summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/backend/instruction.h
blob: e189100c346a76d521eb3126a1f12cf649b47e45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_COMPILER_BACKEND_INSTRUCTION_H_
#define V8_COMPILER_BACKEND_INSTRUCTION_H_

#include <deque>
#include <iosfwd>
#include <map>
#include <set>

#include "src/base/compiler-specific.h"
#include "src/codegen/external-reference.h"
#include "src/codegen/register-arch.h"
#include "src/codegen/source-position.h"
#include "src/common/globals.h"
#include "src/compiler/backend/instruction-codes.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/feedback-source.h"
#include "src/compiler/frame.h"
#include "src/compiler/opcodes.h"
#include "src/numbers/double.h"
#include "src/zone/zone-allocator.h"

namespace v8 {
namespace internal {

class RegisterConfiguration;

namespace compiler {

class Schedule;
class SourcePositionTable;

class V8_EXPORT_PRIVATE InstructionOperand {
 public:
  static const int kInvalidVirtualRegister = -1;

  enum Kind {
    INVALID,
    UNALLOCATED,
    CONSTANT,
    IMMEDIATE,
    // Location operand kinds.
    ALLOCATED,
    FIRST_LOCATION_OPERAND_KIND = ALLOCATED
    // Location operand kinds must be last.
  };

  InstructionOperand() : InstructionOperand(INVALID) {}

  Kind kind() const { return KindField::decode(value_); }

#define INSTRUCTION_OPERAND_PREDICATE(name, type) \
  bool Is##name() const { return kind() == type; }
  INSTRUCTION_OPERAND_PREDICATE(Invalid, INVALID)
  // UnallocatedOperands are place-holder operands created before register
  // allocation. They later are assigned registers and become AllocatedOperands.
  INSTRUCTION_OPERAND_PREDICATE(Unallocated, UNALLOCATED)
  // Constant operands participate in register allocation. They are allocated to
  // registers but have a special "spilling" behavior. When a ConstantOperand
  // value must be rematerialized, it is loaded from an immediate constant
  // rather from an unspilled slot.
  INSTRUCTION_OPERAND_PREDICATE(Constant, CONSTANT)
  // ImmediateOperands do not participate in register allocation and are only
  // embedded directly in instructions, e.g. small integers and on some
  // platforms Objects.
  INSTRUCTION_OPERAND_PREDICATE(Immediate, IMMEDIATE)
  // AllocatedOperands are registers or stack slots that are assigned by the
  // register allocator and are always associated with a virtual register.
  INSTRUCTION_OPERAND_PREDICATE(Allocated, ALLOCATED)
#undef INSTRUCTION_OPERAND_PREDICATE

  inline bool IsAnyLocationOperand() const;
  inline bool IsLocationOperand() const;
  inline bool IsFPLocationOperand() const;
  inline bool IsAnyRegister() const;
  inline bool IsRegister() const;
  inline bool IsFPRegister() const;
  inline bool IsFloatRegister() const;
  inline bool IsDoubleRegister() const;
  inline bool IsSimd128Register() const;
  inline bool IsAnyStackSlot() const;
  inline bool IsStackSlot() const;
  inline bool IsFPStackSlot() const;
  inline bool IsFloatStackSlot() const;
  inline bool IsDoubleStackSlot() const;
  inline bool IsSimd128StackSlot() const;

  template <typename SubKindOperand>
  static SubKindOperand* New(Zone* zone, const SubKindOperand& op) {
    void* buffer = zone->New(sizeof(op));
    return new (buffer) SubKindOperand(op);
  }

  static void ReplaceWith(InstructionOperand* dest,
                          const InstructionOperand* src) {
    *dest = *src;
  }

  bool Equals(const InstructionOperand& that) const {
    return this->value_ == that.value_;
  }

  bool Compare(const InstructionOperand& that) const {
    return this->value_ < that.value_;
  }

  bool EqualsCanonicalized(const InstructionOperand& that) const {
    return this->GetCanonicalizedValue() == that.GetCanonicalizedValue();
  }

  bool CompareCanonicalized(const InstructionOperand& that) const {
    return this->GetCanonicalizedValue() < that.GetCanonicalizedValue();
  }

  bool InterferesWith(const InstructionOperand& other) const;

  // APIs to aid debugging. For general-stream APIs, use operator<<.
  void Print() const;

 protected:
  explicit InstructionOperand(Kind kind) : value_(KindField::encode(kind)) {}

  inline uint64_t GetCanonicalizedValue() const;

  using KindField = base::BitField64<Kind, 0, 3>;

  uint64_t value_;
};

using InstructionOperandVector = ZoneVector<InstructionOperand>;

std::ostream& operator<<(std::ostream&, const InstructionOperand&);

#define INSTRUCTION_OPERAND_CASTS(OperandType, OperandKind)      \
                                                                 \
  static OperandType* cast(InstructionOperand* op) {             \
    DCHECK_EQ(OperandKind, op->kind());                          \
    return static_cast<OperandType*>(op);                        \
  }                                                              \
                                                                 \
  static const OperandType* cast(const InstructionOperand* op) { \
    DCHECK_EQ(OperandKind, op->kind());                          \
    return static_cast<const OperandType*>(op);                  \
  }                                                              \
                                                                 \
  static OperandType cast(const InstructionOperand& op) {        \
    DCHECK_EQ(OperandKind, op.kind());                           \
    return *static_cast<const OperandType*>(&op);                \
  }

class UnallocatedOperand final : public InstructionOperand {
 public:
  enum BasicPolicy { FIXED_SLOT, EXTENDED_POLICY };

  enum ExtendedPolicy {
    NONE,
    REGISTER_OR_SLOT,
    REGISTER_OR_SLOT_OR_CONSTANT,
    FIXED_REGISTER,
    FIXED_FP_REGISTER,
    MUST_HAVE_REGISTER,
    MUST_HAVE_SLOT,
    SAME_AS_FIRST_INPUT
  };

  // Lifetime of operand inside the instruction.
  enum Lifetime {
    // USED_AT_START operand is guaranteed to be live only at instruction start.
    // The register allocator is free to assign the same register to some other
    // operand used inside instruction (i.e. temporary or output).
    USED_AT_START,

    // USED_AT_END operand is treated as live until the end of instruction.
    // This means that register allocator will not reuse its register for any
    // other operand inside instruction.
    USED_AT_END
  };

  UnallocatedOperand(ExtendedPolicy policy, int virtual_register)
      : UnallocatedOperand(virtual_register) {
    value_ |= BasicPolicyField::encode(EXTENDED_POLICY);
    value_ |= ExtendedPolicyField::encode(policy);
    value_ |= LifetimeField::encode(USED_AT_END);
  }

  UnallocatedOperand(BasicPolicy policy, int index, int virtual_register)
      : UnallocatedOperand(virtual_register) {
    DCHECK(policy == FIXED_SLOT);
    value_ |= BasicPolicyField::encode(policy);
    value_ |= static_cast<uint64_t>(static_cast<int64_t>(index))
              << FixedSlotIndexField::kShift;
    DCHECK(this->fixed_slot_index() == index);
  }

  UnallocatedOperand(ExtendedPolicy policy, int index, int virtual_register)
      : UnallocatedOperand(virtual_register) {
    DCHECK(policy == FIXED_REGISTER || policy == FIXED_FP_REGISTER);
    value_ |= BasicPolicyField::encode(EXTENDED_POLICY);
    value_ |= ExtendedPolicyField::encode(policy);
    value_ |= LifetimeField::encode(USED_AT_END);
    value_ |= FixedRegisterField::encode(index);
  }

  UnallocatedOperand(ExtendedPolicy policy, Lifetime lifetime,
                     int virtual_register)
      : UnallocatedOperand(virtual_register) {
    value_ |= BasicPolicyField::encode(EXTENDED_POLICY);
    value_ |= ExtendedPolicyField::encode(policy);
    value_ |= LifetimeField::encode(lifetime);
  }

  UnallocatedOperand(int reg_id, int slot_id, int virtual_register)
      : UnallocatedOperand(FIXED_REGISTER, reg_id, virtual_register) {
    value_ |= HasSecondaryStorageField::encode(true);
    value_ |= SecondaryStorageField::encode(slot_id);
  }

  UnallocatedOperand(const UnallocatedOperand& other, int virtual_register) {
    DCHECK_NE(kInvalidVirtualRegister, virtual_register);
    value_ = VirtualRegisterField::update(
        other.value_, static_cast<uint32_t>(virtual_register));
  }

  // Predicates for the operand policy.
  bool HasRegisterOrSlotPolicy() const {
    return basic_policy() == EXTENDED_POLICY &&
           extended_policy() == REGISTER_OR_SLOT;
  }
  bool HasRegisterOrSlotOrConstantPolicy() const {
    return basic_policy() == EXTENDED_POLICY &&
           extended_policy() == REGISTER_OR_SLOT_OR_CONSTANT;
  }
  bool HasFixedPolicy() const {
    return basic_policy() == FIXED_SLOT ||
           extended_policy() == FIXED_REGISTER ||
           extended_policy() == FIXED_FP_REGISTER;
  }
  bool HasRegisterPolicy() const {
    return basic_policy() == EXTENDED_POLICY &&
           extended_policy() == MUST_HAVE_REGISTER;
  }
  bool HasSlotPolicy() const {
    return basic_policy() == EXTENDED_POLICY &&
           extended_policy() == MUST_HAVE_SLOT;
  }
  bool HasSameAsInputPolicy() const {
    return basic_policy() == EXTENDED_POLICY &&
           extended_policy() == SAME_AS_FIRST_INPUT;
  }
  bool HasFixedSlotPolicy() const { return basic_policy() == FIXED_SLOT; }
  bool HasFixedRegisterPolicy() const {
    return basic_policy() == EXTENDED_POLICY &&
           extended_policy() == FIXED_REGISTER;
  }
  bool HasFixedFPRegisterPolicy() const {
    return basic_policy() == EXTENDED_POLICY &&
           extended_policy() == FIXED_FP_REGISTER;
  }
  bool HasSecondaryStorage() const {
    return basic_policy() == EXTENDED_POLICY &&
           extended_policy() == FIXED_REGISTER &&
           HasSecondaryStorageField::decode(value_);
  }
  int GetSecondaryStorage() const {
    DCHECK(HasSecondaryStorage());
    return SecondaryStorageField::decode(value_);
  }

  // [basic_policy]: Distinguish between FIXED_SLOT and all other policies.
  BasicPolicy basic_policy() const { return BasicPolicyField::decode(value_); }

  // [extended_policy]: Only for non-FIXED_SLOT. The finer-grained policy.
  ExtendedPolicy extended_policy() const {
    DCHECK(basic_policy() == EXTENDED_POLICY);
    return ExtendedPolicyField::decode(value_);
  }

  // [fixed_slot_index]: Only for FIXED_SLOT.
  int fixed_slot_index() const {
    DCHECK(HasFixedSlotPolicy());
    return static_cast<int>(static_cast<int64_t>(value_) >>
                            FixedSlotIndexField::kShift);
  }

  // [fixed_register_index]: Only for FIXED_REGISTER or FIXED_FP_REGISTER.
  int fixed_register_index() const {
    DCHECK(HasFixedRegisterPolicy() || HasFixedFPRegisterPolicy());
    return FixedRegisterField::decode(value_);
  }

  // [virtual_register]: The virtual register ID for this operand.
  int32_t virtual_register() const {
    return static_cast<int32_t>(VirtualRegisterField::decode(value_));
  }

  // [lifetime]: Only for non-FIXED_SLOT.
  bool IsUsedAtStart() const {
    DCHECK(basic_policy() == EXTENDED_POLICY);
    return LifetimeField::decode(value_) == USED_AT_START;
  }

  INSTRUCTION_OPERAND_CASTS(UnallocatedOperand, UNALLOCATED)

  // The encoding used for UnallocatedOperand operands depends on the policy
  // that is
  // stored within the operand. The FIXED_SLOT policy uses a compact encoding
  // because it accommodates a larger pay-load.
  //
  // For FIXED_SLOT policy:
  //     +------------------------------------------------+
  //     |      slot_index   | 0 | virtual_register | 001 |
  //     +------------------------------------------------+
  //
  // For all other (extended) policies:
  //     +-----------------------------------------------------+
  //     |  reg_index  | L | PPP |  1 | virtual_register | 001 |
  //     +-----------------------------------------------------+
  //     L ... Lifetime
  //     P ... Policy
  //
  // The slot index is a signed value which requires us to decode it manually
  // instead of using the base::BitField utility class.

  STATIC_ASSERT(KindField::kSize == 3);

  using VirtualRegisterField = base::BitField64<uint32_t, 3, 32>;

  // base::BitFields for all unallocated operands.
  using BasicPolicyField = base::BitField64<BasicPolicy, 35, 1>;

  // BitFields specific to BasicPolicy::FIXED_SLOT.
  using FixedSlotIndexField = base::BitField64<int, 36, 28>;

  // BitFields specific to BasicPolicy::EXTENDED_POLICY.
  using ExtendedPolicyField = base::BitField64<ExtendedPolicy, 36, 3>;
  using LifetimeField = base::BitField64<Lifetime, 39, 1>;
  using HasSecondaryStorageField = base::BitField64<bool, 40, 1>;
  using FixedRegisterField = base::BitField64<int, 41, 6>;
  using SecondaryStorageField = base::BitField64<int, 47, 3>;

 private:
  explicit UnallocatedOperand(int virtual_register)
      : InstructionOperand(UNALLOCATED) {
    value_ |=
        VirtualRegisterField::encode(static_cast<uint32_t>(virtual_register));
  }
};

class ConstantOperand : public InstructionOperand {
 public:
  explicit ConstantOperand(int virtual_register)
      : InstructionOperand(CONSTANT) {
    value_ |=
        VirtualRegisterField::encode(static_cast<uint32_t>(virtual_register));
  }

  int32_t virtual_register() const {
    return static_cast<int32_t>(VirtualRegisterField::decode(value_));
  }

  static ConstantOperand* New(Zone* zone, int virtual_register) {
    return InstructionOperand::New(zone, ConstantOperand(virtual_register));
  }

  INSTRUCTION_OPERAND_CASTS(ConstantOperand, CONSTANT)

  STATIC_ASSERT(KindField::kSize == 3);
  using VirtualRegisterField = base::BitField64<uint32_t, 3, 32>;
};

class ImmediateOperand : public InstructionOperand {
 public:
  enum ImmediateType { INLINE, INDEXED };

  explicit ImmediateOperand(ImmediateType type, int32_t value)
      : InstructionOperand(IMMEDIATE) {
    value_ |= TypeField::encode(type);
    value_ |= static_cast<uint64_t>(static_cast<int64_t>(value))
              << ValueField::kShift;
  }

  ImmediateType type() const { return TypeField::decode(value_); }

  int32_t inline_value() const {
    DCHECK_EQ(INLINE, type());
    return static_cast<int64_t>(value_) >> ValueField::kShift;
  }

  int32_t indexed_value() const {
    DCHECK_EQ(INDEXED, type());
    return static_cast<int64_t>(value_) >> ValueField::kShift;
  }

  static ImmediateOperand* New(Zone* zone, ImmediateType type, int32_t value) {
    return InstructionOperand::New(zone, ImmediateOperand(type, value));
  }

  INSTRUCTION_OPERAND_CASTS(ImmediateOperand, IMMEDIATE)

  STATIC_ASSERT(KindField::kSize == 3);
  using TypeField = base::BitField64<ImmediateType, 3, 1>;
  using ValueField = base::BitField64<int32_t, 32, 32>;
};

class LocationOperand : public InstructionOperand {
 public:
  enum LocationKind { REGISTER, STACK_SLOT };

  LocationOperand(InstructionOperand::Kind operand_kind,
                  LocationOperand::LocationKind location_kind,
                  MachineRepresentation rep, int index)
      : InstructionOperand(operand_kind) {
    DCHECK_IMPLIES(location_kind == REGISTER, index >= 0);
    DCHECK(IsSupportedRepresentation(rep));
    value_ |= LocationKindField::encode(location_kind);
    value_ |= RepresentationField::encode(rep);
    value_ |= static_cast<uint64_t>(static_cast<int64_t>(index))
              << IndexField::kShift;
  }

  int index() const {
    DCHECK(IsStackSlot() || IsFPStackSlot());
    return static_cast<int64_t>(value_) >> IndexField::kShift;
  }

  int register_code() const {
    DCHECK(IsRegister() || IsFPRegister());
    return static_cast<int64_t>(value_) >> IndexField::kShift;
  }

  Register GetRegister() const {
    DCHECK(IsRegister());
    return Register::from_code(register_code());
  }

  FloatRegister GetFloatRegister() const {
    DCHECK(IsFloatRegister());
    return FloatRegister::from_code(register_code());
  }

  DoubleRegister GetDoubleRegister() const {
    // On platforms where FloatRegister, DoubleRegister, and Simd128Register
    // are all the same type, it's convenient to treat everything as a
    // DoubleRegister, so be lax about type checking here.
    DCHECK(IsFPRegister());
    return DoubleRegister::from_code(register_code());
  }

  Simd128Register GetSimd128Register() const {
    DCHECK(IsSimd128Register());
    return Simd128Register::from_code(register_code());
  }

  LocationKind location_kind() const {
    return LocationKindField::decode(value_);
  }

  MachineRepresentation representation() const {
    return RepresentationField::decode(value_);
  }

  static bool IsSupportedRepresentation(MachineRepresentation rep) {
    switch (rep) {
      case MachineRepresentation::kWord32:
      case MachineRepresentation::kWord64:
      case MachineRepresentation::kFloat32:
      case MachineRepresentation::kFloat64:
      case MachineRepresentation::kSimd128:
      case MachineRepresentation::kTaggedSigned:
      case MachineRepresentation::kTaggedPointer:
      case MachineRepresentation::kTagged:
      case MachineRepresentation::kCompressedPointer:
      case MachineRepresentation::kCompressed:
        return true;
      case MachineRepresentation::kBit:
      case MachineRepresentation::kWord8:
      case MachineRepresentation::kWord16:
      case MachineRepresentation::kNone:
        return false;
    }
    UNREACHABLE();
  }

  // Return true if the locations can be moved to one another.
  bool IsCompatible(LocationOperand* op);

  static LocationOperand* cast(InstructionOperand* op) {
    DCHECK(op->IsAnyLocationOperand());
    return static_cast<LocationOperand*>(op);
  }

  static const LocationOperand* cast(const InstructionOperand* op) {
    DCHECK(op->IsAnyLocationOperand());
    return static_cast<const LocationOperand*>(op);
  }

  static LocationOperand cast(const InstructionOperand& op) {
    DCHECK(op.IsAnyLocationOperand());
    return *static_cast<const LocationOperand*>(&op);
  }

  STATIC_ASSERT(KindField::kSize == 3);
  using LocationKindField = base::BitField64<LocationKind, 3, 2>;
  using RepresentationField = base::BitField64<MachineRepresentation, 5, 8>;
  using IndexField = base::BitField64<int32_t, 35, 29>;
};

class AllocatedOperand : public LocationOperand {
 public:
  AllocatedOperand(LocationKind kind, MachineRepresentation rep, int index)
      : LocationOperand(ALLOCATED, kind, rep, index) {}

  static AllocatedOperand* New(Zone* zone, LocationKind kind,
                               MachineRepresentation rep, int index) {
    return InstructionOperand::New(zone, AllocatedOperand(kind, rep, index));
  }

  INSTRUCTION_OPERAND_CASTS(AllocatedOperand, ALLOCATED)
};

#undef INSTRUCTION_OPERAND_CASTS

bool InstructionOperand::IsAnyLocationOperand() const {
  return this->kind() >= FIRST_LOCATION_OPERAND_KIND;
}

bool InstructionOperand::IsLocationOperand() const {
  return IsAnyLocationOperand() &&
         !IsFloatingPoint(LocationOperand::cast(this)->representation());
}

bool InstructionOperand::IsFPLocationOperand() const {
  return IsAnyLocationOperand() &&
         IsFloatingPoint(LocationOperand::cast(this)->representation());
}

bool InstructionOperand::IsAnyRegister() const {
  return IsAnyLocationOperand() &&
         LocationOperand::cast(this)->location_kind() ==
             LocationOperand::REGISTER;
}

bool InstructionOperand::IsRegister() const {
  return IsAnyRegister() &&
         !IsFloatingPoint(LocationOperand::cast(this)->representation());
}

bool InstructionOperand::IsFPRegister() const {
  return IsAnyRegister() &&
         IsFloatingPoint(LocationOperand::cast(this)->representation());
}

bool InstructionOperand::IsFloatRegister() const {
  return IsAnyRegister() && LocationOperand::cast(this)->representation() ==
                                MachineRepresentation::kFloat32;
}

bool InstructionOperand::IsDoubleRegister() const {
  return IsAnyRegister() && LocationOperand::cast(this)->representation() ==
                                MachineRepresentation::kFloat64;
}

bool InstructionOperand::IsSimd128Register() const {
  return IsAnyRegister() && LocationOperand::cast(this)->representation() ==
                                MachineRepresentation::kSimd128;
}

bool InstructionOperand::IsAnyStackSlot() const {
  return IsAnyLocationOperand() &&
         LocationOperand::cast(this)->location_kind() ==
             LocationOperand::STACK_SLOT;
}

bool InstructionOperand::IsStackSlot() const {
  return IsAnyStackSlot() &&
         !IsFloatingPoint(LocationOperand::cast(this)->representation());
}

bool InstructionOperand::IsFPStackSlot() const {
  return IsAnyStackSlot() &&
         IsFloatingPoint(LocationOperand::cast(this)->representation());
}

bool InstructionOperand::IsFloatStackSlot() const {
  return IsAnyLocationOperand() &&
         LocationOperand::cast(this)->location_kind() ==
             LocationOperand::STACK_SLOT &&
         LocationOperand::cast(this)->representation() ==
             MachineRepresentation::kFloat32;
}

bool InstructionOperand::IsDoubleStackSlot() const {
  return IsAnyLocationOperand() &&
         LocationOperand::cast(this)->location_kind() ==
             LocationOperand::STACK_SLOT &&
         LocationOperand::cast(this)->representation() ==
             MachineRepresentation::kFloat64;
}

bool InstructionOperand::IsSimd128StackSlot() const {
  return IsAnyLocationOperand() &&
         LocationOperand::cast(this)->location_kind() ==
             LocationOperand::STACK_SLOT &&
         LocationOperand::cast(this)->representation() ==
             MachineRepresentation::kSimd128;
}

uint64_t InstructionOperand::GetCanonicalizedValue() const {
  if (IsAnyLocationOperand()) {
    MachineRepresentation canonical = MachineRepresentation::kNone;
    if (IsFPRegister()) {
      if (kSimpleFPAliasing) {
        // We treat all FP register operands the same for simple aliasing.
        canonical = MachineRepresentation::kFloat64;
      } else {
        // We need to distinguish FP register operands of different reps when
        // aliasing is not simple (e.g. ARM).
        canonical = LocationOperand::cast(this)->representation();
      }
    }
    return InstructionOperand::KindField::update(
        LocationOperand::RepresentationField::update(this->value_, canonical),
        LocationOperand::ALLOCATED);
  }
  return this->value_;
}

// Required for maps that don't care about machine type.
struct CompareOperandModuloType {
  bool operator()(const InstructionOperand& a,
                  const InstructionOperand& b) const {
    return a.CompareCanonicalized(b);
  }
};

class V8_EXPORT_PRIVATE MoveOperands final
    : public NON_EXPORTED_BASE(ZoneObject) {
 public:
  MoveOperands(const InstructionOperand& source,
               const InstructionOperand& destination)
      : source_(source), destination_(destination) {
    DCHECK(!source.IsInvalid() && !destination.IsInvalid());
  }

  const InstructionOperand& source() const { return source_; }
  InstructionOperand& source() { return source_; }
  void set_source(const InstructionOperand& operand) { source_ = operand; }

  const InstructionOperand& destination() const { return destination_; }
  InstructionOperand& destination() { return destination_; }
  void set_destination(const InstructionOperand& operand) {
    destination_ = operand;
  }

  // The gap resolver marks moves as "in-progress" by clearing the
  // destination (but not the source).
  bool IsPending() const {
    return destination_.IsInvalid() && !source_.IsInvalid();
  }
  void SetPending() { destination_ = InstructionOperand(); }

  // A move is redundant if it's been eliminated or if its source and
  // destination are the same.
  bool IsRedundant() const {
    DCHECK_IMPLIES(!destination_.IsInvalid(), !destination_.IsConstant());
    return IsEliminated() || source_.EqualsCanonicalized(destination_);
  }

  // We clear both operands to indicate move that's been eliminated.
  void Eliminate() { source_ = destination_ = InstructionOperand(); }
  bool IsEliminated() const {
    DCHECK_IMPLIES(source_.IsInvalid(), destination_.IsInvalid());
    return source_.IsInvalid();
  }

  // APIs to aid debugging. For general-stream APIs, use operator<<.
  void Print() const;

 private:
  InstructionOperand source_;
  InstructionOperand destination_;

  DISALLOW_COPY_AND_ASSIGN(MoveOperands);
};

V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream&, const MoveOperands&);

class V8_EXPORT_PRIVATE ParallelMove final
    : public NON_EXPORTED_BASE(ZoneVector<MoveOperands*>),
      public NON_EXPORTED_BASE(ZoneObject) {
 public:
  explicit ParallelMove(Zone* zone) : ZoneVector<MoveOperands*>(zone) {}

  MoveOperands* AddMove(const InstructionOperand& from,
                        const InstructionOperand& to) {
    Zone* zone = get_allocator().zone();
    return AddMove(from, to, zone);
  }

  MoveOperands* AddMove(const InstructionOperand& from,
                        const InstructionOperand& to,
                        Zone* operand_allocation_zone) {
    if (from.EqualsCanonicalized(to)) return nullptr;
    MoveOperands* move = new (operand_allocation_zone) MoveOperands(from, to);
    if (empty()) reserve(4);
    push_back(move);
    return move;
  }

  bool IsRedundant() const;

  // Prepare this ParallelMove to insert move as if it happened in a subsequent
  // ParallelMove.  move->source() may be changed.  Any MoveOperands added to
  // to_eliminate must be Eliminated.
  void PrepareInsertAfter(MoveOperands* move,
                          ZoneVector<MoveOperands*>* to_eliminate) const;

 private:
  DISALLOW_COPY_AND_ASSIGN(ParallelMove);
};

std::ostream& operator<<(std::ostream&, const ParallelMove&);

class ReferenceMap final : public ZoneObject {
 public:
  explicit ReferenceMap(Zone* zone)
      : reference_operands_(8, zone), instruction_position_(-1) {}

  const ZoneVector<InstructionOperand>& reference_operands() const {
    return reference_operands_;
  }
  int instruction_position() const { return instruction_position_; }

  void set_instruction_position(int pos) {
    DCHECK_EQ(-1, instruction_position_);
    instruction_position_ = pos;
  }

  void RecordReference(const AllocatedOperand& op);

 private:
  friend std::ostream& operator<<(std::ostream&, const ReferenceMap&);

  ZoneVector<InstructionOperand> reference_operands_;
  int instruction_position_;
};

std::ostream& operator<<(std::ostream&, const ReferenceMap&);

class InstructionBlock;

class V8_EXPORT_PRIVATE Instruction final {
 public:
  size_t OutputCount() const { return OutputCountField::decode(bit_field_); }
  const InstructionOperand* OutputAt(size_t i) const {
    DCHECK_LT(i, OutputCount());
    return &operands_[i];
  }
  InstructionOperand* OutputAt(size_t i) {
    DCHECK_LT(i, OutputCount());
    return &operands_[i];
  }

  bool HasOutput() const { return OutputCount() > 0; }
  const InstructionOperand* Output() const { return OutputAt(0); }
  InstructionOperand* Output() { return OutputAt(0); }

  size_t InputCount() const { return InputCountField::decode(bit_field_); }
  const InstructionOperand* InputAt(size_t i) const {
    DCHECK_LT(i, InputCount());
    return &operands_[OutputCount() + i];
  }
  InstructionOperand* InputAt(size_t i) {
    DCHECK_LT(i, InputCount());
    return &operands_[OutputCount() + i];
  }

  size_t TempCount() const { return TempCountField::decode(bit_field_); }
  const InstructionOperand* TempAt(size_t i) const {
    DCHECK_LT(i, TempCount());
    return &operands_[OutputCount() + InputCount() + i];
  }
  InstructionOperand* TempAt(size_t i) {
    DCHECK_LT(i, TempCount());
    return &operands_[OutputCount() + InputCount() + i];
  }

  InstructionCode opcode() const { return opcode_; }
  ArchOpcode arch_opcode() const { return ArchOpcodeField::decode(opcode()); }
  AddressingMode addressing_mode() const {
    return AddressingModeField::decode(opcode());
  }
  FlagsMode flags_mode() const { return FlagsModeField::decode(opcode()); }
  FlagsCondition flags_condition() const {
    return FlagsConditionField::decode(opcode());
  }

  static Instruction* New(Zone* zone, InstructionCode opcode) {
    return New(zone, opcode, 0, nullptr, 0, nullptr, 0, nullptr);
  }

  static Instruction* New(Zone* zone, InstructionCode opcode,
                          size_t output_count, InstructionOperand* outputs,
                          size_t input_count, InstructionOperand* inputs,
                          size_t temp_count, InstructionOperand* temps) {
    DCHECK(output_count == 0 || outputs != nullptr);
    DCHECK(input_count == 0 || inputs != nullptr);
    DCHECK(temp_count == 0 || temps != nullptr);
    // TODO(turbofan): Handle this gracefully. See crbug.com/582702.
    CHECK(InputCountField::is_valid(input_count));

    size_t total_extra_ops = output_count + input_count + temp_count;
    if (total_extra_ops != 0) total_extra_ops--;
    int size = static_cast<int>(
        RoundUp(sizeof(Instruction), sizeof(InstructionOperand)) +
        total_extra_ops * sizeof(InstructionOperand));
    return new (zone->New(size)) Instruction(
        opcode, output_count, outputs, input_count, inputs, temp_count, temps);
  }

  Instruction* MarkAsCall() {
    bit_field_ = IsCallField::update(bit_field_, true);
    return this;
  }
  bool IsCall() const { return IsCallField::decode(bit_field_); }
  bool NeedsReferenceMap() const { return IsCall(); }
  bool HasReferenceMap() const { return reference_map_ != nullptr; }

  bool ClobbersRegisters() const { return IsCall(); }
  bool ClobbersTemps() const { return IsCall(); }
  bool ClobbersDoubleRegisters() const { return IsCall(); }
  ReferenceMap* reference_map() const { return reference_map_; }

  void set_reference_map(ReferenceMap* map) {
    DCHECK(NeedsReferenceMap());
    DCHECK(!reference_map_);
    reference_map_ = map;
  }

  void OverwriteWithNop() {
    opcode_ = ArchOpcodeField::encode(kArchNop);
    bit_field_ = 0;
    reference_map_ = nullptr;
  }

  bool IsNop() const { return arch_opcode() == kArchNop; }

  bool IsDeoptimizeCall() const {
    return arch_opcode() == ArchOpcode::kArchDeoptimize ||
           FlagsModeField::decode(opcode()) == kFlags_deoptimize ||
           FlagsModeField::decode(opcode()) == kFlags_deoptimize_and_poison;
  }

  bool IsTrap() const {
    return FlagsModeField::decode(opcode()) == kFlags_trap;
  }

  bool IsJump() const { return arch_opcode() == ArchOpcode::kArchJmp; }
  bool IsRet() const { return arch_opcode() == ArchOpcode::kArchRet; }
  bool IsTailCall() const {
    return arch_opcode() <= ArchOpcode::kArchTailCallWasm;
  }
  bool IsThrow() const {
    return arch_opcode() == ArchOpcode::kArchThrowTerminator;
  }

  enum GapPosition {
    START,
    END,
    FIRST_GAP_POSITION = START,
    LAST_GAP_POSITION = END
  };

  ParallelMove* GetOrCreateParallelMove(GapPosition pos, Zone* zone) {
    if (parallel_moves_[pos] == nullptr) {
      parallel_moves_[pos] = new (zone) ParallelMove(zone);
    }
    return parallel_moves_[pos];
  }

  ParallelMove* GetParallelMove(GapPosition pos) {
    return parallel_moves_[pos];
  }

  const ParallelMove* GetParallelMove(GapPosition pos) const {
    return parallel_moves_[pos];
  }

  bool AreMovesRedundant() const;

  ParallelMove* const* parallel_moves() const { return &parallel_moves_[0]; }
  ParallelMove** parallel_moves() { return &parallel_moves_[0]; }

  // The block_id may be invalidated in JumpThreading. It is only important for
  // register allocation, to avoid searching for blocks from instruction
  // indexes.
  InstructionBlock* block() const { return block_; }
  void set_block(InstructionBlock* block) {
    DCHECK_NOT_NULL(block);
    block_ = block;
  }

  // APIs to aid debugging. For general-stream APIs, use operator<<.
  void Print() const;

  using OutputCountField = base::BitField<size_t, 0, 8>;
  using InputCountField = base::BitField<size_t, 8, 16>;
  using TempCountField = base::BitField<size_t, 24, 6>;

  static const size_t kMaxOutputCount = OutputCountField::kMax;
  static const size_t kMaxInputCount = InputCountField::kMax;
  static const size_t kMaxTempCount = TempCountField::kMax;

 private:
  explicit Instruction(InstructionCode opcode);

  Instruction(InstructionCode opcode, size_t output_count,
              InstructionOperand* outputs, size_t input_count,
              InstructionOperand* inputs, size_t temp_count,
              InstructionOperand* temps);

  using IsCallField = base::BitField<bool, 30, 1>;

  InstructionCode opcode_;
  uint32_t bit_field_;
  ParallelMove* parallel_moves_[2];
  ReferenceMap* reference_map_;
  InstructionBlock* block_;
  InstructionOperand operands_[1];

  DISALLOW_COPY_AND_ASSIGN(Instruction);
};

std::ostream& operator<<(std::ostream&, const Instruction&);

class RpoNumber final {
 public:
  static const int kInvalidRpoNumber = -1;
  int ToInt() const {
    DCHECK(IsValid());
    return index_;
  }
  size_t ToSize() const {
    DCHECK(IsValid());
    return static_cast<size_t>(index_);
  }
  bool IsValid() const { return index_ >= 0; }
  static RpoNumber FromInt(int index) { return RpoNumber(index); }
  static RpoNumber Invalid() { return RpoNumber(kInvalidRpoNumber); }

  bool IsNext(const RpoNumber other) const {
    DCHECK(IsValid());
    return other.index_ == this->index_ + 1;
  }

  RpoNumber Next() const {
    DCHECK(IsValid());
    return RpoNumber(index_ + 1);
  }

  // Comparison operators.
  bool operator==(RpoNumber other) const { return index_ == other.index_; }
  bool operator!=(RpoNumber other) const { return index_ != other.index_; }
  bool operator>(RpoNumber other) const { return index_ > other.index_; }
  bool operator<(RpoNumber other) const { return index_ < other.index_; }
  bool operator<=(RpoNumber other) const { return index_ <= other.index_; }
  bool operator>=(RpoNumber other) const { return index_ >= other.index_; }

 private:
  explicit RpoNumber(int32_t index) : index_(index) {}
  int32_t index_;
};

std::ostream& operator<<(std::ostream&, const RpoNumber&);

class V8_EXPORT_PRIVATE Constant final {
 public:
  enum Type {
    kInt32,
    kInt64,
    kFloat32,
    kFloat64,
    kExternalReference,
    kCompressedHeapObject,
    kHeapObject,
    kRpoNumber,
    kDelayedStringConstant
  };

  explicit Constant(int32_t v);
  explicit Constant(int64_t v) : type_(kInt64), value_(v) {}
  explicit Constant(float v) : type_(kFloat32), value_(bit_cast<int32_t>(v)) {}
  explicit Constant(double v) : type_(kFloat64), value_(bit_cast<int64_t>(v)) {}
  explicit Constant(ExternalReference ref)
      : type_(kExternalReference), value_(bit_cast<intptr_t>(ref.address())) {}
  explicit Constant(Handle<HeapObject> obj, bool is_compressed = false)
      : type_(is_compressed ? kCompressedHeapObject : kHeapObject),
        value_(bit_cast<intptr_t>(obj)) {}
  explicit Constant(RpoNumber rpo) : type_(kRpoNumber), value_(rpo.ToInt()) {}
  explicit Constant(const StringConstantBase* str)
      : type_(kDelayedStringConstant), value_(bit_cast<intptr_t>(str)) {}
  explicit Constant(RelocatablePtrConstantInfo info);

  Type type() const { return type_; }

  RelocInfo::Mode rmode() const { return rmode_; }

  int32_t ToInt32() const {
    DCHECK(type() == kInt32 || type() == kInt64);
    const int32_t value = static_cast<int32_t>(value_);
    DCHECK_EQ(value_, static_cast<int64_t>(value));
    return value;
  }

  int64_t ToInt64() const {
    if (type() == kInt32) return ToInt32();
    DCHECK_EQ(kInt64, type());
    return value_;
  }

  float ToFloat32() const {
    // TODO(ahaas): We should remove this function. If value_ has the bit
    // representation of a signalling NaN, then returning it as float can cause
    // the signalling bit to flip, and value_ is returned as a quiet NaN.
    DCHECK_EQ(kFloat32, type());
    return bit_cast<float>(static_cast<int32_t>(value_));
  }

  uint32_t ToFloat32AsInt() const {
    DCHECK_EQ(kFloat32, type());
    return bit_cast<uint32_t>(static_cast<int32_t>(value_));
  }

  Double ToFloat64() const {
    DCHECK_EQ(kFloat64, type());
    return Double(bit_cast<uint64_t>(value_));
  }

  ExternalReference ToExternalReference() const {
    DCHECK_EQ(kExternalReference, type());
    return ExternalReference::FromRawAddress(static_cast<Address>(value_));
  }

  RpoNumber ToRpoNumber() const {
    DCHECK_EQ(kRpoNumber, type());
    return RpoNumber::FromInt(static_cast<int>(value_));
  }

  Handle<HeapObject> ToHeapObject() const;
  Handle<Code> ToCode() const;
  const StringConstantBase* ToDelayedStringConstant() const;

 private:
  Type type_;
  RelocInfo::Mode rmode_ = RelocInfo::NONE;
  int64_t value_;
};

std::ostream& operator<<(std::ostream&, const Constant&);

// Forward declarations.
class FrameStateDescriptor;

enum class StateValueKind : uint8_t {
  kArgumentsElements,
  kArgumentsLength,
  kPlain,
  kOptimizedOut,
  kNested,
  kDuplicate
};

class StateValueDescriptor {
 public:
  StateValueDescriptor()
      : kind_(StateValueKind::kPlain), type_(MachineType::AnyTagged()) {}

  static StateValueDescriptor ArgumentsElements(ArgumentsStateType type) {
    StateValueDescriptor descr(StateValueKind::kArgumentsElements,
                               MachineType::AnyTagged());
    descr.args_type_ = type;
    return descr;
  }
  static StateValueDescriptor ArgumentsLength(ArgumentsStateType type) {
    StateValueDescriptor descr(StateValueKind::kArgumentsLength,
                               MachineType::AnyTagged());
    descr.args_type_ = type;
    return descr;
  }
  static StateValueDescriptor Plain(MachineType type) {
    return StateValueDescriptor(StateValueKind::kPlain, type);
  }
  static StateValueDescriptor OptimizedOut() {
    return StateValueDescriptor(StateValueKind::kOptimizedOut,
                                MachineType::AnyTagged());
  }
  static StateValueDescriptor Recursive(size_t id) {
    StateValueDescriptor descr(StateValueKind::kNested,
                               MachineType::AnyTagged());
    descr.id_ = id;
    return descr;
  }
  static StateValueDescriptor Duplicate(size_t id) {
    StateValueDescriptor descr(StateValueKind::kDuplicate,
                               MachineType::AnyTagged());
    descr.id_ = id;
    return descr;
  }

  bool IsArgumentsElements() const {
    return kind_ == StateValueKind::kArgumentsElements;
  }
  bool IsArgumentsLength() const {
    return kind_ == StateValueKind::kArgumentsLength;
  }
  bool IsPlain() const { return kind_ == StateValueKind::kPlain; }
  bool IsOptimizedOut() const { return kind_ == StateValueKind::kOptimizedOut; }
  bool IsNested() const { return kind_ == StateValueKind::kNested; }
  bool IsDuplicate() const { return kind_ == StateValueKind::kDuplicate; }
  MachineType type() const { return type_; }
  size_t id() const {
    DCHECK(kind_ == StateValueKind::kDuplicate ||
           kind_ == StateValueKind::kNested);
    return id_;
  }
  ArgumentsStateType arguments_type() const {
    DCHECK(kind_ == StateValueKind::kArgumentsElements ||
           kind_ == StateValueKind::kArgumentsLength);
    return args_type_;
  }

 private:
  StateValueDescriptor(StateValueKind kind, MachineType type)
      : kind_(kind), type_(type) {}

  StateValueKind kind_;
  MachineType type_;
  union {
    size_t id_;
    ArgumentsStateType args_type_;
  };
};

class StateValueList {
 public:
  explicit StateValueList(Zone* zone) : fields_(zone), nested_(zone) {}

  size_t size() { return fields_.size(); }

  struct Value {
    StateValueDescriptor* desc;
    StateValueList* nested;

    Value(StateValueDescriptor* desc, StateValueList* nested)
        : desc(desc), nested(nested) {}
  };

  class iterator {
   public:
    // Bare minimum of operators needed for range iteration.
    bool operator!=(const iterator& other) const {
      return field_iterator != other.field_iterator;
    }
    bool operator==(const iterator& other) const {
      return field_iterator == other.field_iterator;
    }
    iterator& operator++() {
      if (field_iterator->IsNested()) {
        nested_iterator++;
      }
      ++field_iterator;
      return *this;
    }
    Value operator*() {
      StateValueDescriptor* desc = &(*field_iterator);
      StateValueList* nested = desc->IsNested() ? *nested_iterator : nullptr;
      return Value(desc, nested);
    }

   private:
    friend class StateValueList;

    iterator(ZoneVector<StateValueDescriptor>::iterator it,
             ZoneVector<StateValueList*>::iterator nested)
        : field_iterator(it), nested_iterator(nested) {}

    ZoneVector<StateValueDescriptor>::iterator field_iterator;
    ZoneVector<StateValueList*>::iterator nested_iterator;
  };

  void ReserveSize(size_t size) { fields_.reserve(size); }

  StateValueList* PushRecursiveField(Zone* zone, size_t id) {
    fields_.push_back(StateValueDescriptor::Recursive(id));
    StateValueList* nested =
        new (zone->New(sizeof(StateValueList))) StateValueList(zone);
    nested_.push_back(nested);
    return nested;
  }
  void PushArgumentsElements(ArgumentsStateType type) {
    fields_.push_back(StateValueDescriptor::ArgumentsElements(type));
  }
  void PushArgumentsLength(ArgumentsStateType type) {
    fields_.push_back(StateValueDescriptor::ArgumentsLength(type));
  }
  void PushDuplicate(size_t id) {
    fields_.push_back(StateValueDescriptor::Duplicate(id));
  }
  void PushPlain(MachineType type) {
    fields_.push_back(StateValueDescriptor::Plain(type));
  }
  void PushOptimizedOut(size_t num = 1) {
    fields_.insert(fields_.end(), num, StateValueDescriptor::OptimizedOut());
  }

  iterator begin() { return iterator(fields_.begin(), nested_.begin()); }
  iterator end() { return iterator(fields_.end(), nested_.end()); }

 private:
  ZoneVector<StateValueDescriptor> fields_;
  ZoneVector<StateValueList*> nested_;
};

class FrameStateDescriptor : public ZoneObject {
 public:
  FrameStateDescriptor(Zone* zone, FrameStateType type, BailoutId bailout_id,
                       OutputFrameStateCombine state_combine,
                       size_t parameters_count, size_t locals_count,
                       size_t stack_count,
                       MaybeHandle<SharedFunctionInfo> shared_info,
                       FrameStateDescriptor* outer_state = nullptr);

  FrameStateType type() const { return type_; }
  BailoutId bailout_id() const { return bailout_id_; }
  OutputFrameStateCombine state_combine() const { return frame_state_combine_; }
  size_t parameters_count() const { return parameters_count_; }
  size_t locals_count() const { return locals_count_; }
  size_t stack_count() const { return stack_count_; }
  MaybeHandle<SharedFunctionInfo> shared_info() const { return shared_info_; }
  FrameStateDescriptor* outer_state() const { return outer_state_; }
  bool HasContext() const {
    return FrameStateFunctionInfo::IsJSFunctionType(type_) ||
           type_ == FrameStateType::kBuiltinContinuation ||
           type_ == FrameStateType::kConstructStub;
  }

  // The frame height on the stack, in number of slots, as serialized into a
  // Translation and later used by the deoptimizer. Does *not* include
  // information from the chain of outer states. Unlike |GetSize| this does not
  // always include parameters, locals, and stack slots; instead, the returned
  // slot kinds depend on the frame type.
  size_t GetHeight() const;

  // Returns an overapproximation of the unoptimized stack frame size in bytes,
  // as later produced by the deoptimizer. Considers both this and the chain of
  // outer states.
  size_t total_conservative_frame_size_in_bytes() const {
    return total_conservative_frame_size_in_bytes_;
  }

  size_t GetSize() const;
  size_t GetTotalSize() const;
  size_t GetFrameCount() const;
  size_t GetJSFrameCount() const;

  StateValueList* GetStateValueDescriptors() { return &values_; }

  static const int kImpossibleValue = 0xdead;

 private:
  FrameStateType type_;
  BailoutId bailout_id_;
  OutputFrameStateCombine frame_state_combine_;
  const size_t parameters_count_;
  const size_t locals_count_;
  const size_t stack_count_;
  const size_t total_conservative_frame_size_in_bytes_;
  StateValueList values_;
  MaybeHandle<SharedFunctionInfo> const shared_info_;
  FrameStateDescriptor* const outer_state_;
};

// A deoptimization entry is a pair of the reason why we deoptimize and the
// frame state descriptor that we have to go back to.
class DeoptimizationEntry final {
 public:
  DeoptimizationEntry() = default;
  DeoptimizationEntry(FrameStateDescriptor* descriptor, DeoptimizeKind kind,
                      DeoptimizeReason reason, FeedbackSource const& feedback)
      : descriptor_(descriptor),
        kind_(kind),
        reason_(reason),
        feedback_(feedback) {}

  FrameStateDescriptor* descriptor() const { return descriptor_; }
  DeoptimizeKind kind() const { return kind_; }
  DeoptimizeReason reason() const { return reason_; }
  FeedbackSource const& feedback() const { return feedback_; }

 private:
  FrameStateDescriptor* descriptor_ = nullptr;
  DeoptimizeKind kind_ = DeoptimizeKind::kEager;
  DeoptimizeReason reason_ = DeoptimizeReason::kUnknown;
  FeedbackSource feedback_ = FeedbackSource();
};

using DeoptimizationVector = ZoneVector<DeoptimizationEntry>;

class V8_EXPORT_PRIVATE PhiInstruction final
    : public NON_EXPORTED_BASE(ZoneObject) {
 public:
  using Inputs = ZoneVector<InstructionOperand>;

  PhiInstruction(Zone* zone, int virtual_register, size_t input_count);

  void SetInput(size_t offset, int virtual_register);
  void RenameInput(size_t offset, int virtual_register);

  int virtual_register() const { return virtual_register_; }
  const IntVector& operands() const { return operands_; }

  // TODO(dcarney): this has no real business being here, since it's internal to
  // the register allocator, but putting it here was convenient.
  const InstructionOperand& output() const { return output_; }
  InstructionOperand& output() { return output_; }

 private:
  const int virtual_register_;
  InstructionOperand output_;
  IntVector operands_;
};

// Analogue of BasicBlock for Instructions instead of Nodes.
class V8_EXPORT_PRIVATE InstructionBlock final
    : public NON_EXPORTED_BASE(ZoneObject) {
 public:
  InstructionBlock(Zone* zone, RpoNumber rpo_number, RpoNumber loop_header,
                   RpoNumber loop_end, bool deferred, bool handler);

  // Instruction indexes (used by the register allocator).
  int first_instruction_index() const {
    DCHECK_LE(0, code_start_);
    DCHECK_LT(0, code_end_);
    DCHECK_GE(code_end_, code_start_);
    return code_start_;
  }
  int last_instruction_index() const {
    DCHECK_LE(0, code_start_);
    DCHECK_LT(0, code_end_);
    DCHECK_GE(code_end_, code_start_);
    return code_end_ - 1;
  }

  int32_t code_start() const { return code_start_; }
  void set_code_start(int32_t start) { code_start_ = start; }

  int32_t code_end() const { return code_end_; }
  void set_code_end(int32_t end) { code_end_ = end; }

  bool IsDeferred() const { return deferred_; }
  bool IsHandler() const { return handler_; }
  void MarkHandler() { handler_ = true; }
  void UnmarkHandler() { handler_ = false; }

  RpoNumber ao_number() const { return ao_number_; }
  RpoNumber rpo_number() const { return rpo_number_; }
  RpoNumber loop_header() const { return loop_header_; }
  RpoNumber loop_end() const {
    DCHECK(IsLoopHeader());
    return loop_end_;
  }
  inline bool IsLoopHeader() const { return loop_end_.IsValid(); }
  inline bool IsSwitchTarget() const { return switch_target_; }
  inline bool ShouldAlign() const { return alignment_; }

  using Predecessors = ZoneVector<RpoNumber>;
  Predecessors& predecessors() { return predecessors_; }
  const Predecessors& predecessors() const { return predecessors_; }
  size_t PredecessorCount() const { return predecessors_.size(); }
  size_t PredecessorIndexOf(RpoNumber rpo_number) const;

  using Successors = ZoneVector<RpoNumber>;
  Successors& successors() { return successors_; }
  const Successors& successors() const { return successors_; }
  size_t SuccessorCount() const { return successors_.size(); }

  using PhiInstructions = ZoneVector<PhiInstruction*>;
  const PhiInstructions& phis() const { return phis_; }
  PhiInstruction* PhiAt(size_t i) const { return phis_[i]; }
  void AddPhi(PhiInstruction* phi) { phis_.push_back(phi); }

  void set_ao_number(RpoNumber ao_number) { ao_number_ = ao_number; }

  void set_alignment(bool val) { alignment_ = val; }

  void set_switch_target(bool val) { switch_target_ = val; }

  bool needs_frame() const { return needs_frame_; }
  void mark_needs_frame() { needs_frame_ = true; }

  bool must_construct_frame() const { return must_construct_frame_; }
  void mark_must_construct_frame() { must_construct_frame_ = true; }

  bool must_deconstruct_frame() const { return must_deconstruct_frame_; }
  void mark_must_deconstruct_frame() { must_deconstruct_frame_ = true; }

 private:
  Successors successors_;
  Predecessors predecessors_;
  PhiInstructions phis_;
  RpoNumber ao_number_;  // Assembly order number.
  const RpoNumber rpo_number_;
  const RpoNumber loop_header_;
  const RpoNumber loop_end_;
  int32_t code_start_;   // start index of arch-specific code.
  int32_t code_end_ = -1;     // end index of arch-specific code.
  const bool deferred_;       // Block contains deferred code.
  bool handler_;              // Block is a handler entry point.
  bool switch_target_ = false;
  bool alignment_ = false;  // insert alignment before this block
  bool needs_frame_ = false;
  bool must_construct_frame_ = false;
  bool must_deconstruct_frame_ = false;
};

class InstructionSequence;

struct PrintableInstructionBlock {
  const InstructionBlock* block_;
  const InstructionSequence* code_;
};

std::ostream& operator<<(std::ostream&, const PrintableInstructionBlock&);

using ConstantDeque = ZoneDeque<Constant>;
using ConstantMap = std::map<int, Constant, std::less<int>,
                             ZoneAllocator<std::pair<const int, Constant> > >;

using InstructionDeque = ZoneDeque<Instruction*>;
using ReferenceMapDeque = ZoneDeque<ReferenceMap*>;
using InstructionBlocks = ZoneVector<InstructionBlock*>;

// Represents architecture-specific generated code before, during, and after
// register allocation.
class V8_EXPORT_PRIVATE InstructionSequence final
    : public NON_EXPORTED_BASE(ZoneObject) {
 public:
  static InstructionBlocks* InstructionBlocksFor(Zone* zone,
                                                 const Schedule* schedule);
  InstructionSequence(Isolate* isolate, Zone* zone,
                      InstructionBlocks* instruction_blocks);

  int NextVirtualRegister();
  int VirtualRegisterCount() const { return next_virtual_register_; }

  const InstructionBlocks& instruction_blocks() const {
    return *instruction_blocks_;
  }

  const InstructionBlocks& ao_blocks() const { return *ao_blocks_; }

  int InstructionBlockCount() const {
    return static_cast<int>(instruction_blocks_->size());
  }

  InstructionBlock* InstructionBlockAt(RpoNumber rpo_number) {
    return instruction_blocks_->at(rpo_number.ToSize());
  }

  int LastLoopInstructionIndex(const InstructionBlock* block) {
    return instruction_blocks_->at(block->loop_end().ToSize() - 1)
        ->last_instruction_index();
  }

  const InstructionBlock* InstructionBlockAt(RpoNumber rpo_number) const {
    return instruction_blocks_->at(rpo_number.ToSize());
  }

  InstructionBlock* GetInstructionBlock(int instruction_index) const;

  static MachineRepresentation DefaultRepresentation() {
    return MachineType::PointerRepresentation();
  }
  MachineRepresentation GetRepresentation(int virtual_register) const;
  void MarkAsRepresentation(MachineRepresentation rep, int virtual_register);

  bool IsReference(int virtual_register) const {
    return CanBeTaggedOrCompressedPointer(GetRepresentation(virtual_register));
  }
  bool IsFP(int virtual_register) const {
    return IsFloatingPoint(GetRepresentation(virtual_register));
  }
  int representation_mask() const { return representation_mask_; }
  bool HasFPVirtualRegisters() const {
    constexpr int kFPRepMask =
        RepresentationBit(MachineRepresentation::kFloat32) |
        RepresentationBit(MachineRepresentation::kFloat64) |
        RepresentationBit(MachineRepresentation::kSimd128);
    return (representation_mask() & kFPRepMask) != 0;
  }

  Instruction* GetBlockStart(RpoNumber rpo) const;

  using const_iterator = InstructionDeque::const_iterator;
  const_iterator begin() const { return instructions_.begin(); }
  const_iterator end() const { return instructions_.end(); }
  const InstructionDeque& instructions() const { return instructions_; }
  int LastInstructionIndex() const {
    return static_cast<int>(instructions().size()) - 1;
  }

  Instruction* InstructionAt(int index) const {
    DCHECK_LE(0, index);
    DCHECK_GT(instructions_.size(), index);
    return instructions_[index];
  }

  Isolate* isolate() const { return isolate_; }
  const ReferenceMapDeque* reference_maps() const { return &reference_maps_; }
  Zone* zone() const { return zone_; }

  // Used by the instruction selector while adding instructions.
  int AddInstruction(Instruction* instr);
  void StartBlock(RpoNumber rpo);
  void EndBlock(RpoNumber rpo);

  int AddConstant(int virtual_register, Constant constant) {
    // TODO(titzer): allow RPO numbers as constants?
    DCHECK_NE(Constant::kRpoNumber, constant.type());
    DCHECK(virtual_register >= 0 && virtual_register < next_virtual_register_);
    DCHECK(constants_.find(virtual_register) == constants_.end());
    constants_.insert(std::make_pair(virtual_register, constant));
    return virtual_register;
  }
  Constant GetConstant(int virtual_register) const {
    ConstantMap::const_iterator it = constants_.find(virtual_register);
    DCHECK(it != constants_.end());
    DCHECK_EQ(virtual_register, it->first);
    return it->second;
  }

  using Immediates = ZoneVector<Constant>;
  Immediates& immediates() { return immediates_; }

  ImmediateOperand AddImmediate(const Constant& constant) {
    if (constant.type() == Constant::kInt32 &&
        RelocInfo::IsNone(constant.rmode())) {
      return ImmediateOperand(ImmediateOperand::INLINE, constant.ToInt32());
    }
    int index = static_cast<int>(immediates_.size());
    immediates_.push_back(constant);
    return ImmediateOperand(ImmediateOperand::INDEXED, index);
  }

  Constant GetImmediate(const ImmediateOperand* op) const {
    switch (op->type()) {
      case ImmediateOperand::INLINE:
        return Constant(op->inline_value());
      case ImmediateOperand::INDEXED: {
        int index = op->indexed_value();
        DCHECK_LE(0, index);
        DCHECK_GT(immediates_.size(), index);
        return immediates_[index];
      }
    }
    UNREACHABLE();
  }

  int AddDeoptimizationEntry(FrameStateDescriptor* descriptor,
                             DeoptimizeKind kind, DeoptimizeReason reason,
                             FeedbackSource const& feedback);
  DeoptimizationEntry const& GetDeoptimizationEntry(int deoptimization_id);
  int GetDeoptimizationEntryCount() const {
    return static_cast<int>(deoptimization_entries_.size());
  }

  RpoNumber InputRpo(Instruction* instr, size_t index);

  bool GetSourcePosition(const Instruction* instr,
                         SourcePosition* result) const;
  void SetSourcePosition(const Instruction* instr, SourcePosition value);

  bool ContainsCall() const {
    for (Instruction* instr : instructions_) {
      if (instr->IsCall()) return true;
    }
    return false;
  }

  // APIs to aid debugging. For general-stream APIs, use operator<<.
  void Print() const;

  void PrintBlock(int block_id) const;

  void ValidateEdgeSplitForm() const;
  void ValidateDeferredBlockExitPaths() const;
  void ValidateDeferredBlockEntryPaths() const;
  void ValidateSSA() const;

  static void SetRegisterConfigurationForTesting(
      const RegisterConfiguration* regConfig);
  static void ClearRegisterConfigurationForTesting();

  void RecomputeAssemblyOrderForTesting();

 private:
  friend V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream&,
                                                    const InstructionSequence&);

  using SourcePositionMap = ZoneMap<const Instruction*, SourcePosition>;

  static const RegisterConfiguration* RegisterConfigurationForTesting();
  static const RegisterConfiguration* registerConfigurationForTesting_;

  // Puts the deferred blocks last and may rotate loops.
  void ComputeAssemblyOrder();

  Isolate* isolate_;
  Zone* const zone_;
  InstructionBlocks* const instruction_blocks_;
  InstructionBlocks* ao_blocks_;
  SourcePositionMap source_positions_;
  ConstantMap constants_;
  Immediates immediates_;
  InstructionDeque instructions_;
  int next_virtual_register_;
  ReferenceMapDeque reference_maps_;
  ZoneVector<MachineRepresentation> representations_;
  int representation_mask_;
  DeoptimizationVector deoptimization_entries_;

  // Used at construction time
  InstructionBlock* current_block_;

  DISALLOW_COPY_AND_ASSIGN(InstructionSequence);
};

V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream&,
                                           const InstructionSequence&);

}  // namespace compiler
}  // namespace internal
}  // namespace v8

#endif  // V8_COMPILER_BACKEND_INSTRUCTION_H_