Move(kRootRegister, isolate_root);
  }

  void SaveRegisters(RegList registers);
  void RestoreRegisters(RegList registers);

  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode);
  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode, Address wasm_target);
  void CallEphemeronKeyBarrier(Register object, Register address,
                               SaveFPRegsMode fp_mode);

  void MoveNumber(Register dst, double value);
  void MoveNonSmi(Register dst, double value);

  // Calculate how much stack space (in bytes) are required to store caller
  // registers excluding those specified in the arguments.
  int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
                                      Register exclusion1 = no_reg,
                                      Register exclusion2 = no_reg,
                                      Register exclusion3 = no_reg) const;

  // PushCallerSaved and PopCallerSaved do not arrange the registers in any
  // particular order so they are not useful for calls that can cause a GC.
  // The caller can exclude up to 3 registers that do not need to be saved and
  // restored.

  // Push caller saved registers on the stack, and return the number of bytes
  // stack pointer is adjusted.
  int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                      Register exclusion2 = no_reg,
                      Register exclusion3 = no_reg);
  // Restore caller saved registers from the stack, and return the number of
  // bytes stack pointer is adjusted.
  int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                     Register exclusion2 = no_reg,
                     Register exclusion3 = no_reg);

  // Compute the start of the generated instruction stream from the current PC.
  // This is an alternative to embedding the {CodeObject} handle as a reference.
  void ComputeCodeStartAddress(Register dst);

  void ResetSpeculationPoisonRegister();

  // Control-flow integrity:

  // Define a function entrypoint. This doesn't emit any code for this
  // architecture, as control-flow integrity is not supported for it.
  void CodeEntry() {}
  // Define an exception handler.
  void ExceptionHandler() {}
  // Define an exception handler and bind a label.
  void BindExceptionHandler(Label* label) { bind(label); }

  // ---------------------------------------------------------------------------
  // Pointer compression support

  // Loads a field containing a HeapObject and decompresses it if pointer
  // compression is enabled.
  void LoadTaggedPointerField(Register destination, Operand field_operand);

  // Loads a field containing any tagged value and decompresses it if necessary.
  void LoadAnyTaggedField(Register destination, Operand field_operand);

  // Loads a field containing a HeapObject, decompresses it if necessary and
  // pushes full pointer to the stack. When pointer compression is enabled,
  // uses |scratch| to decompress the value.
  void PushTaggedPointerField(Operand field_operand, Register scratch);

  // Loads a field containing any tagged value, decompresses it if necessary and
  // pushes the full pointer to the stack. When pointer compression is enabled,
  // uses |scratch| to decompress the value.
  void PushTaggedAnyField(Operand field_operand, Register scratch);

  // Loads a field containing smi value and untags it.
  void SmiUntagField(Register dst, Operand src);

  // Compresses tagged value if necessary and stores it to given on-heap
  // location.
  void StoreTaggedField(Operand dst_field_operand, Immediate immediate);
  void StoreTaggedField(Operand dst_field_operand, Register value);

  // The following macros work even when pointer compression is not enabled.
  void DecompressTaggedSigned(Register destination, Operand field_operand);
  void DecompressTaggedPointer(Register destination, Operand field_operand);
  void DecompressTaggedPointer(Register destination, Register source);
  void DecompressAnyTagged(Register destination, Operand field_operand);

  // ---------------------------------------------------------------------------
  // V8 Heap sandbox support

  // Loads a field containing off-heap pointer and does necessary decoding
  // if V8 heap sandbox is enabled.
  void LoadExternalPointerField(Register destination, Operand field_operand,
                                ExternalPointerTag tag);

 protected:
  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;

  // Returns a register holding the smi value. The register MUST NOT be
  // modified. It may be the "smi 1 constant" register.
  Register GetSmiConstant(Smi value);

  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode, int builtin_index,
                           Address wasm_target);
};

// MacroAssembler implements a collection of frequently used macros.
class V8_EXPORT_PRIVATE MacroAssembler : public TurboAssembler {
 public:
  using TurboAssembler::TurboAssembler;

  // Loads and stores the value of an external reference.
  // Special case code for load and store to take advantage of
  // load_rax/store_rax if possible/necessary.
  // For other operations, just use:
  //   Operand operand = ExternalReferenceAsOperand(extref);
  //   operation(operand, ..);
  void Load(Register destination, ExternalReference source);
  void Store(ExternalReference destination, Register source);

  // Pushes the address of the external reference onto the stack.
  void PushAddress(ExternalReference source);

  // Operations on roots in the root-array.
  // Load a root value where the index (or part of it) is variable.
  // The variable_offset register is added to the fixed_offset value
  // to get the index into the root-array.
  void PushRoot(RootIndex index);

  // Compare the object in a register to a value and jump if they are equal.
  void JumpIfRoot(Register with, RootIndex index, Label* if_equal,
                  Label::Distance if_equal_distance = Label::kFar) {
    CompareRoot(with, index);
    j(equal, if_equal, if_equal_distance);
  }
  void JumpIfRoot(Operand with, RootIndex index, Label* if_equal,
                  Label::Distance if_equal_distance = Label::kFar) {
    CompareRoot(with, index);
    j(equal, if_equal, if_equal_distance);
  }

  // Compare the object in a register to a value and jump if they are not equal.
  void JumpIfNotRoot(Register with, RootIndex index, Label* if_not_equal,
                     Label::Distance if_not_equal_distance = Label::kFar) {
    CompareRoot(with, index);
    j(not_equal, if_not_equal, if_not_equal_distance);
  }
  void JumpIfNotRoot(Operand with, RootIndex index, Label* if_not_equal,
                     Label::Distance if_not_equal_distance = Label::kFar) {
    CompareRoot(with, index);
    j(not_equal, if_not_equal, if_not_equal_distance);
  }

  // ---------------------------------------------------------------------------
  // GC Support

  // Notify the garbage collector that we wrote a pointer into an object.
  // |object| is the object being stored into, |value| is the object being
  // stored.  value and scratch registers are clobbered by the operation.
  // The offset is the offset from the start of the object, not the offset from
  // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
  void RecordWriteField(
      Register object, int offset, Register value, Register scratch,
      SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK);

  // For page containing |object| mark region covering |address|
  // dirty. |object| is the object being stored into, |value| is the
  // object being stored. The address and value registers are clobbered by the
  // operation.  RecordWrite filters out smis so it does not update
  // the write barrier if the value is a smi.
  void RecordWrite(
      Register object, Register address, Register value, SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK);

  // Frame restart support.
  void MaybeDropFrames();

  // Enter specific kind of exit frame; either in normal or
  // debug mode. Expects the number of arguments in register rax and
  // sets up the number of arguments in register rdi and the pointer
  // to the first argument in register rsi.
  //
  // Allocates arg_stack_space * kSystemPointerSize memory (not GCed) on the
  // stack accessible via StackSpaceOperand.
  void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false,
                      StackFrame::Type frame_type = StackFrame::EXIT);

  // Enter specific kind of exit frame. Allocates
  // (arg_stack_space * kSystemPointerSize) memory (not GCed) on the stack
  // accessible via StackSpaceOperand.
  void EnterApiExitFrame(int arg_stack_space);

  // Leave the current exit frame. Expects/provides the return value in
  // register rax:rdx (untouched) and the pointer to the first
  // argument in register rsi (if pop_arguments == true).
  void LeaveExitFrame(bool save_doubles = false, bool pop_arguments = true);

  // Leave the current exit frame. Expects/provides the return value in
  // register rax (untouched).
  void LeaveApiExitFrame();

  // ---------------------------------------------------------------------------
  // JavaScript invokes

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeFunctionCode(Register function, Register new_target,
                          Register expected_parameter_count,
                          Register actual_parameter_count, InvokeFlag flag);

  // On function call, call into the debugger.
  void CallDebugOnFunctionCall(Register fun, Register new_target,
                               Register expected_parameter_count,
                               Register actual_parameter_count);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunction(Register function, Register new_target,
                      Register actual_parameter_count, InvokeFlag flag);

  void InvokeFunction(Register function, Register new_target,
                      Register expected_parameter_count,
                      Register actual_parameter_count, InvokeFlag flag);

  // ---------------------------------------------------------------------------
  // Conversions between tagged smi values and non-tagged integer values.

  // Tag an word-size value. The result must be known to be a valid smi value.
  void SmiTag(Register reg);
  // Requires dst != src
  void SmiTag(Register dst, Register src);

  // Simple comparison of smis.  Both sides must be known smis to use these,
  // otherwise use Cmp.
  void SmiCompare(Register smi1, Register smi2);
  void SmiCompare(Register dst, Smi src);
  void SmiCompare(Register dst, Operand src);
  void SmiCompare(Operand dst, Register src);
  void SmiCompare(Operand dst, Smi src);

  // Functions performing a check on a known or potential smi. Returns
  // a condition that is satisfied if the check is successful.

  // Test-and-jump functions. Typically combines a check function
  // above with a conditional jump.

  // Jump to label if the value is not a tagged smi.
  void JumpIfNotSmi(Register src, Label* on_not_smi,
                    Label::Distance near_jump = Label::kFar);

  // Jump to label if the value is not a tagged smi.
  void JumpIfNotSmi(Operand src, Label* on_not_smi,
                    Label::Distance near_jump = Label::kFar);

  // Operations on tagged smi values.

  // Smis represent a subset of integers. The subset is always equivalent to
  // a two's complement interpretation of a fixed number of bits.

  // Add an integer constant to a tagged smi, giving a tagged smi as result.
  // No overflow testing on the result is done.
  void SmiAddConstant(Operand dst, Smi constant);

  // Specialized operations

  // Converts, if necessary, a smi to a combination of number and
  // multiplier to be used as a scaled index.
  // The src register contains a *positive* smi value. The shift is the
  // power of two to multiply the index value by (e.g. to index by
  // smi-value * kSystemPointerSize, pass the smi and kSystemPointerSizeLog2).
  // The returned index register may be either src or dst, depending
  // on what is most efficient. If src and dst are different registers,
  // src is always unchanged.
  SmiIndex SmiToIndex(Register dst, Register src, int shift);

  // ---------------------------------------------------------------------------
  // Macro instructions.

  void Cmp(Register dst, Handle<Object> source);
  void Cmp(Operand dst, Handle<Object> source);
  void Cmp(Register dst, Smi src);
  void Cmp(Operand dst, Smi src);
  void Cmp(Register dst, int32_t src);

  // Checks if value is in range [lower_limit, higher_limit] using a single
  // comparison.
  void JumpIfIsInRange(Register value, unsigned lower_limit,
                       unsigned higher_limit, Label* on_in_range,
                       Label::Distance near_jump = Label::kFar);

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the rsp register.
  void Drop(int stack_elements);
  // Emit code to discard a positive number of pointer-sized elements
  // from the stack under the return address which remains on the top,
  // clobbering the rsp register.
  void DropUnderReturnAddress(int stack_elements,
                              Register scratch = kScratchRegister);

  void PushQuad(Operand src);
  void PushImm32(int32_t imm32);
  void Pop(Register dst);
  void Pop(Operand dst);
  void PopQuad(Operand dst);

  // ---------------------------------------------------------------------------
  // SIMD macros.
  void Absps(XMMRegister dst);
  void Negps(XMMRegister dst);
  // Generates a trampoline to jump to the off-heap instruction stream.
  void JumpToInstructionStream(Address entry);

  // Compare object type for heap object.
  // Always use unsigned comparisons: above and below, not less and greater.
  // Incoming register is heap_object and outgoing register is map.
  // They may be the same register, and may be kScratchRegister.
  void CmpObjectType(Register heap_object, InstanceType type, Register map);

  // Compare instance type for map.
  // Always use unsigned comparisons: above and below, not less and greater.
  void CmpInstanceType(Register map, InstanceType type);

  template <typename Field>
  void DecodeField(Register reg) {
    static const int shift = Field::kShift;
    static const int mask = Field::kMask >> Field::kShift;
    if (shift != 0) {
      shrq(reg, Immediate(shift));
    }
    andq(reg, Immediate(mask));
  }

  // Abort execution if argument is a smi, enabled via --debug-code.
  void AssertNotSmi(Register object);

  // Abort execution if argument is not a smi, enabled via --debug-code.
  void AssertSmi(Register object);
  void AssertSmi(Operand object);

  // Abort execution if argument is not a Constructor, enabled via --debug-code.
  void AssertConstructor(Register object);

  // Abort execution if argument is not a JSFunction, enabled via --debug-code.
  void AssertFunction(Register object);

  // Abort execution if argument is not a JSBoundFunction,
  // enabled via --debug-code.
  void AssertBoundFunction(Register object);

  // Abort execution if argument is not a JSGeneratorObject (or subclass),
  // enabled via --debug-code.
  void AssertGeneratorObject(Register object);

  // Abort execution if argument is not undefined or an AllocationSite, enabled
  // via --debug-code.
  void AssertUndefinedOrAllocationSite(Register object);

  // ---------------------------------------------------------------------------
  // Exception handling

  // Push a new stack handler and link it into stack handler chain.
  void PushStackHandler();

  // Unlink the stack handler on top of the stack from the stack handler chain.
  void PopStackHandler();

  // ---------------------------------------------------------------------------
  // Support functions.

  // Load the global proxy from the current context.
  void LoadGlobalProxy(Register dst) {
    LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
  }

  // Load the native context slot with the current index.
  void LoadNativeContextSlot(int index, Register dst);

  // ---------------------------------------------------------------------------
  // Runtime calls

  // Call a runtime routine.
  void CallRuntime(const Runtime::Function* f, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    const Runtime::Function* function = Runtime::FunctionForId(fid);
    CallRuntime(function, function->nargs, save_doubles);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
  }

  // Convenience function: tail call a runtime routine (jump)
  void TailCallRuntime(Runtime::FunctionId fid);

  // Jump to a runtime routines
  void JumpToExternalReference(const ExternalReference& ext,
                               bool builtin_exit_frame = false);

  // ---------------------------------------------------------------------------
  // StatsCounter support
  void IncrementCounter(StatsCounter* counter, int value);
  void DecrementCounter(StatsCounter* counter, int value);

  // ---------------------------------------------------------------------------
  // Stack limit utilities
  Operand StackLimitAsOperand(StackLimitKind kind);
  void StackOverflowCheck(
      Register num_args, Register scratch, Label* stack_overflow,
      Label::Distance stack_overflow_distance = Label::kFar);

  // ---------------------------------------------------------------------------
  // In-place weak references.
  void LoadWeakValue(Register in_out, Label* target_if_cleared);

  // ---------------------------------------------------------------------------
  // Debugging

  static int SafepointRegisterStackIndex(Register reg) {
    return SafepointRegisterStackIndex(reg.code());
  }

 private:
  // Order general registers are pushed by Pushad.
  // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r12, r14, r15.
  static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
  static const int kNumSafepointSavedRegisters = 12;

  // Helper functions for generating invokes.
  void InvokePrologue(Register expected_parameter_count,
                      Register actual_parameter_count, Label* done,
                      InvokeFlag flag);

  void EnterExitFramePrologue(bool save_rax, StackFrame::Type frame_type);

  // Allocates arg_stack_space * kSystemPointerSize memory (not GCed) on the
  // stack accessible via StackSpaceOperand.
  void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);

  void LeaveExitFrameEpilogue();

  // Compute memory operands for safepoint stack slots.
  static int SafepointRegisterStackIndex(int reg_code) {
    return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
  }

  // Needs access to SafepointRegisterStackIndex for compiled frame
  // traversal.
  friend class CommonFrame;

  DISALLOW_IMPLICIT_CONSTRUCTORS(MacroAssembler);
};

// -----------------------------------------------------------------------------
// Static helper functions.

// Generate an Operand for loading a field from an object.
inline Operand FieldOperand(Register object, int offset) {
  return Operand(object, offset - kHeapObjectTag);
}

// Generate an Operand for loading an indexed field from an object.
inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
                            int offset) {
  return Operand(object, index, scale, offset - kHeapObjectTag);
}

// Provides access to exit frame stack space (not GCed).
inline Operand StackSpaceOperand(int index) {
#ifdef V8_TARGET_OS_WIN
  const int kShaddowSpace = 4;
  return Operand(rsp, (index + kShaddowSpace) * kSystemPointerSize);
#else
  return Operand(rsp, index * kSystemPointerSize);
#endif
}

inline Operand StackOperandForReturnAddress(int32_t disp) {
  return Operand(rsp, disp);
}

#define ACCESS_MASM(masm) masm->

}  // namespace internal
}  // namespace v8

#endif  // V8_CODEGEN_X64_MACRO_ASSEMBLER_X64_H_