1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
|
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMMON_GLOBALS_H_
#define V8_COMMON_GLOBALS_H_
#include <stddef.h>
#include <stdint.h>
#include <limits>
#include <ostream>
#include "include/v8-internal.h"
#include "src/base/atomic-utils.h"
#include "src/base/build_config.h"
#include "src/base/flags.h"
#include "src/base/logging.h"
#include "src/base/macros.h"
#define V8_INFINITY std::numeric_limits<double>::infinity()
namespace v8 {
namespace base {
class Mutex;
class RecursiveMutex;
} // namespace base
namespace internal {
constexpr int KB = 1024;
constexpr int MB = KB * 1024;
constexpr int GB = MB * 1024;
// Determine whether we are running in a simulated environment.
// Setting USE_SIMULATOR explicitly from the build script will force
// the use of a simulated environment.
#if !defined(USE_SIMULATOR)
#if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_PPC64 && !V8_HOST_ARCH_PPC64)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390)
#define USE_SIMULATOR 1
#endif
#endif
// Determine whether the architecture uses an embedded constant pool
// (contiguous constant pool embedded in code object).
#if V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
#define V8_EMBEDDED_CONSTANT_POOL true
#else
#define V8_EMBEDDED_CONSTANT_POOL false
#endif
#if V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64
// Set stack limit lower for ARM and ARM64 than for other architectures because:
// - on Arm stack allocating MacroAssembler takes 120K bytes.
// See issue crbug.com/405338
// - on Arm64 when running in single-process mode for Android WebView, when
// initializing V8 we already have a large stack and so have to set the
// limit lower. See issue crbug.com/v8/10575
#define V8_DEFAULT_STACK_SIZE_KB 864
#else
// Slightly less than 1MB, since Windows' default stack size for
// the main execution thread is 1MB for both 32 and 64-bit.
#define V8_DEFAULT_STACK_SIZE_KB 984
#endif
// Minimum stack size in KB required by compilers.
constexpr int kStackSpaceRequiredForCompilation = 40;
// In order to emit more efficient stack checks in optimized code,
// deoptimization may implicitly exceed the V8 stack limit by this many bytes.
// Stack checks in functions with `difference between optimized and unoptimized
// stack frame sizes <= slack` can simply emit the simple stack check.
constexpr int kStackLimitSlackForDeoptimizationInBytes = 256;
// Sanity-check, assuming that we aim for a real OS stack size of at least 1MB.
STATIC_ASSERT(V8_DEFAULT_STACK_SIZE_KB* KB +
kStackLimitSlackForDeoptimizationInBytes <=
MB);
// Determine whether double field unboxing feature is enabled.
#if V8_TARGET_ARCH_64_BIT && !defined(V8_COMPRESS_POINTERS)
#define V8_DOUBLE_FIELDS_UNBOXING false
#else
#define V8_DOUBLE_FIELDS_UNBOXING false
#endif
// Determine whether dict mode prototypes feature is enabled.
#ifdef V8_DICT_MODE_PROTOTYPES
#define V8_DICT_MODE_PROTOTYPES_BOOL true
#else
#define V8_DICT_MODE_PROTOTYPES_BOOL false
#endif
// Determine whether tagged pointers are 8 bytes (used in Torque layouts for
// choosing where to insert padding).
#if V8_TARGET_ARCH_64_BIT && !defined(V8_COMPRESS_POINTERS)
#define TAGGED_SIZE_8_BYTES true
#else
#define TAGGED_SIZE_8_BYTES false
#endif
// Some types of tracing require the SFI to store a unique ID.
#if defined(V8_TRACE_MAPS) || defined(V8_TRACE_IGNITION)
#define V8_SFI_HAS_UNIQUE_ID true
#else
#define V8_SFI_HAS_UNIQUE_ID false
#endif
#if defined(V8_OS_WIN) && defined(V8_TARGET_ARCH_X64)
#define V8_OS_WIN_X64 true
#endif
#if defined(V8_OS_WIN) && defined(V8_TARGET_ARCH_ARM64)
#define V8_OS_WIN_ARM64 true
#endif
#if defined(V8_OS_WIN_X64) || defined(V8_OS_WIN_ARM64)
#define V8_OS_WIN64 true
#endif
// Superclass for classes only using static method functions.
// The subclass of AllStatic cannot be instantiated at all.
class AllStatic {
#ifdef DEBUG
public:
AllStatic() = delete;
#endif
};
using byte = uint8_t;
// -----------------------------------------------------------------------------
// Constants
constexpr int kMaxInt = 0x7FFFFFFF;
constexpr int kMinInt = -kMaxInt - 1;
constexpr int kMaxInt8 = (1 << 7) - 1;
constexpr int kMinInt8 = -(1 << 7);
constexpr int kMaxUInt8 = (1 << 8) - 1;
constexpr int kMinUInt8 = 0;
constexpr int kMaxInt16 = (1 << 15) - 1;
constexpr int kMinInt16 = -(1 << 15);
constexpr int kMaxUInt16 = (1 << 16) - 1;
constexpr int kMinUInt16 = 0;
constexpr int kMaxInt31 = kMaxInt / 2;
constexpr int kMinInt31 = kMinInt / 2;
constexpr uint32_t kMaxUInt32 = 0xFFFFFFFFu;
constexpr int kMinUInt32 = 0;
constexpr int kUInt8Size = sizeof(uint8_t);
constexpr int kByteSize = sizeof(byte);
constexpr int kCharSize = sizeof(char);
constexpr int kShortSize = sizeof(short); // NOLINT
constexpr int kUInt16Size = sizeof(uint16_t);
constexpr int kIntSize = sizeof(int);
constexpr int kInt32Size = sizeof(int32_t);
constexpr int kInt64Size = sizeof(int64_t);
constexpr int kUInt32Size = sizeof(uint32_t);
constexpr int kSizetSize = sizeof(size_t);
constexpr int kFloatSize = sizeof(float);
constexpr int kDoubleSize = sizeof(double);
constexpr int kIntptrSize = sizeof(intptr_t);
constexpr int kUIntptrSize = sizeof(uintptr_t);
constexpr int kSystemPointerSize = sizeof(void*);
constexpr int kSystemPointerHexDigits = kSystemPointerSize == 4 ? 8 : 12;
constexpr int kPCOnStackSize = kSystemPointerSize;
constexpr int kFPOnStackSize = kSystemPointerSize;
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32
constexpr int kElidedFrameSlots = kPCOnStackSize / kSystemPointerSize;
#else
constexpr int kElidedFrameSlots = 0;
#endif
constexpr int kDoubleSizeLog2 = 3;
// Total wasm code space per engine (i.e. per process) is limited to make
// certain attacks that rely on heap spraying harder.
// Just below 4GB, such that {kMaxWasmCodeMemory} fits in a 32-bit size_t.
constexpr size_t kMaxWasmCodeMB = 4095;
constexpr size_t kMaxWasmCodeMemory = kMaxWasmCodeMB * MB;
#if V8_HOST_ARCH_64_BIT
constexpr int kSystemPointerSizeLog2 = 3;
constexpr intptr_t kIntptrSignBit =
static_cast<intptr_t>(uintptr_t{0x8000000000000000});
constexpr bool kPlatformRequiresCodeRange = true;
#if (V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64) && \
(V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64) && V8_OS_LINUX
constexpr size_t kMaximalCodeRangeSize = 512 * MB;
constexpr size_t kMinExpectedOSPageSize = 64 * KB; // OS page on PPC Linux
#elif V8_TARGET_ARCH_ARM64
constexpr size_t kMaximalCodeRangeSize = 128 * MB;
constexpr size_t kMinExpectedOSPageSize = 4 * KB; // OS page.
#else
constexpr size_t kMaximalCodeRangeSize = 128 * MB;
constexpr size_t kMinExpectedOSPageSize = 4 * KB; // OS page.
#endif
#if V8_OS_WIN
constexpr size_t kMinimumCodeRangeSize = 4 * MB;
constexpr size_t kReservedCodeRangePages = 1;
#else
constexpr size_t kMinimumCodeRangeSize = 3 * MB;
constexpr size_t kReservedCodeRangePages = 0;
#endif
#else
constexpr int kSystemPointerSizeLog2 = 2;
constexpr intptr_t kIntptrSignBit = 0x80000000;
#if (V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64) && \
(V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64) && V8_OS_LINUX
constexpr bool kPlatformRequiresCodeRange = false;
constexpr size_t kMaximalCodeRangeSize = 0 * MB;
constexpr size_t kMinimumCodeRangeSize = 0 * MB;
constexpr size_t kMinExpectedOSPageSize = 64 * KB; // OS page on PPC Linux
#elif V8_TARGET_ARCH_MIPS
constexpr bool kPlatformRequiresCodeRange = false;
constexpr size_t kMaximalCodeRangeSize = 2048LL * MB;
constexpr size_t kMinimumCodeRangeSize = 0 * MB;
constexpr size_t kMinExpectedOSPageSize = 4 * KB; // OS page.
#else
constexpr bool kPlatformRequiresCodeRange = false;
constexpr size_t kMaximalCodeRangeSize = 0 * MB;
constexpr size_t kMinimumCodeRangeSize = 0 * MB;
constexpr size_t kMinExpectedOSPageSize = 4 * KB; // OS page.
#endif
constexpr size_t kReservedCodeRangePages = 0;
#endif
STATIC_ASSERT(kSystemPointerSize == (1 << kSystemPointerSizeLog2));
#ifdef V8_COMPRESS_ZONES
#define COMPRESS_ZONES_BOOL true
#else
#define COMPRESS_ZONES_BOOL false
#endif // V8_COMPRESS_ZONES
// The flag controls whether zones pointer compression should be enabled for
// TurboFan graphs or not.
static constexpr bool kCompressGraphZone = COMPRESS_ZONES_BOOL;
#ifdef V8_COMPRESS_POINTERS
static_assert(
kSystemPointerSize == kInt64Size,
"Pointer compression can be enabled only for 64-bit architectures");
constexpr int kTaggedSize = kInt32Size;
constexpr int kTaggedSizeLog2 = 2;
// These types define raw and atomic storage types for tagged values stored
// on V8 heap.
using Tagged_t = uint32_t;
using AtomicTagged_t = base::Atomic32;
#else
constexpr int kTaggedSize = kSystemPointerSize;
constexpr int kTaggedSizeLog2 = kSystemPointerSizeLog2;
// These types define raw and atomic storage types for tagged values stored
// on V8 heap.
using Tagged_t = Address;
using AtomicTagged_t = base::AtomicWord;
#endif // V8_COMPRESS_POINTERS
STATIC_ASSERT(kTaggedSize == (1 << kTaggedSizeLog2));
STATIC_ASSERT((kTaggedSize == 8) == TAGGED_SIZE_8_BYTES);
using AsAtomicTagged = base::AsAtomicPointerImpl<AtomicTagged_t>;
STATIC_ASSERT(sizeof(Tagged_t) == kTaggedSize);
STATIC_ASSERT(sizeof(AtomicTagged_t) == kTaggedSize);
STATIC_ASSERT(kTaggedSize == kApiTaggedSize);
// TODO(ishell): use kTaggedSize or kSystemPointerSize instead.
#ifndef V8_COMPRESS_POINTERS
constexpr int kPointerSize = kSystemPointerSize;
constexpr int kPointerSizeLog2 = kSystemPointerSizeLog2;
STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));
#endif
// This type defines raw storage type for external (or off-V8 heap) pointers
// stored on V8 heap.
constexpr int kExternalPointerSize = sizeof(ExternalPointer_t);
constexpr int kEmbedderDataSlotSize = kSystemPointerSize;
constexpr int kEmbedderDataSlotSizeInTaggedSlots =
kEmbedderDataSlotSize / kTaggedSize;
STATIC_ASSERT(kEmbedderDataSlotSize >= kSystemPointerSize);
constexpr int kExternalAllocationSoftLimit =
internal::Internals::kExternalAllocationSoftLimit;
// Maximum object size that gets allocated into regular pages. Objects larger
// than that size are allocated in large object space and are never moved in
// memory. This also applies to new space allocation, since objects are never
// migrated from new space to large object space. Takes double alignment into
// account.
//
// Current value: half of the page size.
constexpr int kMaxRegularHeapObjectSize = (1 << (kPageSizeBits - 1));
constexpr int kBitsPerByte = 8;
constexpr int kBitsPerByteLog2 = 3;
constexpr int kBitsPerSystemPointer = kSystemPointerSize * kBitsPerByte;
constexpr int kBitsPerSystemPointerLog2 =
kSystemPointerSizeLog2 + kBitsPerByteLog2;
constexpr int kBitsPerInt = kIntSize * kBitsPerByte;
// IEEE 754 single precision floating point number bit layout.
constexpr uint32_t kBinary32SignMask = 0x80000000u;
constexpr uint32_t kBinary32ExponentMask = 0x7f800000u;
constexpr uint32_t kBinary32MantissaMask = 0x007fffffu;
constexpr int kBinary32ExponentBias = 127;
constexpr int kBinary32MaxExponent = 0xFE;
constexpr int kBinary32MinExponent = 0x01;
constexpr int kBinary32MantissaBits = 23;
constexpr int kBinary32ExponentShift = 23;
// Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
// other bits set.
constexpr uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;
// Latin1/UTF-16 constants
// Code-point values in Unicode 4.0 are 21 bits wide.
// Code units in UTF-16 are 16 bits wide.
using uc16 = uint16_t;
using uc32 = uint32_t;
constexpr int kOneByteSize = kCharSize;
constexpr int kUC16Size = sizeof(uc16); // NOLINT
// 128 bit SIMD value size.
constexpr int kSimd128Size = 16;
// FUNCTION_ADDR(f) gets the address of a C function f.
#define FUNCTION_ADDR(f) (reinterpret_cast<v8::internal::Address>(f))
// FUNCTION_CAST<F>(addr) casts an address into a function
// of type F. Used to invoke generated code from within C.
template <typename F>
F FUNCTION_CAST(byte* addr) {
return reinterpret_cast<F>(reinterpret_cast<Address>(addr));
}
template <typename F>
F FUNCTION_CAST(Address addr) {
return reinterpret_cast<F>(addr);
}
// Determine whether the architecture uses function descriptors
// which provide a level of indirection between the function pointer
// and the function entrypoint.
#if (V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64) && \
(V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && \
(!defined(_CALL_ELF) || _CALL_ELF == 1)))
#define USES_FUNCTION_DESCRIPTORS 1
#define FUNCTION_ENTRYPOINT_ADDRESS(f) \
(reinterpret_cast<v8::internal::Address*>( \
&(reinterpret_cast<intptr_t*>(f)[0])))
#else
#define USES_FUNCTION_DESCRIPTORS 0
#endif
// -----------------------------------------------------------------------------
// Declarations for use in both the preparser and the rest of V8.
// The Strict Mode (ECMA-262 5th edition, 4.2.2).
enum class LanguageMode : bool { kSloppy, kStrict };
static const size_t LanguageModeSize = 2;
inline size_t hash_value(LanguageMode mode) {
return static_cast<size_t>(mode);
}
inline const char* LanguageMode2String(LanguageMode mode) {
switch (mode) {
case LanguageMode::kSloppy:
return "sloppy";
case LanguageMode::kStrict:
return "strict";
}
UNREACHABLE();
}
inline std::ostream& operator<<(std::ostream& os, LanguageMode mode) {
return os << LanguageMode2String(mode);
}
inline bool is_sloppy(LanguageMode language_mode) {
return language_mode == LanguageMode::kSloppy;
}
inline bool is_strict(LanguageMode language_mode) {
return language_mode != LanguageMode::kSloppy;
}
inline bool is_valid_language_mode(int language_mode) {
return language_mode == static_cast<int>(LanguageMode::kSloppy) ||
language_mode == static_cast<int>(LanguageMode::kStrict);
}
inline LanguageMode construct_language_mode(bool strict_bit) {
return static_cast<LanguageMode>(strict_bit);
}
// Return kStrict if either of the language modes is kStrict, or kSloppy
// otherwise.
inline LanguageMode stricter_language_mode(LanguageMode mode1,
LanguageMode mode2) {
STATIC_ASSERT(LanguageModeSize == 2);
return static_cast<LanguageMode>(static_cast<int>(mode1) |
static_cast<int>(mode2));
}
// A non-keyed store is of the form a.x = foo or a["x"] = foo whereas
// a keyed store is of the form a[expression] = foo.
enum class StoreOrigin { kMaybeKeyed, kNamed };
enum TypeofMode : int { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
// Enums used by CEntry.
enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
enum ArgvMode { kArgvOnStack, kArgvInRegister };
// This constant is used as an undefined value when passing source positions.
constexpr int kNoSourcePosition = -1;
// This constant is used to signal the function entry implicit stack check
// bytecode offset.
constexpr int kFunctionEntryBytecodeOffset = -1;
// This constant is used to indicate missing deoptimization information.
constexpr int kNoDeoptimizationId = -1;
// Deoptimize bailout kind:
// - Eager: a check failed in the optimized code and deoptimization happens
// immediately.
// - Lazy: the code has been marked as dependent on some assumption which
// is checked elsewhere and can trigger deoptimization the next time the
// code is executed.
// - Soft: similar to lazy deoptimization, but does not contribute to the
// total deopt count which can lead to disabling optimization for a function.
// - Bailout: a check failed in the optimized code but we don't
// deoptimize the code, but try to heal the feedback and try to rerun
// the optimized code again.
// - EagerWithResume: a check failed in the optimized code, but we can execute
// a more expensive check in a builtin that might either result in us resuming
// execution in the optimized code, or deoptimizing immediately.
enum class DeoptimizeKind : uint8_t {
kEager,
kSoft,
kBailout,
kLazy,
kEagerWithResume,
};
constexpr DeoptimizeKind kFirstDeoptimizeKind = DeoptimizeKind::kEager;
constexpr DeoptimizeKind kLastDeoptimizeKind = DeoptimizeKind::kEagerWithResume;
STATIC_ASSERT(static_cast<int>(kFirstDeoptimizeKind) == 0);
constexpr int kDeoptimizeKindCount = static_cast<int>(kLastDeoptimizeKind) + 1;
inline size_t hash_value(DeoptimizeKind kind) {
return static_cast<size_t>(kind);
}
inline std::ostream& operator<<(std::ostream& os, DeoptimizeKind kind) {
switch (kind) {
case DeoptimizeKind::kEager:
return os << "Eager";
case DeoptimizeKind::kSoft:
return os << "Soft";
case DeoptimizeKind::kLazy:
return os << "Lazy";
case DeoptimizeKind::kBailout:
return os << "Bailout";
case DeoptimizeKind::kEagerWithResume:
return os << "EagerMaybeResume";
}
}
// Indicates whether the lookup is related to sloppy-mode block-scoped
// function hoisting, and is a synthetic assignment for that.
enum class LookupHoistingMode { kNormal, kLegacySloppy };
inline std::ostream& operator<<(std::ostream& os,
const LookupHoistingMode& mode) {
switch (mode) {
case LookupHoistingMode::kNormal:
return os << "normal hoisting";
case LookupHoistingMode::kLegacySloppy:
return os << "legacy sloppy hoisting";
}
UNREACHABLE();
}
static_assert(kSmiValueSize <= 32, "Unsupported Smi tagging scheme");
// Smi sign bit position must be 32-bit aligned so we can use sign extension
// instructions on 64-bit architectures without additional shifts.
static_assert((kSmiValueSize + kSmiShiftSize + kSmiTagSize) % 32 == 0,
"Unsupported Smi tagging scheme");
constexpr bool kIsSmiValueInUpper32Bits =
(kSmiValueSize + kSmiShiftSize + kSmiTagSize) == 64;
constexpr bool kIsSmiValueInLower32Bits =
(kSmiValueSize + kSmiShiftSize + kSmiTagSize) == 32;
static_assert(!SmiValuesAre32Bits() == SmiValuesAre31Bits(),
"Unsupported Smi tagging scheme");
static_assert(SmiValuesAre32Bits() == kIsSmiValueInUpper32Bits,
"Unsupported Smi tagging scheme");
static_assert(SmiValuesAre31Bits() == kIsSmiValueInLower32Bits,
"Unsupported Smi tagging scheme");
// Mask for the sign bit in a smi.
constexpr intptr_t kSmiSignMask = static_cast<intptr_t>(
uintptr_t{1} << (kSmiValueSize + kSmiShiftSize + kSmiTagSize - 1));
// Desired alignment for tagged pointers.
constexpr int kObjectAlignmentBits = kTaggedSizeLog2;
constexpr intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
constexpr intptr_t kObjectAlignmentMask = kObjectAlignment - 1;
// Desired alignment for system pointers.
constexpr intptr_t kPointerAlignment = (1 << kSystemPointerSizeLog2);
constexpr intptr_t kPointerAlignmentMask = kPointerAlignment - 1;
// Desired alignment for double values.
constexpr intptr_t kDoubleAlignment = 8;
constexpr intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;
// Desired alignment for generated code is 32 bytes (to improve cache line
// utilization).
constexpr int kCodeAlignmentBits = 5;
constexpr intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
constexpr intptr_t kCodeAlignmentMask = kCodeAlignment - 1;
const Address kWeakHeapObjectMask = 1 << 1;
// The lower 32 bits of the cleared weak reference value is always equal to
// the |kClearedWeakHeapObjectLower32| constant but on 64-bit architectures
// the value of the upper 32 bits part may be
// 1) zero when pointer compression is disabled,
// 2) upper 32 bits of the isolate root value when pointer compression is
// enabled.
// This is necessary to make pointer decompression computation also suitable
// for cleared weak reference.
// Note, that real heap objects can't have lower 32 bits equal to 3 because
// this offset belongs to page header. So, in either case it's enough to
// compare only the lower 32 bits of a MaybeObject value in order to figure
// out if it's a cleared reference or not.
const uint32_t kClearedWeakHeapObjectLower32 = 3;
// Zap-value: The value used for zapping dead objects.
// Should be a recognizable hex value tagged as a failure.
#ifdef V8_HOST_ARCH_64_BIT
constexpr uint64_t kClearedFreeMemoryValue = 0;
constexpr uint64_t kZapValue = uint64_t{0xdeadbeedbeadbeef};
constexpr uint64_t kHandleZapValue = uint64_t{0x1baddead0baddeaf};
constexpr uint64_t kGlobalHandleZapValue = uint64_t{0x1baffed00baffedf};
constexpr uint64_t kFromSpaceZapValue = uint64_t{0x1beefdad0beefdaf};
constexpr uint64_t kDebugZapValue = uint64_t{0xbadbaddbbadbaddb};
constexpr uint64_t kSlotsZapValue = uint64_t{0xbeefdeadbeefdeef};
constexpr uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
#else
constexpr uint32_t kClearedFreeMemoryValue = 0;
constexpr uint32_t kZapValue = 0xdeadbeef;
constexpr uint32_t kHandleZapValue = 0xbaddeaf;
constexpr uint32_t kGlobalHandleZapValue = 0xbaffedf;
constexpr uint32_t kFromSpaceZapValue = 0xbeefdaf;
constexpr uint32_t kSlotsZapValue = 0xbeefdeef;
constexpr uint32_t kDebugZapValue = 0xbadbaddb;
constexpr uint32_t kFreeListZapValue = 0xfeed1eaf;
#endif
constexpr int kCodeZapValue = 0xbadc0de;
constexpr uint32_t kPhantomReferenceZap = 0xca11bac;
// Page constants.
static const intptr_t kPageAlignmentMask = (intptr_t{1} << kPageSizeBits) - 1;
// On Intel architecture, cache line size is 64 bytes.
// On ARM it may be less (32 bytes), but as far this constant is
// used for aligning data, it doesn't hurt to align on a greater value.
#define PROCESSOR_CACHE_LINE_SIZE 64
// Constants relevant to double precision floating point numbers.
// If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
constexpr uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);
enum class HeapObjectReferenceType {
WEAK,
STRONG,
};
enum class ArgumentsType {
kRuntime,
kJS,
};
// -----------------------------------------------------------------------------
// Forward declarations for frequently used classes
class AccessorInfo;
template <ArgumentsType>
class Arguments;
using RuntimeArguments = Arguments<ArgumentsType::kRuntime>;
using JavaScriptArguments = Arguments<ArgumentsType::kJS>;
class Assembler;
class ClassScope;
class Code;
class CodeSpace;
class Context;
class DeclarationScope;
class Debug;
class DebugInfo;
class Descriptor;
class DescriptorArray;
class TransitionArray;
class ExternalReference;
class FeedbackVector;
class FixedArray;
class Foreign;
class FreeStoreAllocationPolicy;
class FunctionTemplateInfo;
class GlobalDictionary;
template <typename T>
class Handle;
class Heap;
class HeapObject;
class HeapObjectReference;
class IC;
class InterceptorInfo;
class Isolate;
class JSReceiver;
class JSArray;
class JSFunction;
class JSObject;
class LocalIsolate;
class MacroAssembler;
class Map;
class MapSpace;
class MarkCompactCollector;
template <typename T>
class MaybeHandle;
class MaybeObject;
class MemoryChunk;
class MessageLocation;
class ModuleScope;
class Name;
class NameDictionary;
class NativeContext;
class NewSpace;
class NewLargeObjectSpace;
class NumberDictionary;
class Object;
class OldLargeObjectSpace;
template <HeapObjectReferenceType kRefType, typename StorageType>
class TaggedImpl;
class StrongTaggedValue;
class TaggedValue;
class CompressedObjectSlot;
class CompressedMaybeObjectSlot;
class CompressedMapWordSlot;
class CompressedHeapObjectSlot;
class OffHeapCompressedObjectSlot;
class FullObjectSlot;
class FullMaybeObjectSlot;
class FullHeapObjectSlot;
class OffHeapFullObjectSlot;
class OldSpace;
class ReadOnlySpace;
class RelocInfo;
class Scope;
class ScopeInfo;
class Script;
class SimpleNumberDictionary;
class Smi;
template <typename Config, class Allocator = FreeStoreAllocationPolicy>
class SplayTree;
class String;
class StringStream;
class Struct;
class Symbol;
class Variable;
// Slots are either full-pointer slots or compressed slots depending on whether
// pointer compression is enabled or not.
struct SlotTraits {
#ifdef V8_COMPRESS_POINTERS
using TObjectSlot = CompressedObjectSlot;
using TMaybeObjectSlot = CompressedMaybeObjectSlot;
using THeapObjectSlot = CompressedHeapObjectSlot;
using TOffHeapObjectSlot = OffHeapCompressedObjectSlot;
#else
using TObjectSlot = FullObjectSlot;
using TMaybeObjectSlot = FullMaybeObjectSlot;
using THeapObjectSlot = FullHeapObjectSlot;
using TOffHeapObjectSlot = OffHeapFullObjectSlot;
#endif
};
// An ObjectSlot instance describes a kTaggedSize-sized on-heap field ("slot")
// holding an Object value (smi or strong heap object).
using ObjectSlot = SlotTraits::TObjectSlot;
// A MaybeObjectSlot instance describes a kTaggedSize-sized on-heap field
// ("slot") holding MaybeObject (smi or weak heap object or strong heap object).
using MaybeObjectSlot = SlotTraits::TMaybeObjectSlot;
// A HeapObjectSlot instance describes a kTaggedSize-sized field ("slot")
// holding a weak or strong pointer to a heap object (think:
// HeapObjectReference).
using HeapObjectSlot = SlotTraits::THeapObjectSlot;
// An OffHeapObjectSlot instance describes a kTaggedSize-sized field ("slot")
// holding an Object value (smi or strong heap object), whose slot location is
// off-heap.
using OffHeapObjectSlot = SlotTraits::TOffHeapObjectSlot;
using WeakSlotCallback = bool (*)(FullObjectSlot pointer);
using WeakSlotCallbackWithHeap = bool (*)(Heap* heap, FullObjectSlot pointer);
// -----------------------------------------------------------------------------
// Miscellaneous
// NOTE: SpaceIterator depends on AllocationSpace enumeration values being
// consecutive.
enum AllocationSpace {
RO_SPACE, // Immortal, immovable and immutable objects,
OLD_SPACE, // Old generation regular object space.
CODE_SPACE, // Old generation code object space, marked executable.
MAP_SPACE, // Old generation map object space, non-movable.
LO_SPACE, // Old generation large object space.
CODE_LO_SPACE, // Old generation large code object space.
NEW_LO_SPACE, // Young generation large object space.
NEW_SPACE, // Young generation semispaces for regular objects collected with
// Scavenger.
FIRST_SPACE = RO_SPACE,
LAST_SPACE = NEW_SPACE,
FIRST_MUTABLE_SPACE = OLD_SPACE,
LAST_MUTABLE_SPACE = NEW_SPACE,
FIRST_GROWABLE_PAGED_SPACE = OLD_SPACE,
LAST_GROWABLE_PAGED_SPACE = MAP_SPACE
};
constexpr int kSpaceTagSize = 4;
STATIC_ASSERT(FIRST_SPACE == 0);
enum class AllocationType : uint8_t {
kYoung, // Regular object allocated in NEW_SPACE or NEW_LO_SPACE
kOld, // Regular object allocated in OLD_SPACE or LO_SPACE
kCode, // Code object allocated in CODE_SPACE or CODE_LO_SPACE
kMap, // Map object allocated in MAP_SPACE
kReadOnly // Object allocated in RO_SPACE
};
inline size_t hash_value(AllocationType kind) {
return static_cast<uint8_t>(kind);
}
inline std::ostream& operator<<(std::ostream& os, AllocationType kind) {
switch (kind) {
case AllocationType::kYoung:
return os << "Young";
case AllocationType::kOld:
return os << "Old";
case AllocationType::kCode:
return os << "Code";
case AllocationType::kMap:
return os << "Map";
case AllocationType::kReadOnly:
return os << "ReadOnly";
}
UNREACHABLE();
}
// TODO(ishell): review and rename kWordAligned to kTaggedAligned.
enum AllocationAlignment { kWordAligned, kDoubleAligned, kDoubleUnaligned };
enum class AccessMode { ATOMIC, NON_ATOMIC };
enum class AllowLargeObjects { kFalse, kTrue };
enum MinimumCapacity {
USE_DEFAULT_MINIMUM_CAPACITY,
USE_CUSTOM_MINIMUM_CAPACITY
};
enum GarbageCollector { SCAVENGER, MARK_COMPACTOR, MINOR_MARK_COMPACTOR };
enum class LocalSpaceKind {
kNone,
kCompactionSpaceForScavenge,
kCompactionSpaceForMarkCompact,
kCompactionSpaceForMinorMarkCompact,
kFirstCompactionSpace = kCompactionSpaceForScavenge,
kLastCompactionSpace = kCompactionSpaceForMinorMarkCompact,
};
enum Executability { NOT_EXECUTABLE, EXECUTABLE };
enum class BytecodeFlushMode {
kDoNotFlushBytecode,
kFlushBytecode,
kStressFlushBytecode,
};
// Indicates whether a script should be parsed and compiled in REPL mode.
enum class REPLMode {
kYes,
kNo,
};
inline REPLMode construct_repl_mode(bool is_repl_mode) {
return is_repl_mode ? REPLMode::kYes : REPLMode::kNo;
}
// Flag indicating whether code is built into the VM (one of the natives files).
enum NativesFlag { NOT_NATIVES_CODE, EXTENSION_CODE, INSPECTOR_CODE };
// ParseRestriction is used to restrict the set of valid statements in a
// unit of compilation. Restriction violations cause a syntax error.
enum ParseRestriction : bool {
NO_PARSE_RESTRICTION, // All expressions are allowed.
ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression.
};
// State for inline cache call sites. Aliased as IC::State.
enum InlineCacheState {
// No feedback will be collected.
NO_FEEDBACK,
// Has never been executed.
UNINITIALIZED,
// Has been executed and only one receiver type has been seen.
MONOMORPHIC,
// Check failed due to prototype (or map deprecation).
RECOMPUTE_HANDLER,
// Multiple receiver types have been seen.
POLYMORPHIC,
// Many receiver types have been seen.
MEGAMORPHIC,
// A generic handler is installed and no extra typefeedback is recorded.
GENERIC,
};
// Printing support.
inline const char* InlineCacheState2String(InlineCacheState state) {
switch (state) {
case NO_FEEDBACK:
return "NOFEEDBACK";
case UNINITIALIZED:
return "UNINITIALIZED";
case MONOMORPHIC:
return "MONOMORPHIC";
case RECOMPUTE_HANDLER:
return "RECOMPUTE_HANDLER";
case POLYMORPHIC:
return "POLYMORPHIC";
case MEGAMORPHIC:
return "MEGAMORPHIC";
case GENERIC:
return "GENERIC";
}
UNREACHABLE();
}
enum WhereToStart { kStartAtReceiver, kStartAtPrototype };
enum ResultSentinel { kNotFound = -1, kUnsupported = -2 };
enum ShouldThrow {
kThrowOnError = Internals::kThrowOnError,
kDontThrow = Internals::kDontThrow
};
enum class ThreadKind { kMain, kBackground };
// Union used for customized checking of the IEEE double types
// inlined within v8 runtime, rather than going to the underlying
// platform headers and libraries
union IeeeDoubleLittleEndianArchType {
double d;
struct {
unsigned int man_low : 32;
unsigned int man_high : 20;
unsigned int exp : 11;
unsigned int sign : 1;
} bits;
};
union IeeeDoubleBigEndianArchType {
double d;
struct {
unsigned int sign : 1;
unsigned int exp : 11;
unsigned int man_high : 20;
unsigned int man_low : 32;
} bits;
};
#if V8_TARGET_LITTLE_ENDIAN
using IeeeDoubleArchType = IeeeDoubleLittleEndianArchType;
constexpr int kIeeeDoubleMantissaWordOffset = 0;
constexpr int kIeeeDoubleExponentWordOffset = 4;
#else
using IeeeDoubleArchType = IeeeDoubleBigEndianArchType;
constexpr int kIeeeDoubleMantissaWordOffset = 4;
constexpr int kIeeeDoubleExponentWordOffset = 0;
#endif
// -----------------------------------------------------------------------------
// Macros
// Testers for test.
#define HAS_SMI_TAG(value) \
((static_cast<i::Tagged_t>(value) & ::i::kSmiTagMask) == ::i::kSmiTag)
#define HAS_STRONG_HEAP_OBJECT_TAG(value) \
(((static_cast<i::Tagged_t>(value) & ::i::kHeapObjectTagMask) == \
::i::kHeapObjectTag))
#define HAS_WEAK_HEAP_OBJECT_TAG(value) \
(((static_cast<i::Tagged_t>(value) & ::i::kHeapObjectTagMask) == \
::i::kWeakHeapObjectTag))
// OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
#define OBJECT_POINTER_ALIGN(value) \
(((value) + ::i::kObjectAlignmentMask) & ~::i::kObjectAlignmentMask)
// OBJECT_POINTER_PADDING returns the padding size required to align value
// as a HeapObject pointer
#define OBJECT_POINTER_PADDING(value) (OBJECT_POINTER_ALIGN(value) - (value))
// POINTER_SIZE_ALIGN returns the value aligned as a system pointer.
#define POINTER_SIZE_ALIGN(value) \
(((value) + ::i::kPointerAlignmentMask) & ~::i::kPointerAlignmentMask)
// POINTER_SIZE_PADDING returns the padding size required to align value
// as a system pointer.
#define POINTER_SIZE_PADDING(value) (POINTER_SIZE_ALIGN(value) - (value))
// CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
#define CODE_POINTER_ALIGN(value) \
(((value) + ::i::kCodeAlignmentMask) & ~::i::kCodeAlignmentMask)
// CODE_POINTER_PADDING returns the padding size required to align value
// as a generated code segment.
#define CODE_POINTER_PADDING(value) (CODE_POINTER_ALIGN(value) - (value))
// DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
#define DOUBLE_POINTER_ALIGN(value) \
(((value) + ::i::kDoubleAlignmentMask) & ~::i::kDoubleAlignmentMask)
// Defines hints about receiver values based on structural knowledge.
enum class ConvertReceiverMode : unsigned {
kNullOrUndefined, // Guaranteed to be null or undefined.
kNotNullOrUndefined, // Guaranteed to never be null or undefined.
kAny // No specific knowledge about receiver.
};
inline size_t hash_value(ConvertReceiverMode mode) {
return bit_cast<unsigned>(mode);
}
inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) {
switch (mode) {
case ConvertReceiverMode::kNullOrUndefined:
return os << "NULL_OR_UNDEFINED";
case ConvertReceiverMode::kNotNullOrUndefined:
return os << "NOT_NULL_OR_UNDEFINED";
case ConvertReceiverMode::kAny:
return os << "ANY";
}
UNREACHABLE();
}
// Valid hints for the abstract operation OrdinaryToPrimitive,
// implemented according to ES6, section 7.1.1.
enum class OrdinaryToPrimitiveHint { kNumber, kString };
// Valid hints for the abstract operation ToPrimitive,
// implemented according to ES6, section 7.1.1.
enum class ToPrimitiveHint { kDefault, kNumber, kString };
// Defines specifics about arguments object or rest parameter creation.
enum class CreateArgumentsType : uint8_t {
kMappedArguments,
kUnmappedArguments,
kRestParameter
};
inline size_t hash_value(CreateArgumentsType type) {
return bit_cast<uint8_t>(type);
}
inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) {
switch (type) {
case CreateArgumentsType::kMappedArguments:
return os << "MAPPED_ARGUMENTS";
case CreateArgumentsType::kUnmappedArguments:
return os << "UNMAPPED_ARGUMENTS";
case CreateArgumentsType::kRestParameter:
return os << "REST_PARAMETER";
}
UNREACHABLE();
}
enum ScopeType : uint8_t {
CLASS_SCOPE, // The scope introduced by a class.
EVAL_SCOPE, // The top-level scope for an eval source.
FUNCTION_SCOPE, // The top-level scope for a function.
MODULE_SCOPE, // The scope introduced by a module literal
SCRIPT_SCOPE, // The top-level scope for a script or a top-level eval.
CATCH_SCOPE, // The scope introduced by catch.
BLOCK_SCOPE, // The scope introduced by a new block.
WITH_SCOPE // The scope introduced by with.
};
inline std::ostream& operator<<(std::ostream& os, ScopeType type) {
switch (type) {
case ScopeType::EVAL_SCOPE:
return os << "EVAL_SCOPE";
case ScopeType::FUNCTION_SCOPE:
return os << "FUNCTION_SCOPE";
case ScopeType::MODULE_SCOPE:
return os << "MODULE_SCOPE";
case ScopeType::SCRIPT_SCOPE:
return os << "SCRIPT_SCOPE";
case ScopeType::CATCH_SCOPE:
return os << "CATCH_SCOPE";
case ScopeType::BLOCK_SCOPE:
return os << "BLOCK_SCOPE";
case ScopeType::CLASS_SCOPE:
return os << "CLASS_SCOPE";
case ScopeType::WITH_SCOPE:
return os << "WITH_SCOPE";
}
UNREACHABLE();
}
// AllocationSiteMode controls whether allocations are tracked by an allocation
// site.
enum AllocationSiteMode {
DONT_TRACK_ALLOCATION_SITE,
TRACK_ALLOCATION_SITE,
LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
};
enum class AllocationSiteUpdateMode { kUpdate, kCheckOnly };
// The mips architecture prior to revision 5 has inverted encoding for sNaN.
#if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) && \
(!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \
(V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) && \
(!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR)))
constexpr uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
constexpr uint32_t kHoleNanLower32 = 0xFFFF7FFF;
#else
constexpr uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
constexpr uint32_t kHoleNanLower32 = 0xFFF7FFFF;
#endif
constexpr uint64_t kHoleNanInt64 =
(static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;
// ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER
constexpr uint64_t kMaxSafeIntegerUint64 = 9007199254740991; // 2^53-1
constexpr double kMaxSafeInteger = static_cast<double>(kMaxSafeIntegerUint64);
constexpr double kMaxUInt32Double = double{kMaxUInt32};
// The order of this enum has to be kept in sync with the predicates below.
enum class VariableMode : uint8_t {
// User declared variables:
kLet, // declared via 'let' declarations (first lexical)
kConst, // declared via 'const' declarations (last lexical)
kVar, // declared via 'var', and 'function' declarations
// Variables introduced by the compiler:
kTemporary, // temporary variables (not user-visible), stack-allocated
// unless the scope as a whole has forced context allocation
kDynamic, // always require dynamic lookup (we don't know
// the declaration)
kDynamicGlobal, // requires dynamic lookup, but we know that the
// variable is global unless it has been shadowed
// by an eval-introduced variable
kDynamicLocal, // requires dynamic lookup, but we know that the
// variable is local and where it is unless it
// has been shadowed by an eval-introduced
// variable
// Variables for private methods or accessors whose access require
// brand check. Declared only in class scopes by the compiler
// and allocated only in class contexts:
kPrivateMethod, // Does not coexist with any other variable with the same
// name in the same scope.
kPrivateSetterOnly, // Incompatible with variables with the same name but
// any mode other than kPrivateGetterOnly. Transition to
// kPrivateGetterAndSetter if a later declaration for the
// same name with kPrivateGetterOnly is made.
kPrivateGetterOnly, // Incompatible with variables with the same name but
// any mode other than kPrivateSetterOnly. Transition to
// kPrivateGetterAndSetter if a later declaration for the
// same name with kPrivateSetterOnly is made.
kPrivateGetterAndSetter, // Does not coexist with any other variable with the
// same name in the same scope.
kLastLexicalVariableMode = kConst,
};
// Printing support
#ifdef DEBUG
inline const char* VariableMode2String(VariableMode mode) {
switch (mode) {
case VariableMode::kVar:
return "VAR";
case VariableMode::kLet:
return "LET";
case VariableMode::kPrivateGetterOnly:
return "PRIVATE_GETTER_ONLY";
case VariableMode::kPrivateSetterOnly:
return "PRIVATE_SETTER_ONLY";
case VariableMode::kPrivateMethod:
return "PRIVATE_METHOD";
case VariableMode::kPrivateGetterAndSetter:
return "PRIVATE_GETTER_AND_SETTER";
case VariableMode::kConst:
return "CONST";
case VariableMode::kDynamic:
return "DYNAMIC";
case VariableMode::kDynamicGlobal:
return "DYNAMIC_GLOBAL";
case VariableMode::kDynamicLocal:
return "DYNAMIC_LOCAL";
case VariableMode::kTemporary:
return "TEMPORARY";
}
UNREACHABLE();
}
#endif
enum VariableKind : uint8_t {
NORMAL_VARIABLE,
PARAMETER_VARIABLE,
THIS_VARIABLE,
SLOPPY_BLOCK_FUNCTION_VARIABLE,
SLOPPY_FUNCTION_NAME_VARIABLE
};
inline bool IsDynamicVariableMode(VariableMode mode) {
return mode >= VariableMode::kDynamic && mode <= VariableMode::kDynamicLocal;
}
inline bool IsDeclaredVariableMode(VariableMode mode) {
STATIC_ASSERT(static_cast<uint8_t>(VariableMode::kLet) ==
0); // Implies that mode >= VariableMode::kLet.
return mode <= VariableMode::kVar;
}
inline bool IsPrivateMethodOrAccessorVariableMode(VariableMode mode) {
return mode >= VariableMode::kPrivateMethod &&
mode <= VariableMode::kPrivateGetterAndSetter;
}
inline bool IsSerializableVariableMode(VariableMode mode) {
return IsDeclaredVariableMode(mode) ||
IsPrivateMethodOrAccessorVariableMode(mode);
}
inline bool IsConstVariableMode(VariableMode mode) {
return mode == VariableMode::kConst ||
IsPrivateMethodOrAccessorVariableMode(mode);
}
inline bool IsLexicalVariableMode(VariableMode mode) {
STATIC_ASSERT(static_cast<uint8_t>(VariableMode::kLet) ==
0); // Implies that mode >= VariableMode::kLet.
return mode <= VariableMode::kLastLexicalVariableMode;
}
enum VariableLocation : uint8_t {
// Before and during variable allocation, a variable whose location is
// not yet determined. After allocation, a variable looked up as a
// property on the global object (and possibly absent). name() is the
// variable name, index() is invalid.
UNALLOCATED,
// A slot in the parameter section on the stack. index() is the
// parameter index, counting left-to-right. The receiver is index -1;
// the first parameter is index 0.
PARAMETER,
// A slot in the local section on the stack. index() is the variable
// index in the stack frame, starting at 0.
LOCAL,
// An indexed slot in a heap context. index() is the variable index in
// the context object on the heap, starting at 0. scope() is the
// corresponding scope.
CONTEXT,
// A named slot in a heap context. name() is the variable name in the
// context object on the heap, with lookup starting at the current
// context. index() is invalid.
LOOKUP,
// A named slot in a module's export table.
MODULE,
// An indexed slot in a script context. index() is the variable
// index in the context object on the heap, starting at 0.
// Important: REPL_GLOBAL variables from different scripts with the
// same name share a single script context slot. Every
// script context will reserve a slot, but only one will be used.
// REPL_GLOBAL variables are stored in script contexts, but accessed like
// globals, i.e. they always require a lookup at runtime to find the right
// script context.
REPL_GLOBAL,
kLastVariableLocation = REPL_GLOBAL
};
// ES6 specifies declarative environment records with mutable and immutable
// bindings that can be in two states: initialized and uninitialized.
// When accessing a binding, it needs to be checked for initialization.
// However in the following cases the binding is initialized immediately
// after creation so the initialization check can always be skipped:
//
// 1. Var declared local variables.
// var foo;
// 2. A local variable introduced by a function declaration.
// function foo() {}
// 3. Parameters
// function x(foo) {}
// 4. Catch bound variables.
// try {} catch (foo) {}
// 6. Function name variables of named function expressions.
// var x = function foo() {}
// 7. Implicit binding of 'this'.
// 8. Implicit binding of 'arguments' in functions.
//
// The following enum specifies a flag that indicates if the binding needs a
// distinct initialization step (kNeedsInitialization) or if the binding is
// immediately initialized upon creation (kCreatedInitialized).
enum InitializationFlag : uint8_t { kNeedsInitialization, kCreatedInitialized };
// Static variables can only be used with the class in the closest
// class scope as receivers.
enum class IsStaticFlag : uint8_t { kNotStatic, kStatic };
enum MaybeAssignedFlag : uint8_t { kNotAssigned, kMaybeAssigned };
enum class InterpreterPushArgsMode : unsigned {
kArrayFunction,
kWithFinalSpread,
kOther
};
inline size_t hash_value(InterpreterPushArgsMode mode) {
return bit_cast<unsigned>(mode);
}
inline std::ostream& operator<<(std::ostream& os,
InterpreterPushArgsMode mode) {
switch (mode) {
case InterpreterPushArgsMode::kArrayFunction:
return os << "ArrayFunction";
case InterpreterPushArgsMode::kWithFinalSpread:
return os << "WithFinalSpread";
case InterpreterPushArgsMode::kOther:
return os << "Other";
}
UNREACHABLE();
}
inline uint32_t ObjectHash(Address address) {
// All objects are at least pointer aligned, so we can remove the trailing
// zeros.
return static_cast<uint32_t>(address >> kTaggedSizeLog2);
}
// Type feedback is encoded in such a way that, we can combine the feedback
// at different points by performing an 'OR' operation. Type feedback moves
// to a more generic type when we combine feedback.
//
// kSignedSmall -> kSignedSmallInputs -> kNumber -> kNumberOrOddball -> kAny
// kString -> kAny
// kBigInt -> kAny
//
// Technically we wouldn't need the separation between the kNumber and the
// kNumberOrOddball values here, since for binary operations, we always
// truncate oddballs to numbers. In practice though it causes TurboFan to
// generate quite a lot of unused code though if we always handle numbers
// and oddballs everywhere, although in 99% of the use sites they are only
// used with numbers.
class BinaryOperationFeedback {
public:
enum {
kNone = 0x0,
kSignedSmall = 0x1,
kSignedSmallInputs = 0x3,
kNumber = 0x7,
kNumberOrOddball = 0xF,
kString = 0x10,
kBigInt = 0x20,
kAny = 0x7F
};
};
// Type feedback is encoded in such a way that, we can combine the feedback
// at different points by performing an 'OR' operation.
// This is distinct from BinaryOperationFeedback on purpose, because the
// feedback that matters differs greatly as well as the way it is consumed.
class CompareOperationFeedback {
enum {
kSignedSmallFlag = 1 << 0,
kOtherNumberFlag = 1 << 1,
kBooleanFlag = 1 << 2,
kNullOrUndefinedFlag = 1 << 3,
kInternalizedStringFlag = 1 << 4,
kOtherStringFlag = 1 << 5,
kSymbolFlag = 1 << 6,
kBigIntFlag = 1 << 7,
kReceiverFlag = 1 << 8,
kAnyMask = 0x1FF,
};
public:
enum Type {
kNone = 0,
kBoolean = kBooleanFlag,
kNullOrUndefined = kNullOrUndefinedFlag,
kOddball = kBoolean | kNullOrUndefined,
kSignedSmall = kSignedSmallFlag,
kNumber = kSignedSmall | kOtherNumberFlag,
kNumberOrBoolean = kNumber | kBoolean,
kNumberOrOddball = kNumber | kOddball,
kInternalizedString = kInternalizedStringFlag,
kString = kInternalizedString | kOtherStringFlag,
kReceiver = kReceiverFlag,
kReceiverOrNullOrUndefined = kReceiver | kNullOrUndefined,
kBigInt = kBigIntFlag,
kSymbol = kSymbolFlag,
kAny = kAnyMask,
};
};
enum class Operation {
// Binary operations.
kAdd,
kSubtract,
kMultiply,
kDivide,
kModulus,
kExponentiate,
kBitwiseAnd,
kBitwiseOr,
kBitwiseXor,
kShiftLeft,
kShiftRight,
kShiftRightLogical,
// Unary operations.
kBitwiseNot,
kNegate,
kIncrement,
kDecrement,
// Compare operations.
kEqual,
kStrictEqual,
kLessThan,
kLessThanOrEqual,
kGreaterThan,
kGreaterThanOrEqual,
};
// Type feedback is encoded in such a way that, we can combine the feedback
// at different points by performing an 'OR' operation. Type feedback moves
// to a more generic type when we combine feedback.
// kNone -> kEnumCacheKeysAndIndices -> kEnumCacheKeys -> kAny
enum class ForInFeedback : uint8_t {
kNone = 0x0,
kEnumCacheKeysAndIndices = 0x1,
kEnumCacheKeys = 0x3,
kAny = 0x7
};
STATIC_ASSERT((static_cast<int>(ForInFeedback::kNone) |
static_cast<int>(ForInFeedback::kEnumCacheKeysAndIndices)) ==
static_cast<int>(ForInFeedback::kEnumCacheKeysAndIndices));
STATIC_ASSERT((static_cast<int>(ForInFeedback::kEnumCacheKeysAndIndices) |
static_cast<int>(ForInFeedback::kEnumCacheKeys)) ==
static_cast<int>(ForInFeedback::kEnumCacheKeys));
STATIC_ASSERT((static_cast<int>(ForInFeedback::kEnumCacheKeys) |
static_cast<int>(ForInFeedback::kAny)) ==
static_cast<int>(ForInFeedback::kAny));
enum class UnicodeEncoding : uint8_t {
// Different unicode encodings in a |word32|:
UTF16, // hi 16bits -> trailing surrogate or 0, low 16bits -> lead surrogate
UTF32, // full UTF32 code unit / Unicode codepoint
};
inline size_t hash_value(UnicodeEncoding encoding) {
return static_cast<uint8_t>(encoding);
}
inline std::ostream& operator<<(std::ostream& os, UnicodeEncoding encoding) {
switch (encoding) {
case UnicodeEncoding::UTF16:
return os << "UTF16";
case UnicodeEncoding::UTF32:
return os << "UTF32";
}
UNREACHABLE();
}
enum class IterationKind { kKeys, kValues, kEntries };
inline std::ostream& operator<<(std::ostream& os, IterationKind kind) {
switch (kind) {
case IterationKind::kKeys:
return os << "IterationKind::kKeys";
case IterationKind::kValues:
return os << "IterationKind::kValues";
case IterationKind::kEntries:
return os << "IterationKind::kEntries";
}
UNREACHABLE();
}
enum class CollectionKind { kMap, kSet };
inline std::ostream& operator<<(std::ostream& os, CollectionKind kind) {
switch (kind) {
case CollectionKind::kMap:
return os << "CollectionKind::kMap";
case CollectionKind::kSet:
return os << "CollectionKind::kSet";
}
UNREACHABLE();
}
// Flags for the runtime function kDefineDataPropertyInLiteral. A property can
// be enumerable or not, and, in case of functions, the function name
// can be set or not.
enum class DataPropertyInLiteralFlag {
kNoFlags = 0,
kDontEnum = 1 << 0,
kSetFunctionName = 1 << 1
};
using DataPropertyInLiteralFlags = base::Flags<DataPropertyInLiteralFlag>;
DEFINE_OPERATORS_FOR_FLAGS(DataPropertyInLiteralFlags)
enum ExternalArrayType {
kExternalInt8Array = 1,
kExternalUint8Array,
kExternalInt16Array,
kExternalUint16Array,
kExternalInt32Array,
kExternalUint32Array,
kExternalFloat32Array,
kExternalFloat64Array,
kExternalUint8ClampedArray,
kExternalBigInt64Array,
kExternalBigUint64Array,
};
struct AssemblerDebugInfo {
AssemblerDebugInfo(const char* name, const char* file, int line)
: name(name), file(file), line(line) {}
const char* name;
const char* file;
int line;
};
inline std::ostream& operator<<(std::ostream& os,
const AssemblerDebugInfo& info) {
os << "(" << info.name << ":" << info.file << ":" << info.line << ")";
return os;
}
using FileAndLine = std::pair<const char*, int>;
enum OptimizationMarker : int32_t {
// These values are set so that it is easy to check if there is a marker where
// some processing needs to be done.
kNone = 0b000,
kInOptimizationQueue = 0b001,
kCompileOptimized = 0b010,
kCompileOptimizedConcurrent = 0b011,
kLogFirstExecution = 0b100,
kLastOptimizationMarker = kLogFirstExecution
};
// For kNone or kInOptimizationQueue we don't need any special processing.
// To check both cases using a single mask, we expect the kNone to be 0 and
// kInOptimizationQueue to be 1 so that we can mask off the lsb for checking.
STATIC_ASSERT(kNone == 0b000 && kInOptimizationQueue == 0b001);
STATIC_ASSERT(kLastOptimizationMarker <= 0b111);
static constexpr uint32_t kNoneOrInOptimizationQueueMask = 0b110;
inline bool IsInOptimizationQueueMarker(OptimizationMarker marker) {
return marker == OptimizationMarker::kInOptimizationQueue;
}
inline bool IsCompileOptimizedMarker(OptimizationMarker marker) {
return marker == OptimizationMarker::kCompileOptimized ||
marker == OptimizationMarker::kCompileOptimizedConcurrent;
}
inline std::ostream& operator<<(std::ostream& os,
const OptimizationMarker& marker) {
switch (marker) {
case OptimizationMarker::kLogFirstExecution:
return os << "OptimizationMarker::kLogFirstExecution";
case OptimizationMarker::kNone:
return os << "OptimizationMarker::kNone";
case OptimizationMarker::kCompileOptimized:
return os << "OptimizationMarker::kCompileOptimized";
case OptimizationMarker::kCompileOptimizedConcurrent:
return os << "OptimizationMarker::kCompileOptimizedConcurrent";
case OptimizationMarker::kInOptimizationQueue:
return os << "OptimizationMarker::kInOptimizationQueue";
}
}
enum class OptimizationTier {
kNone = 0b00,
kMidTier = 0b01,
kTopTier = 0b10,
kLastOptimizationTier = kTopTier
};
static constexpr uint32_t kNoneOrMidTierMask = 0b10;
static constexpr uint32_t kNoneMask = 0b11;
inline std::ostream& operator<<(std::ostream& os,
const OptimizationTier& tier) {
switch (tier) {
case OptimizationTier::kNone:
return os << "OptimizationTier::kNone";
case OptimizationTier::kMidTier:
return os << "OptimizationTier::kMidTier";
case OptimizationTier::kTopTier:
return os << "OptimizationTier::kTopTier";
}
}
enum class SpeculationMode { kAllowSpeculation, kDisallowSpeculation };
inline std::ostream& operator<<(std::ostream& os,
SpeculationMode speculation_mode) {
switch (speculation_mode) {
case SpeculationMode::kAllowSpeculation:
return os << "SpeculationMode::kAllowSpeculation";
case SpeculationMode::kDisallowSpeculation:
return os << "SpeculationMode::kDisallowSpeculation";
}
UNREACHABLE();
return os;
}
enum class BlockingBehavior { kBlock, kDontBlock };
enum class ConcurrencyMode { kNotConcurrent, kConcurrent };
#define FOR_EACH_ISOLATE_ADDRESS_NAME(C) \
C(Handler, handler) \
C(CEntryFP, c_entry_fp) \
C(CFunction, c_function) \
C(Context, context) \
C(PendingException, pending_exception) \
C(PendingHandlerContext, pending_handler_context) \
C(PendingHandlerEntrypoint, pending_handler_entrypoint) \
C(PendingHandlerConstantPool, pending_handler_constant_pool) \
C(PendingHandlerFP, pending_handler_fp) \
C(PendingHandlerSP, pending_handler_sp) \
C(ExternalCaughtException, external_caught_exception) \
C(JSEntrySP, js_entry_sp)
enum IsolateAddressId {
#define DECLARE_ENUM(CamelName, hacker_name) k##CamelName##Address,
FOR_EACH_ISOLATE_ADDRESS_NAME(DECLARE_ENUM)
#undef DECLARE_ENUM
kIsolateAddressCount
};
enum class PoisoningMitigationLevel {
kPoisonAll,
kDontPoison,
kPoisonCriticalOnly
};
enum class LoadSensitivity {
kCritical, // Critical loads are poisoned whenever we can run untrusted
// code (i.e., when --untrusted-code-mitigations is on).
kUnsafe, // Unsafe loads are poisoned when full poisoning is on
// (--branch-load-poisoning).
kSafe // Safe loads are never poisoned.
};
// The reason for a WebAssembly trap.
#define FOREACH_WASM_TRAPREASON(V) \
V(TrapUnreachable) \
V(TrapMemOutOfBounds) \
V(TrapUnalignedAccess) \
V(TrapDivByZero) \
V(TrapDivUnrepresentable) \
V(TrapRemByZero) \
V(TrapFloatUnrepresentable) \
V(TrapFuncSigMismatch) \
V(TrapDataSegmentDropped) \
V(TrapElemSegmentDropped) \
V(TrapTableOutOfBounds) \
V(TrapRethrowNull) \
V(TrapNullDereference) \
V(TrapIllegalCast) \
V(TrapArrayOutOfBounds)
enum KeyedAccessLoadMode {
STANDARD_LOAD,
LOAD_IGNORE_OUT_OF_BOUNDS,
};
enum KeyedAccessStoreMode {
STANDARD_STORE,
STORE_AND_GROW_HANDLE_COW,
STORE_IGNORE_OUT_OF_BOUNDS,
STORE_HANDLE_COW
};
enum MutableMode { MUTABLE, IMMUTABLE };
inline bool IsCOWHandlingStoreMode(KeyedAccessStoreMode store_mode) {
return store_mode == STORE_HANDLE_COW ||
store_mode == STORE_AND_GROW_HANDLE_COW;
}
inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) {
return store_mode == STORE_AND_GROW_HANDLE_COW;
}
enum IcCheckType { ELEMENT, PROPERTY };
// Helper stubs can be called in different ways depending on where the target
// code is located and how the call sequence is expected to look like:
// - CodeObject: Call on-heap {Code} object via {RelocInfo::CODE_TARGET}.
// - WasmRuntimeStub: Call native {WasmCode} stub via
// {RelocInfo::WASM_STUB_CALL}.
// - BuiltinPointer: Call a builtin based on a builtin pointer with dynamic
// contents. If builtins are embedded, we call directly into off-heap code
// without going through the on-heap Code trampoline.
enum class StubCallMode {
kCallCodeObject,
kCallWasmRuntimeStub,
kCallBuiltinPointer,
};
constexpr int kFunctionLiteralIdInvalid = -1;
constexpr int kFunctionLiteralIdTopLevel = 0;
constexpr int kSmallOrderedHashSetMinCapacity = 4;
constexpr int kSmallOrderedHashMapMinCapacity = 4;
static const uint16_t kDontAdaptArgumentsSentinel = static_cast<uint16_t>(-1);
// Opaque data type for identifying stack frames. Used extensively
// by the debugger.
// ID_MIN_VALUE and ID_MAX_VALUE are specified to ensure that enumeration type
// has correct value range (see Issue 830 for more details).
enum StackFrameId { ID_MIN_VALUE = kMinInt, ID_MAX_VALUE = kMaxInt, NO_ID = 0 };
enum class ExceptionStatus : bool { kException = false, kSuccess = true };
V8_INLINE bool operator!(ExceptionStatus status) {
return !static_cast<bool>(status);
}
enum class TraceRetainingPathMode { kEnabled, kDisabled };
// Used in the ScopeInfo flags fields for the function name variable for named
// function expressions, and for the receiver. Must be declared here so that it
// can be used in Torque.
enum class VariableAllocationInfo { NONE, STACK, CONTEXT, UNUSED };
enum class DynamicCheckMapsStatus : uint8_t {
kSuccess = 0,
kBailout = 1,
kDeopt = 2
};
#ifdef V8_COMPRESS_POINTERS
class IsolateRoot {
public:
explicit constexpr IsolateRoot(Address address) : address_(address) {}
// NOLINTNEXTLINE
inline IsolateRoot(const Isolate* isolate);
// NOLINTNEXTLINE
inline IsolateRoot(const LocalIsolate* isolate);
inline Address address() const;
private:
Address address_;
};
#else
class IsolateRoot {
public:
IsolateRoot() = default;
// NOLINTNEXTLINE
IsolateRoot(const Isolate* isolate) {}
// NOLINTNEXTLINE
IsolateRoot(const LocalIsolate* isolate) {}
};
#endif
class int31_t {
public:
constexpr int31_t() : value_(0) {}
constexpr int31_t(int value) : value_(value) { // NOLINT(runtime/explicit)
DCHECK_EQ((value & 0x80000000) != 0, (value & 0x40000000) != 0);
}
int31_t& operator=(int value) {
DCHECK_EQ((value & 0x80000000) != 0, (value & 0x40000000) != 0);
value_ = value;
return *this;
}
int32_t value() const { return value_; }
operator int32_t() const { return value_; }
private:
int32_t value_;
};
enum PropertiesEnumerationMode {
// String and then Symbol properties according to the spec
// ES#sec-object.assign
kEnumerationOrder,
// Order of property addition
kPropertyAdditionOrder,
};
} // namespace internal
// Tag dispatching support for acquire loads and release stores.
struct AcquireLoadTag {};
struct RelaxedLoadTag {};
struct ReleaseStoreTag {};
struct RelaxedStoreTag {};
static constexpr AcquireLoadTag kAcquireLoad;
static constexpr RelaxedLoadTag kRelaxedLoad;
static constexpr ReleaseStoreTag kReleaseStore;
static constexpr RelaxedStoreTag kRelaxedStore;
} // namespace v8
namespace i = v8::internal;
#endif // V8_COMMON_GLOBALS_H_
|