1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
|
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/backend/mid-tier-register-allocator.h"
#include "src/base/bits.h"
#include "src/base/logging.h"
#include "src/base/macros.h"
#include "src/base/optional.h"
#include "src/codegen/machine-type.h"
#include "src/codegen/register-configuration.h"
#include "src/codegen/tick-counter.h"
#include "src/common/globals.h"
#include "src/compiler/backend/instruction.h"
#include "src/compiler/linkage.h"
#include "src/logging/counters.h"
#include "src/utils/bit-vector.h"
#include "src/zone/zone-containers.h"
namespace v8 {
namespace internal {
namespace compiler {
class RegisterState;
class DeferredBlocksRegion;
// BlockState stores details associated with a particular basic block.
class BlockState final {
public:
BlockState(int block_count, Zone* zone)
: general_registers_in_state_(nullptr),
double_registers_in_state_(nullptr),
deferred_blocks_region_(nullptr),
dominated_blocks_(block_count, zone),
successors_phi_index_(-1),
is_deferred_block_boundary_(false) {}
// Returns the RegisterState that applies to the input of this block. Can be
// |nullptr| if the no registers of |kind| have been allocated up to this
// point.
RegisterState* register_in_state(RegisterKind kind);
void set_register_in_state(RegisterState* register_state, RegisterKind kind);
// Returns a bitvector representing all the basic blocks that are dominated
// by this basic block.
BitVector* dominated_blocks() { return &dominated_blocks_; }
// Set / get this block's index for successor's phi operations. Will return
// -1 if this block has no successor's with phi operations.
int successors_phi_index() const { return successors_phi_index_; }
void set_successors_phi_index(int index) {
DCHECK_EQ(successors_phi_index_, -1);
successors_phi_index_ = index;
}
// If this block is deferred, this represents region of deferred blocks
// that are directly reachable from this block.
DeferredBlocksRegion* deferred_blocks_region() const {
return deferred_blocks_region_;
}
void set_deferred_blocks_region(DeferredBlocksRegion* region) {
DCHECK_NULL(deferred_blocks_region_);
deferred_blocks_region_ = region;
}
// Returns true if this block represents either a transition from
// non-deferred to deferred or vice versa.
bool is_deferred_block_boundary() const {
return is_deferred_block_boundary_;
}
void MarkAsDeferredBlockBoundary() { is_deferred_block_boundary_ = true; }
MOVE_ONLY_NO_DEFAULT_CONSTRUCTOR(BlockState);
private:
RegisterState* general_registers_in_state_;
RegisterState* double_registers_in_state_;
DeferredBlocksRegion* deferred_blocks_region_;
BitVector dominated_blocks_;
int successors_phi_index_;
bool is_deferred_block_boundary_;
};
RegisterState* BlockState::register_in_state(RegisterKind kind) {
switch (kind) {
case RegisterKind::kGeneral:
return general_registers_in_state_;
case RegisterKind::kDouble:
return double_registers_in_state_;
}
}
void BlockState::set_register_in_state(RegisterState* register_state,
RegisterKind kind) {
switch (kind) {
case RegisterKind::kGeneral:
DCHECK_NULL(general_registers_in_state_);
general_registers_in_state_ = register_state;
break;
case RegisterKind::kDouble:
DCHECK_NULL(double_registers_in_state_);
double_registers_in_state_ = register_state;
break;
}
}
MidTierRegisterAllocationData::MidTierRegisterAllocationData(
const RegisterConfiguration* config, Zone* zone, Frame* frame,
InstructionSequence* code, TickCounter* tick_counter,
const char* debug_name)
: RegisterAllocationData(Type::kMidTier),
allocation_zone_(zone),
frame_(frame),
code_(code),
debug_name_(debug_name),
config_(config),
virtual_register_data_(code->VirtualRegisterCount(), allocation_zone()),
block_states_(allocation_zone()),
reference_map_instructions_(allocation_zone()),
spilled_virtual_registers_(code->VirtualRegisterCount(),
allocation_zone()),
tick_counter_(tick_counter) {
int basic_block_count = code->InstructionBlockCount();
block_states_.reserve(basic_block_count);
for (int i = 0; i < basic_block_count; i++) {
block_states_.emplace_back(basic_block_count, allocation_zone());
}
}
MoveOperands* MidTierRegisterAllocationData::AddGapMove(
int instr_index, Instruction::GapPosition position,
const InstructionOperand& from, const InstructionOperand& to) {
Instruction* instr = code()->InstructionAt(instr_index);
ParallelMove* moves = instr->GetOrCreateParallelMove(position, code_zone());
return moves->AddMove(from, to);
}
MoveOperands* MidTierRegisterAllocationData::AddPendingOperandGapMove(
int instr_index, Instruction::GapPosition position) {
return AddGapMove(instr_index, position, PendingOperand(), PendingOperand());
}
MachineRepresentation MidTierRegisterAllocationData::RepresentationFor(
int virtual_register) {
if (virtual_register == InstructionOperand::kInvalidVirtualRegister) {
return InstructionSequence::DefaultRepresentation();
} else {
DCHECK_LT(virtual_register, code()->VirtualRegisterCount());
return code()->GetRepresentation(virtual_register);
}
}
BlockState& MidTierRegisterAllocationData::block_state(RpoNumber rpo_number) {
return block_states_[rpo_number.ToInt()];
}
const InstructionBlock* MidTierRegisterAllocationData::GetBlock(
RpoNumber rpo_number) {
return code()->InstructionBlockAt(rpo_number);
}
const InstructionBlock* MidTierRegisterAllocationData::GetBlock(
int instr_index) {
return code()->InstructionAt(instr_index)->block();
}
const BitVector* MidTierRegisterAllocationData::GetBlocksDominatedBy(
const InstructionBlock* block) {
return block_state(block->rpo_number()).dominated_blocks();
}
// RegisterIndex represents a particular register of a given kind (depending
// on the RegisterKind of the allocator).
class RegisterIndex final {
public:
RegisterIndex() : index_(kInvalidIndex) {}
explicit RegisterIndex(int index) : index_(index) {}
static RegisterIndex Invalid() { return RegisterIndex(); }
bool is_valid() const { return index_ != kInvalidIndex; }
int ToInt() const {
DCHECK(is_valid());
return index_;
}
uintptr_t ToBit(MachineRepresentation rep) const {
if (kSimpleFPAliasing || rep != MachineRepresentation::kSimd128) {
return 1ull << ToInt();
} else {
DCHECK_EQ(rep, MachineRepresentation::kSimd128);
return 3ull << ToInt();
}
}
bool operator==(const RegisterIndex& rhs) const {
return index_ == rhs.index_;
}
bool operator!=(const RegisterIndex& rhs) const {
return index_ != rhs.index_;
}
class Iterator {
public:
explicit Iterator(int index) : index_(index) {}
bool operator!=(const Iterator& rhs) const { return index_ != rhs.index_; }
void operator++() { index_++; }
RegisterIndex operator*() const { return RegisterIndex(index_); }
private:
int index_;
};
private:
static const int kInvalidIndex = -1;
int8_t index_;
};
// A Range from [start, end] of instructions, inclusive of start and end.
class Range {
public:
Range() : start_(kMaxInt), end_(0) {}
Range(int start, int end) : start_(start), end_(end) {}
void AddInstr(int index) {
start_ = std::min(start_, index);
end_ = std::max(end_, index);
}
void AddRange(const Range& other) {
start_ = std::min(start_, other.start_);
end_ = std::max(end_, other.end_);
}
// Returns true if index is greater than start and less than or equal to end.
bool Contains(int index) { return index >= start_ && index <= end_; }
int start() const { return start_; }
int end() const { return end_; }
private:
int start_;
int end_;
};
// Represents a connected region of deferred basic blocks.
class DeferredBlocksRegion final {
public:
explicit DeferredBlocksRegion(Zone* zone, int number_of_blocks)
: spilled_vregs_(zone), blocks_covered_(number_of_blocks, zone) {}
void AddBlock(RpoNumber block, MidTierRegisterAllocationData* data) {
DCHECK(data->GetBlock(block)->IsDeferred());
blocks_covered_.Add(block.ToInt());
data->block_state(block).set_deferred_blocks_region(this);
}
// Adds |vreg| to the list of variables to potentially defer their output to
// a spill slot until we enter this deferred block region.
void DeferSpillOutputUntilEntry(int vreg) { spilled_vregs_.insert(vreg); }
ZoneSet<int>::iterator begin() const { return spilled_vregs_.begin(); }
ZoneSet<int>::iterator end() const { return spilled_vregs_.end(); }
const BitVector* blocks_covered() const { return &blocks_covered_; }
private:
ZoneSet<int> spilled_vregs_;
BitVector blocks_covered_;
};
// VirtualRegisterData stores data specific to a particular virtual register,
// and tracks spilled operands for that virtual register.
class VirtualRegisterData final {
public:
VirtualRegisterData() = default;
// Define VirtualRegisterData with the type of output that produces this
// virtual register.
void DefineAsUnallocatedOperand(int virtual_register, int instr_index,
bool is_deferred_block,
bool is_exceptional_call_output);
void DefineAsFixedSpillOperand(AllocatedOperand* operand,
int virtual_register, int instr_index,
bool is_deferred_block,
bool is_exceptional_call_output);
void DefineAsConstantOperand(ConstantOperand* operand, int instr_index,
bool is_deferred_block);
void DefineAsPhi(int virtual_register, int instr_index,
bool is_deferred_block);
// Spill an operand that is assigned to this virtual register.
void SpillOperand(InstructionOperand* operand, int instr_index,
MidTierRegisterAllocationData* data);
// Emit gap moves to / from the spill slot.
void EmitGapMoveToInputFromSpillSlot(AllocatedOperand to_operand,
int instr_index,
MidTierRegisterAllocationData* data);
void EmitGapMoveFromOutputToSpillSlot(AllocatedOperand from_operand,
const InstructionBlock* current_block,
int instr_index,
MidTierRegisterAllocationData* data);
void EmitGapMoveToSpillSlot(AllocatedOperand from_operand, int instr_index,
MidTierRegisterAllocationData* data);
// Adds pending spills for deferred-blocks.
void AddDeferredSpillUse(int instr_index,
MidTierRegisterAllocationData* data);
void AddDeferredSpillOutput(AllocatedOperand allocated_op, int instr_index,
MidTierRegisterAllocationData* data);
// Accessors for spill operand, which may still be pending allocation.
bool HasSpillOperand() const { return spill_operand_ != nullptr; }
InstructionOperand* spill_operand() const {
DCHECK(HasSpillOperand());
return spill_operand_;
}
bool HasPendingSpillOperand() const {
return HasSpillOperand() && spill_operand_->IsPending();
}
bool HasAllocatedSpillOperand() const {
return HasSpillOperand() && spill_operand_->IsAllocated();
}
bool HasConstantSpillOperand() const {
DCHECK_EQ(is_constant(), HasSpillOperand() && spill_operand_->IsConstant());
return is_constant();
}
// Returns true if the virtual register should be spilled when it is output.
bool NeedsSpillAtOutput() const { return needs_spill_at_output_; }
void MarkAsNeedsSpillAtOutput() {
if (is_constant()) return;
needs_spill_at_output_ = true;
if (HasSpillRange()) spill_range()->ClearDeferredBlockSpills();
}
// Returns true if the virtual register should be spilled at entry to deferred
// blocks in which it is spilled (to avoid spilling on output on
// non-deferred blocks).
bool NeedsSpillAtDeferredBlocks() const;
void EmitDeferredSpillOutputs(MidTierRegisterAllocationData* data);
bool IsSpilledAt(int instr_index, MidTierRegisterAllocationData* data) {
DCHECK_GE(instr_index, output_instr_index());
if (NeedsSpillAtOutput() || HasConstantSpillOperand()) return true;
if (HasSpillOperand() && data->GetBlock(instr_index)->IsDeferred()) {
return true;
}
return false;
}
// Allocates pending spill operands to the |allocated| spill slot.
void AllocatePendingSpillOperand(const AllocatedOperand& allocated);
int vreg() const { return vreg_; }
int output_instr_index() const { return output_instr_index_; }
bool is_constant() const { return is_constant_; }
bool is_phi() const { return is_phi_; }
bool is_defined_in_deferred_block() const {
return is_defined_in_deferred_block_;
}
bool is_exceptional_call_output() const {
return is_exceptional_call_output_;
}
struct DeferredSpillSlotOutput {
public:
explicit DeferredSpillSlotOutput(int instr, AllocatedOperand op,
const BitVector* blocks)
: instr_index(instr), operand(op), live_blocks(blocks) {}
int instr_index;
AllocatedOperand operand;
const BitVector* live_blocks;
};
// Represents the range of instructions for which this virtual register needs
// to be spilled on the stack.
class SpillRange : public ZoneObject {
public:
// Defines a spill range for an output operand.
SpillRange(int definition_instr_index,
const InstructionBlock* definition_block,
MidTierRegisterAllocationData* data)
: live_range_(definition_instr_index, definition_instr_index),
live_blocks_(data->GetBlocksDominatedBy(definition_block)),
deferred_spill_outputs_(nullptr) {}
// Defines a spill range for a Phi variable.
SpillRange(const InstructionBlock* phi_block,
MidTierRegisterAllocationData* data)
: live_range_(phi_block->first_instruction_index(),
phi_block->first_instruction_index()),
live_blocks_(data->GetBlocksDominatedBy(phi_block)),
deferred_spill_outputs_(nullptr) {
// For phis, add the gap move instructions in the predecssor blocks to
// the live range.
for (RpoNumber pred_rpo : phi_block->predecessors()) {
const InstructionBlock* block = data->GetBlock(pred_rpo);
live_range_.AddInstr(block->last_instruction_index());
}
}
SpillRange(const SpillRange&) = delete;
SpillRange& operator=(const SpillRange&) = delete;
bool IsLiveAt(int instr_index, InstructionBlock* block) {
if (!live_range_.Contains(instr_index)) return false;
int block_rpo = block->rpo_number().ToInt();
if (!live_blocks_->Contains(block_rpo)) return false;
if (!HasDeferredBlockSpills()) {
return true;
} else {
// If this spill range is only output for deferred block, then the spill
// slot will only be live for the deferred blocks, not all blocks that
// the virtual register is live.
for (auto deferred_spill_output : *deferred_spill_outputs()) {
if (deferred_spill_output.live_blocks->Contains(block_rpo)) {
return true;
}
}
return false;
}
}
void ExtendRangeTo(int instr_index) { live_range_.AddInstr(instr_index); }
void AddDeferredSpillOutput(AllocatedOperand allocated_op, int instr_index,
MidTierRegisterAllocationData* data) {
if (deferred_spill_outputs_ == nullptr) {
Zone* zone = data->allocation_zone();
deferred_spill_outputs_ =
zone->New<ZoneVector<DeferredSpillSlotOutput>>(zone);
}
const InstructionBlock* block = data->GetBlock(instr_index);
DCHECK_EQ(block->first_instruction_index(), instr_index);
BlockState& block_state = data->block_state(block->rpo_number());
const BitVector* deferred_blocks =
block_state.deferred_blocks_region()->blocks_covered();
deferred_spill_outputs_->emplace_back(instr_index, allocated_op,
deferred_blocks);
}
void ClearDeferredBlockSpills() { deferred_spill_outputs_ = nullptr; }
bool HasDeferredBlockSpills() const {
return deferred_spill_outputs_ != nullptr;
}
const ZoneVector<DeferredSpillSlotOutput>* deferred_spill_outputs() const {
DCHECK(HasDeferredBlockSpills());
return deferred_spill_outputs_;
}
Range& live_range() { return live_range_; }
private:
Range live_range_;
const BitVector* live_blocks_;
ZoneVector<DeferredSpillSlotOutput>* deferred_spill_outputs_;
};
bool HasSpillRange() const { return spill_range_ != nullptr; }
SpillRange* spill_range() const {
DCHECK(HasSpillRange());
return spill_range_;
}
private:
void Initialize(int virtual_register, InstructionOperand* spill_operand,
int instr_index, bool is_phi, bool is_constant,
bool is_defined_in_deferred_block,
bool is_exceptional_call_output);
void AddSpillUse(int instr_index, MidTierRegisterAllocationData* data);
void AddPendingSpillOperand(PendingOperand* pending_operand);
void EnsureSpillRange(MidTierRegisterAllocationData* data);
bool CouldSpillOnEntryToDeferred(const InstructionBlock* block);
InstructionOperand* spill_operand_;
SpillRange* spill_range_;
int output_instr_index_;
int vreg_;
bool is_phi_ : 1;
bool is_constant_ : 1;
bool is_defined_in_deferred_block_ : 1;
bool needs_spill_at_output_ : 1;
bool is_exceptional_call_output_ : 1;
};
VirtualRegisterData& MidTierRegisterAllocationData::VirtualRegisterDataFor(
int virtual_register) {
DCHECK_GE(virtual_register, 0);
DCHECK_LT(virtual_register, virtual_register_data_.size());
return virtual_register_data_[virtual_register];
}
void VirtualRegisterData::Initialize(int virtual_register,
InstructionOperand* spill_operand,
int instr_index, bool is_phi,
bool is_constant,
bool is_defined_in_deferred_block,
bool is_exceptional_call_output) {
vreg_ = virtual_register;
spill_operand_ = spill_operand;
spill_range_ = nullptr;
output_instr_index_ = instr_index;
is_phi_ = is_phi;
is_constant_ = is_constant;
is_defined_in_deferred_block_ = is_defined_in_deferred_block;
needs_spill_at_output_ = !is_constant_ && spill_operand_ != nullptr;
is_exceptional_call_output_ = is_exceptional_call_output;
}
void VirtualRegisterData::DefineAsConstantOperand(ConstantOperand* operand,
int instr_index,
bool is_deferred_block) {
Initialize(operand->virtual_register(), operand, instr_index, false, true,
is_deferred_block, false);
}
void VirtualRegisterData::DefineAsFixedSpillOperand(
AllocatedOperand* operand, int virtual_register, int instr_index,
bool is_deferred_block, bool is_exceptional_call_output) {
Initialize(virtual_register, operand, instr_index, false, false,
is_deferred_block, is_exceptional_call_output);
}
void VirtualRegisterData::DefineAsUnallocatedOperand(
int virtual_register, int instr_index, bool is_deferred_block,
bool is_exceptional_call_output) {
Initialize(virtual_register, nullptr, instr_index, false, false,
is_deferred_block, is_exceptional_call_output);
}
void VirtualRegisterData::DefineAsPhi(int virtual_register, int instr_index,
bool is_deferred_block) {
Initialize(virtual_register, nullptr, instr_index, true, false,
is_deferred_block, false);
}
void VirtualRegisterData::EnsureSpillRange(
MidTierRegisterAllocationData* data) {
DCHECK(!is_constant());
if (HasSpillRange()) return;
const InstructionBlock* definition_block =
data->GetBlock(output_instr_index_);
if (is_phi()) {
// Define a spill slot that is defined for the phi's range.
spill_range_ =
data->allocation_zone()->New<SpillRange>(definition_block, data);
} else {
if (is_exceptional_call_output()) {
// If this virtual register is output by a call which has an exception
// catch handler, then the output will only be live in the IfSuccess
// successor block, not the IfException side, so make the definition block
// the IfSuccess successor block explicitly.
DCHECK_EQ(output_instr_index_,
definition_block->last_instruction_index() - 1);
DCHECK_EQ(definition_block->SuccessorCount(), 2);
DCHECK(data->GetBlock(definition_block->successors()[1])->IsHandler());
definition_block = data->GetBlock(definition_block->successors()[0]);
}
// The spill slot will be defined after the instruction that outputs it.
spill_range_ = data->allocation_zone()->New<SpillRange>(
output_instr_index_ + 1, definition_block, data);
}
data->spilled_virtual_registers().Add(vreg());
}
void VirtualRegisterData::AddSpillUse(int instr_index,
MidTierRegisterAllocationData* data) {
if (is_constant()) return;
EnsureSpillRange(data);
spill_range_->ExtendRangeTo(instr_index);
const InstructionBlock* block = data->GetBlock(instr_index);
if (CouldSpillOnEntryToDeferred(block)) {
data->block_state(block->rpo_number())
.deferred_blocks_region()
->DeferSpillOutputUntilEntry(vreg());
} else {
MarkAsNeedsSpillAtOutput();
}
}
void VirtualRegisterData::AddDeferredSpillUse(
int instr_index, MidTierRegisterAllocationData* data) {
DCHECK(data->GetBlock(instr_index)->IsDeferred());
DCHECK(!is_defined_in_deferred_block());
AddSpillUse(instr_index, data);
}
bool VirtualRegisterData::CouldSpillOnEntryToDeferred(
const InstructionBlock* block) {
return !NeedsSpillAtOutput() && block->IsDeferred() &&
!is_defined_in_deferred_block() && !is_constant();
}
void VirtualRegisterData::AddDeferredSpillOutput(
AllocatedOperand allocated_op, int instr_index,
MidTierRegisterAllocationData* data) {
DCHECK(!NeedsSpillAtOutput());
spill_range_->AddDeferredSpillOutput(allocated_op, instr_index, data);
}
void VirtualRegisterData::SpillOperand(InstructionOperand* operand,
int instr_index,
MidTierRegisterAllocationData* data) {
AddSpillUse(instr_index, data);
if (HasAllocatedSpillOperand() || HasConstantSpillOperand()) {
InstructionOperand::ReplaceWith(operand, spill_operand());
} else {
PendingOperand pending_op;
InstructionOperand::ReplaceWith(operand, &pending_op);
AddPendingSpillOperand(PendingOperand::cast(operand));
}
}
bool VirtualRegisterData::NeedsSpillAtDeferredBlocks() const {
return HasSpillRange() && spill_range()->HasDeferredBlockSpills();
}
void VirtualRegisterData::EmitDeferredSpillOutputs(
MidTierRegisterAllocationData* data) {
DCHECK(NeedsSpillAtDeferredBlocks());
for (auto deferred_spill : *spill_range()->deferred_spill_outputs()) {
EmitGapMoveToSpillSlot(deferred_spill.operand, deferred_spill.instr_index,
data);
}
}
void VirtualRegisterData::EmitGapMoveToInputFromSpillSlot(
AllocatedOperand to_operand, int instr_index,
MidTierRegisterAllocationData* data) {
AddSpillUse(instr_index, data);
DCHECK(!to_operand.IsPending());
if (HasAllocatedSpillOperand() || HasConstantSpillOperand()) {
data->AddGapMove(instr_index, Instruction::END, *spill_operand(),
to_operand);
} else {
MoveOperands* move_ops =
data->AddPendingOperandGapMove(instr_index, Instruction::END);
AddPendingSpillOperand(PendingOperand::cast(&move_ops->source()));
InstructionOperand::ReplaceWith(&move_ops->destination(), &to_operand);
}
}
void VirtualRegisterData::EmitGapMoveToSpillSlot(
AllocatedOperand from_operand, int instr_index,
MidTierRegisterAllocationData* data) {
AddSpillUse(instr_index, data);
if (HasAllocatedSpillOperand() || HasConstantSpillOperand()) {
data->AddGapMove(instr_index, Instruction::START, from_operand,
*spill_operand());
} else {
MoveOperands* move_ops =
data->AddPendingOperandGapMove(instr_index, Instruction::START);
InstructionOperand::ReplaceWith(&move_ops->source(), &from_operand);
AddPendingSpillOperand(PendingOperand::cast(&move_ops->destination()));
}
}
void VirtualRegisterData::EmitGapMoveFromOutputToSpillSlot(
AllocatedOperand from_operand, const InstructionBlock* current_block,
int instr_index, MidTierRegisterAllocationData* data) {
DCHECK_EQ(data->GetBlock(instr_index), current_block);
if (instr_index == current_block->last_instruction_index()) {
// Add gap move to the first instruction of every successor block.
for (const RpoNumber& succ : current_block->successors()) {
const InstructionBlock* successor = data->GetBlock(succ);
DCHECK_EQ(1, successor->PredecessorCount());
EmitGapMoveToSpillSlot(from_operand, successor->first_instruction_index(),
data);
}
} else {
// Add gap move to the next instruction.
EmitGapMoveToSpillSlot(from_operand, instr_index + 1, data);
}
}
void VirtualRegisterData::AddPendingSpillOperand(PendingOperand* pending_op) {
DCHECK(HasSpillRange());
DCHECK_NULL(pending_op->next());
if (HasSpillOperand()) {
pending_op->set_next(PendingOperand::cast(spill_operand()));
}
spill_operand_ = pending_op;
}
void VirtualRegisterData::AllocatePendingSpillOperand(
const AllocatedOperand& allocated) {
DCHECK(!HasAllocatedSpillOperand() && !HasConstantSpillOperand());
PendingOperand* current = PendingOperand::cast(spill_operand_);
while (current) {
PendingOperand* next = current->next();
InstructionOperand::ReplaceWith(current, &allocated);
current = next;
}
}
// RegisterState represents the state of the |kind| registers at a particular
// point in program execution. The RegisterState can be cloned or merged with
// other RegisterStates to model branches and merges in program control flow.
class RegisterState final : public ZoneObject {
public:
static RegisterState* New(RegisterKind kind, int num_allocatable_registers,
Zone* zone) {
return zone->New<RegisterState>(kind, num_allocatable_registers, zone);
}
RegisterState(RegisterKind kind, int num_allocatable_registers, Zone* zone);
RegisterState(const RegisterState& other) V8_NOEXCEPT;
bool IsAllocated(RegisterIndex reg);
bool IsShared(RegisterIndex reg);
int VirtualRegisterForRegister(RegisterIndex reg);
// Commit the |reg| with the |allocated| operand.
void Commit(RegisterIndex reg, AllocatedOperand allocated,
InstructionOperand* operand, MidTierRegisterAllocationData* data);
// Spill the contents of |reg| for an instruction in |current_block| using
// the |allocated| operand to commit the spill gap move.
void Spill(RegisterIndex reg, AllocatedOperand allocated,
const InstructionBlock* current_block,
MidTierRegisterAllocationData* data);
// Add a pending spill of the contents of |reg| at the exit point of a
// deferred block at |instr_index| using |allocated| operand to commit the
// spill gap move, if the register never gets spilled in a non-deferred block.
void SpillForDeferred(RegisterIndex reg, AllocatedOperand allocated,
int instr_index, MidTierRegisterAllocationData* data);
// Add a pending gap move from |reg| to |virtual_register|'s spill at the
// entry point of a deferred block at |instr_index|, if the |virtual_register|
// never spilled in a non-deferred block.
void MoveToSpillSlotOnDeferred(RegisterIndex reg, int virtual_register,
int instr_index,
MidTierRegisterAllocationData* data);
// Allocate |reg| to |virtual_register| for the instruction at |instr_index|.
// If the register is later spilled, a gap move will be added immediately
// before |instr_index| to move |virtual_register| into this register.
void AllocateUse(RegisterIndex reg, int virtual_register,
InstructionOperand* operand, int instr_index,
MidTierRegisterAllocationData* data);
// Allocate |reg| as a pending use of |virtual_register| for |operand| in the
// instruction at |instr_index|. If |virtual_register| later gets committed to
// this register, then |operand| will be too, otherwise |operand| will be
// replaced with |virtual_register|'s spill operand.
void AllocatePendingUse(RegisterIndex reg, int virtual_register,
InstructionOperand* operand, int instr_index);
// Mark that the register is holding a phi operand that is yet to be allocated
// by the source block in the gap just before the last instruction in the
// source block.
void UseForPhiGapMove(RegisterIndex reg);
bool IsPhiGapMove(RegisterIndex reg);
// Returns true if |reg| only has pending uses allocated to it.
bool HasPendingUsesOnly(RegisterIndex reg);
// Clone this RegisterState for a successor block.
RegisterState* Clone();
// Copy register details for |reg| from |source| to |this| RegisterState.
void CopyFrom(RegisterIndex reg, RegisterState* source);
// Returns true if the register details for |reg| are equal in |source| and
// |this| RegisterStates.
bool Equals(RegisterIndex reg, RegisterState* source);
// Signals that the registers in this state are going to be shared across
// |shared_use_count| blocks.
void AddSharedUses(int shared_use_count);
// When merging multiple block's RegisterState into the successor block with
// |this| RegisterState, commit |reg| as being merged from a given predecessor
// block.
void CommitAtMerge(RegisterIndex reg);
// Resets |reg| if it has register data that was shared with other basic
// blocks and was spilled in those blocks.
void ResetIfSpilledWhileShared(RegisterIndex reg);
// Enable range-based for on allocatable register indices.
RegisterIndex::Iterator begin() const { return RegisterIndex::Iterator(0); }
RegisterIndex::Iterator end() const {
return RegisterIndex::Iterator(num_allocatable_registers());
}
private:
// Represents a particular register and details of what virtual_register it is
// currently holding, and how it should be updated if committed or spilled.
class Register final : public ZoneObject {
public:
Register();
void Reset();
// Operations for committing, spilling and allocating uses of the register.
void Commit(AllocatedOperand allocated_operand,
MidTierRegisterAllocationData* data);
void Spill(AllocatedOperand allocated_op,
const InstructionBlock* current_block,
MidTierRegisterAllocationData* data);
void Use(int virtual_register, int instr_index);
void PendingUse(InstructionOperand* operand, int virtual_register,
int instr_index);
void SpillForDeferred(AllocatedOperand allocated, int instr_index,
MidTierRegisterAllocationData* data);
void MoveToSpillSlotOnDeferred(int virtual_register, int instr_index,
MidTierRegisterAllocationData* data);
// Mark register as holding a phi.
void MarkAsPhiMove();
bool is_phi_gap_move() const { return is_phi_gap_move_; }
// The register has deferred block spills, that will be emitted if the
// register is committed without having been spilled in a non-deferred block
void AddDeferredBlockSpill(int instr_index, bool on_exit, Zone* zone);
bool has_deferred_block_spills() const {
return deferred_block_spills_.has_value();
}
// Operations related to dealing with a Register that is shared across
// multiple basic blocks.
void CommitAtMerge();
void AddSharedUses(int shared_use_count);
bool is_shared() const { return is_shared_; }
bool was_spilled_while_shared() const {
return is_shared() && !is_allocated();
}
bool is_allocated() const {
return virtual_register_ != InstructionOperand::kInvalidVirtualRegister;
}
// The current virtual register held by this register.
int virtual_register() const { return virtual_register_; }
// The instruction index for the last use of the current in-progress
// allocation of this register in the instruction stream. Used both
// as the instruction too add a gap move if |needs_gap_move_on_spill| and
// the intruction which the virtual register's spill range should be
// extended too if the register is spilled.
int last_use_instr_index() const { return last_use_instr_index_; }
// Returns true if a gap move should be added if the register is spilled.
bool needs_gap_move_on_spill() const { return needs_gap_move_on_spill_; }
// Returns a threaded list of the operands that have pending uses of this
// register and will be resolved either to the register, or a spill slot
// depending on whether this register is spilled or committed.
PendingOperand* pending_uses() const { return pending_uses_; }
private:
struct DeferredBlockSpill {
DeferredBlockSpill(int instr, bool on_exit)
: instr_index(instr), on_deferred_exit(on_exit) {}
int instr_index;
bool on_deferred_exit;
};
void SpillPendingUses(MidTierRegisterAllocationData* data);
void SpillPhiGapMove(AllocatedOperand allocated_op,
const InstructionBlock* block,
MidTierRegisterAllocationData* data);
bool needs_gap_move_on_spill_;
bool is_shared_;
bool is_phi_gap_move_;
int last_use_instr_index_;
int num_commits_required_;
int virtual_register_;
PendingOperand* pending_uses_;
base::Optional<ZoneVector<DeferredBlockSpill>> deferred_block_spills_;
};
void ResetDataFor(RegisterIndex reg);
bool HasRegisterData(RegisterIndex reg);
void EnsureRegisterData(RegisterIndex reg);
int num_allocatable_registers() const {
return static_cast<int>(register_data_.size());
}
Register& reg_data(RegisterIndex reg);
Zone* zone() const { return zone_; }
ZoneVector<Register*> register_data_;
Zone* zone_;
};
RegisterState::Register::Register() { Reset(); }
void RegisterState::Register::Reset() {
is_shared_ = false;
is_phi_gap_move_ = false;
needs_gap_move_on_spill_ = false;
last_use_instr_index_ = -1;
num_commits_required_ = 0;
virtual_register_ = InstructionOperand::kInvalidVirtualRegister;
pending_uses_ = nullptr;
deferred_block_spills_.reset();
}
void RegisterState::Register::Use(int virtual_register, int instr_index) {
// A register can have many pending uses, but should only ever have a single
// non-pending use, since any subsiquent use will commit the preceeding use
// first.
DCHECK(!is_allocated());
needs_gap_move_on_spill_ = true;
virtual_register_ = virtual_register;
last_use_instr_index_ = instr_index;
num_commits_required_ = 1;
}
void RegisterState::Register::PendingUse(InstructionOperand* operand,
int virtual_register,
int instr_index) {
if (!is_allocated()) {
virtual_register_ = virtual_register;
last_use_instr_index_ = instr_index;
num_commits_required_ = 1;
}
DCHECK_EQ(virtual_register_, virtual_register);
PendingOperand pending_op(pending_uses());
InstructionOperand::ReplaceWith(operand, &pending_op);
pending_uses_ = PendingOperand::cast(operand);
}
void RegisterState::Register::MarkAsPhiMove() {
DCHECK(is_allocated());
is_phi_gap_move_ = true;
}
void RegisterState::Register::AddDeferredBlockSpill(int instr_index,
bool on_exit, Zone* zone) {
DCHECK(is_allocated());
if (!deferred_block_spills_) {
deferred_block_spills_.emplace(zone);
}
deferred_block_spills_->emplace_back(instr_index, on_exit);
}
void RegisterState::Register::AddSharedUses(int shared_use_count) {
is_shared_ = true;
num_commits_required_ += shared_use_count;
}
void RegisterState::Register::CommitAtMerge() {
DCHECK(is_shared());
DCHECK(is_allocated());
--num_commits_required_;
// We should still have commits required that will be resolved in the merge
// block.
DCHECK_GT(num_commits_required_, 0);
}
void RegisterState::Register::Commit(AllocatedOperand allocated_op,
MidTierRegisterAllocationData* data) {
DCHECK(is_allocated());
DCHECK_GT(num_commits_required_, 0);
if (--num_commits_required_ == 0) {
// Allocate all pending uses to |allocated_op| if this commit is non-shared,
// or if it is the final commit required on a register data shared across
// blocks.
PendingOperand* pending_use = pending_uses();
while (pending_use) {
PendingOperand* next = pending_use->next();
InstructionOperand::ReplaceWith(pending_use, &allocated_op);
pending_use = next;
}
pending_uses_ = nullptr;
VirtualRegisterData& vreg_data =
data->VirtualRegisterDataFor(virtual_register());
// If there are deferred block gap moves pending, emit them now that the
// register has been committed.
if (has_deferred_block_spills()) {
for (DeferredBlockSpill& spill : *deferred_block_spills_) {
if (spill.on_deferred_exit) {
vreg_data.EmitGapMoveToInputFromSpillSlot(allocated_op,
spill.instr_index, data);
} else if (!vreg_data.NeedsSpillAtOutput()) {
vreg_data.AddDeferredSpillOutput(allocated_op, spill.instr_index,
data);
}
}
}
// If this register was used as a phi gap move, then it being commited
// is the point at which we have output the Phi.
if (is_phi_gap_move() && vreg_data.NeedsSpillAtDeferredBlocks()) {
vreg_data.EmitDeferredSpillOutputs(data);
}
}
DCHECK_IMPLIES(num_commits_required_ > 0, is_shared());
}
void RegisterState::Register::Spill(AllocatedOperand allocated_op,
const InstructionBlock* current_block,
MidTierRegisterAllocationData* data) {
VirtualRegisterData& vreg_data =
data->VirtualRegisterDataFor(virtual_register());
SpillPendingUses(data);
if (is_phi_gap_move()) {
SpillPhiGapMove(allocated_op, current_block, data);
}
if (needs_gap_move_on_spill()) {
vreg_data.EmitGapMoveToInputFromSpillSlot(allocated_op,
last_use_instr_index(), data);
}
if (has_deferred_block_spills() || !current_block->IsDeferred()) {
vreg_data.MarkAsNeedsSpillAtOutput();
}
virtual_register_ = InstructionOperand::kInvalidVirtualRegister;
}
void RegisterState::Register::SpillPhiGapMove(
AllocatedOperand allocated_op, const InstructionBlock* current_block,
MidTierRegisterAllocationData* data) {
DCHECK_EQ(current_block->SuccessorCount(), 1);
const InstructionBlock* phi_block =
data->GetBlock(current_block->successors()[0]);
// Add gap moves to the spilled phi for all blocks we previously allocated
// assuming the the phi was in a register.
VirtualRegisterData& vreg_data =
data->VirtualRegisterDataFor(virtual_register());
for (RpoNumber predecessor : phi_block->predecessors()) {
// If the predecessor has a lower rpo number than the current block, then
// we have already processed it, so add the required gap move.
if (predecessor > current_block->rpo_number()) {
const InstructionBlock* predecessor_block = data->GetBlock(predecessor);
vreg_data.EmitGapMoveToSpillSlot(
allocated_op, predecessor_block->last_instruction_index(), data);
}
}
}
void RegisterState::Register::SpillPendingUses(
MidTierRegisterAllocationData* data) {
VirtualRegisterData& vreg_data =
data->VirtualRegisterDataFor(virtual_register());
PendingOperand* pending_use = pending_uses();
while (pending_use) {
// Spill all the pending operands associated with this register.
PendingOperand* next = pending_use->next();
vreg_data.SpillOperand(pending_use, last_use_instr_index(), data);
pending_use = next;
}
pending_uses_ = nullptr;
}
void RegisterState::Register::SpillForDeferred(
AllocatedOperand allocated, int instr_index,
MidTierRegisterAllocationData* data) {
DCHECK(is_allocated());
DCHECK(is_shared());
// Add a pending deferred spill, then commit the register (with the commit
// being fullfilled by the deferred spill if the register is fully commited).
data->VirtualRegisterDataFor(virtual_register())
.AddDeferredSpillUse(instr_index, data);
AddDeferredBlockSpill(instr_index, true, data->allocation_zone());
Commit(allocated, data);
}
void RegisterState::Register::MoveToSpillSlotOnDeferred(
int virtual_register, int instr_index,
MidTierRegisterAllocationData* data) {
if (!is_allocated()) {
virtual_register_ = virtual_register;
last_use_instr_index_ = instr_index;
num_commits_required_ = 1;
}
AddDeferredBlockSpill(instr_index, false, data->allocation_zone());
}
RegisterState::RegisterState(RegisterKind kind, int num_allocatable_registers,
Zone* zone)
: register_data_(num_allocatable_registers, zone), zone_(zone) {}
RegisterState::RegisterState(const RegisterState& other) V8_NOEXCEPT
: register_data_(other.register_data_.begin(), other.register_data_.end(),
other.zone_),
zone_(other.zone_) {}
int RegisterState::VirtualRegisterForRegister(RegisterIndex reg) {
if (IsAllocated(reg)) {
return reg_data(reg).virtual_register();
} else {
return InstructionOperand::kInvalidVirtualRegister;
}
}
bool RegisterState::IsPhiGapMove(RegisterIndex reg) {
DCHECK(IsAllocated(reg));
return reg_data(reg).is_phi_gap_move();
}
void RegisterState::Commit(RegisterIndex reg, AllocatedOperand allocated,
InstructionOperand* operand,
MidTierRegisterAllocationData* data) {
InstructionOperand::ReplaceWith(operand, &allocated);
if (IsAllocated(reg)) {
reg_data(reg).Commit(allocated, data);
ResetDataFor(reg);
}
}
void RegisterState::Spill(RegisterIndex reg, AllocatedOperand allocated,
const InstructionBlock* current_block,
MidTierRegisterAllocationData* data) {
DCHECK(IsAllocated(reg));
reg_data(reg).Spill(allocated, current_block, data);
ResetDataFor(reg);
}
void RegisterState::SpillForDeferred(RegisterIndex reg,
AllocatedOperand allocated,
int instr_index,
MidTierRegisterAllocationData* data) {
DCHECK(IsAllocated(reg));
reg_data(reg).SpillForDeferred(allocated, instr_index, data);
ResetDataFor(reg);
}
void RegisterState::MoveToSpillSlotOnDeferred(
RegisterIndex reg, int virtual_register, int instr_index,
MidTierRegisterAllocationData* data) {
EnsureRegisterData(reg);
reg_data(reg).MoveToSpillSlotOnDeferred(virtual_register, instr_index, data);
}
void RegisterState::AllocateUse(RegisterIndex reg, int virtual_register,
InstructionOperand* operand, int instr_index,
MidTierRegisterAllocationData* data) {
EnsureRegisterData(reg);
reg_data(reg).Use(virtual_register, instr_index);
}
void RegisterState::AllocatePendingUse(RegisterIndex reg, int virtual_register,
InstructionOperand* operand,
int instr_index) {
EnsureRegisterData(reg);
reg_data(reg).PendingUse(operand, virtual_register, instr_index);
}
void RegisterState::UseForPhiGapMove(RegisterIndex reg) {
DCHECK(IsAllocated(reg));
reg_data(reg).MarkAsPhiMove();
}
RegisterState::Register& RegisterState::reg_data(RegisterIndex reg) {
DCHECK(HasRegisterData(reg));
return *register_data_[reg.ToInt()];
}
bool RegisterState::IsShared(RegisterIndex reg) {
return HasRegisterData(reg) && reg_data(reg).is_shared();
}
bool RegisterState::IsAllocated(RegisterIndex reg) {
return HasRegisterData(reg) && reg_data(reg).is_allocated();
}
bool RegisterState::HasPendingUsesOnly(RegisterIndex reg) {
DCHECK(IsAllocated(reg));
return !reg_data(reg).needs_gap_move_on_spill();
}
void RegisterState::ResetDataFor(RegisterIndex reg) {
DCHECK(HasRegisterData(reg));
if (reg_data(reg).is_shared()) {
register_data_[reg.ToInt()] = nullptr;
} else {
reg_data(reg).Reset();
}
}
bool RegisterState::HasRegisterData(RegisterIndex reg) {
DCHECK_LT(reg.ToInt(), register_data_.size());
return register_data_[reg.ToInt()] != nullptr;
}
void RegisterState::EnsureRegisterData(RegisterIndex reg) {
if (!HasRegisterData(reg)) {
register_data_[reg.ToInt()] = zone()->New<RegisterState::Register>();
}
}
void RegisterState::ResetIfSpilledWhileShared(RegisterIndex reg) {
if (HasRegisterData(reg) && reg_data(reg).was_spilled_while_shared()) {
ResetDataFor(reg);
}
}
void RegisterState::CommitAtMerge(RegisterIndex reg) {
DCHECK(IsAllocated(reg));
reg_data(reg).CommitAtMerge();
}
void RegisterState::CopyFrom(RegisterIndex reg, RegisterState* source) {
register_data_[reg.ToInt()] = source->register_data_[reg.ToInt()];
}
bool RegisterState::Equals(RegisterIndex reg, RegisterState* other) {
return register_data_[reg.ToInt()] == other->register_data_[reg.ToInt()];
}
void RegisterState::AddSharedUses(int shared_use_count) {
for (RegisterIndex reg : *this) {
if (HasRegisterData(reg)) {
reg_data(reg).AddSharedUses(shared_use_count);
}
}
}
RegisterState* RegisterState::Clone() {
return zone_->New<RegisterState>(*this);
}
class RegisterBitVector {
public:
RegisterBitVector() : bits_(0) {}
bool Contains(RegisterIndex reg, MachineRepresentation rep) const {
return bits_ & reg.ToBit(rep);
}
RegisterIndex GetFirstSet() const {
return RegisterIndex(base::bits::CountTrailingZeros(bits_));
}
RegisterIndex GetFirstCleared(int max_reg) const {
int reg_index = base::bits::CountTrailingZeros(~bits_);
if (reg_index < max_reg) {
return RegisterIndex(reg_index);
} else {
return RegisterIndex::Invalid();
}
}
void Add(RegisterIndex reg, MachineRepresentation rep) {
bits_ |= reg.ToBit(rep);
}
void Clear(RegisterIndex reg, MachineRepresentation rep) {
bits_ &= ~reg.ToBit(rep);
}
RegisterBitVector Union(const RegisterBitVector& other) {
return RegisterBitVector(bits_ | other.bits_);
}
void Reset() { bits_ = 0; }
bool IsEmpty() const { return bits_ == 0; }
private:
explicit RegisterBitVector(uintptr_t bits) : bits_(bits) {}
static_assert(RegisterConfiguration::kMaxRegisters <= sizeof(uintptr_t) * 8,
"Maximum registers must fit in uintptr_t bitmap");
uintptr_t bits_;
};
// A SinglePassRegisterAllocator is a fast register allocator that does a single
// pass through the instruction stream without performing any live-range
// analysis beforehand. It deals with a single RegisterKind, either general or
// double registers, with the MidTierRegisterAllocator choosing the correct
// SinglePassRegisterAllocator based on a values representation.
class SinglePassRegisterAllocator final {
public:
SinglePassRegisterAllocator(RegisterKind kind,
MidTierRegisterAllocationData* data);
// Convert to / from a register code and a register index.
RegisterIndex FromRegCode(int reg_code, MachineRepresentation rep) const;
int ToRegCode(RegisterIndex index, MachineRepresentation rep) const;
// Allocation routines used to allocate a particular operand to either a
// register or a spill slot.
void AllocateConstantOutput(ConstantOperand* operand);
void AllocateOutput(UnallocatedOperand* operand, int instr_index);
void AllocateInput(UnallocatedOperand* operand, int instr_index);
void AllocateSameInputOutput(UnallocatedOperand* output,
UnallocatedOperand* input, int instr_index);
void AllocateGapMoveInput(UnallocatedOperand* operand, int instr_index);
void AllocateTemp(UnallocatedOperand* operand, int instr_index);
void AllocatePhi(int virtual_register, const InstructionBlock* block);
void AllocatePhiGapMove(int to_vreg, int from_vreg, int instr_index);
// Reserve any fixed registers for the operands on an instruction before doing
// allocation on the operands.
void ReserveFixedInputRegister(const UnallocatedOperand* operand,
int instr_index);
void ReserveFixedTempRegister(const UnallocatedOperand* operand,
int instr_index);
void ReserveFixedOutputRegister(const UnallocatedOperand* operand,
int instr_index);
// Spills all registers that are currently holding data, for example, due to
// an instruction that clobbers all registers.
void SpillAllRegisters();
// Inform the allocator that we are starting / ending a block or ending
// allocation for the current instruction.
void StartBlock(const InstructionBlock* block);
void EndBlock(const InstructionBlock* block);
void EndInstruction();
void UpdateForDeferredBlock(int instr_index);
void AllocateDeferredBlockSpillOutput(int instr_index,
RpoNumber deferred_block,
int virtual_register);
RegisterKind kind() const { return kind_; }
BitVector* assigned_registers() const { return assigned_registers_; }
private:
enum class UsePosition {
// Operand used at start of instruction.
kStart,
// Operand used at end of instruction.
kEnd,
// Operand is used at both the start and end of instruction.
kAll,
// Operand is not used in the instruction (used when initializing register
// state on block entry).
kNone,
};
// The allocator is initialized without any RegisterState by default to avoid
// having to allocate per-block allocator state for functions that don't
// allocate registers of a particular type. All allocation functions should
// call EnsureRegisterState to allocate a RegisterState if necessary.
void EnsureRegisterState();
// Clone the register state from |successor| into the current register state.
void CloneStateFrom(RpoNumber successor);
// Merge the register state of |successors| into the current register state.
void MergeStateFrom(const InstructionBlock::Successors& successors);
// Spill a register in a previously processed successor block when merging
// state into the current block.
void SpillRegisterAtMerge(RegisterState* reg_state, RegisterIndex reg);
// Introduce a gap move to move |virtual_register| from reg |from| to reg |to|
// on entry to a |successor| block.
void MoveRegisterOnMerge(RegisterIndex from, RegisterIndex to,
int virtual_register, RpoNumber successor,
RegisterState* succ_state);
// Update the virtual register data with the data in register_state()
void UpdateVirtualRegisterState();
// Returns true if |virtual_register| is defined after use position |pos| at
// |instr_index|.
bool DefinedAfter(int virtual_register, int instr_index, UsePosition pos);
// Allocate |reg| to |virtual_register| for |operand| of the instruction at
// |instr_index|. The register will be reserved for this use for the specified
// |pos| use position.
void AllocateUse(RegisterIndex reg, int virtual_register,
InstructionOperand* operand, int instr_index,
UsePosition pos);
// Allocate |reg| to |virtual_register| as a pending use (i.e., only if the
// register is not subsequently spilled) for |operand| of the instruction at
// |instr_index|.
void AllocatePendingUse(RegisterIndex reg, int virtual_register,
InstructionOperand* operand, int instr_index);
// Allocate |operand| to |reg| and add a gap move to move |virtual_register|
// to this register for the instruction at |instr_index|. |reg| will be
// reserved for this use for the specified |pos| use position.
void AllocateUseWithMove(RegisterIndex reg, int virtual_register,
UnallocatedOperand* operand, int instr_index,
UsePosition pos);
void CommitRegister(RegisterIndex reg, int virtual_register,
InstructionOperand* operand, UsePosition pos);
void SpillRegister(RegisterIndex reg);
void SpillRegisterForVirtualRegister(int virtual_register);
// Pre-emptively spill the register at the exit of deferred blocks such that
// uses of this register in non-deferred blocks don't need to be spilled.
void SpillRegisterForDeferred(RegisterIndex reg, int instr_index);
// Returns an AllocatedOperand corresponding to the use of |reg| for
// |virtual_register|.
AllocatedOperand AllocatedOperandForReg(RegisterIndex reg,
int virtual_register);
void ReserveFixedRegister(const UnallocatedOperand* operand, int instr_index,
UsePosition pos);
RegisterIndex AllocateOutput(UnallocatedOperand* operand, int instr_index,
UsePosition pos);
void EmitGapMoveFromOutput(InstructionOperand from, InstructionOperand to,
int instr_index);
// Helper functions to choose the best register for a given operand.
V8_INLINE RegisterIndex
ChooseRegisterFor(VirtualRegisterData& virtual_register, int instr_index,
UsePosition pos, bool must_use_register);
V8_INLINE RegisterIndex ChooseRegisterFor(MachineRepresentation rep,
UsePosition pos,
bool must_use_register);
V8_INLINE RegisterIndex ChooseFreeRegister(MachineRepresentation rep,
UsePosition pos);
V8_INLINE RegisterIndex ChooseFreeRegister(
const RegisterBitVector& allocated_regs, MachineRepresentation rep);
V8_INLINE RegisterIndex ChooseRegisterToSpill(MachineRepresentation rep,
UsePosition pos);
// Assign, free and mark use's of |reg| for a |virtual_register| at use
// position |pos|.
V8_INLINE void AssignRegister(RegisterIndex reg, int virtual_register,
UsePosition pos);
V8_INLINE void FreeRegister(RegisterIndex reg, int virtual_register);
V8_INLINE void MarkRegisterUse(RegisterIndex reg, MachineRepresentation rep,
UsePosition pos);
V8_INLINE RegisterBitVector InUseBitmap(UsePosition pos);
V8_INLINE bool IsValidForRep(RegisterIndex reg, MachineRepresentation rep);
// Return the register allocated to |virtual_register|, if any.
RegisterIndex RegisterForVirtualRegister(int virtual_register);
// Return the virtual register being held by |reg|, or kInvalidVirtualRegister
// if |reg| is unallocated.
int VirtualRegisterForRegister(RegisterIndex reg);
// Returns true if |reg| is unallocated or holds |virtual_register|.
bool IsFreeOrSameVirtualRegister(RegisterIndex reg, int virtual_register);
// Returns true if |virtual_register| is unallocated or is allocated to |reg|.
bool VirtualRegisterIsUnallocatedOrInReg(int virtual_register,
RegisterIndex reg);
// Returns a RegisterBitVector representing the allocated registers in
// reg_state.
RegisterBitVector GetAllocatedRegBitVector(RegisterState* reg_state);
// Check the consistency of reg->vreg and vreg->reg mappings if a debug build.
void CheckConsistency();
bool HasRegisterState() const { return register_state_; }
RegisterState* register_state() const {
DCHECK(HasRegisterState());
return register_state_;
}
VirtualRegisterData& VirtualRegisterDataFor(int virtual_register) const {
return data()->VirtualRegisterDataFor(virtual_register);
}
MachineRepresentation RepresentationFor(int virtual_register) const {
return data()->RepresentationFor(virtual_register);
}
int num_allocatable_registers() const { return num_allocatable_registers_; }
const InstructionBlock* current_block() const { return current_block_; }
MidTierRegisterAllocationData* data() const { return data_; }
// Virtual register to register mapping.
ZoneVector<RegisterIndex> virtual_register_to_reg_;
// Current register state during allocation.
RegisterState* register_state_;
// The current block being processed.
const InstructionBlock* current_block_;
const RegisterKind kind_;
const int num_allocatable_registers_;
ZoneVector<RegisterIndex> reg_code_to_index_;
const int* index_to_reg_code_;
BitVector* assigned_registers_;
MidTierRegisterAllocationData* data_;
RegisterBitVector in_use_at_instr_start_bits_;
RegisterBitVector in_use_at_instr_end_bits_;
RegisterBitVector allocated_registers_bits_;
// These fields are only used when kSimpleFPAliasing == false.
base::Optional<ZoneVector<RegisterIndex>> float32_reg_code_to_index_;
base::Optional<ZoneVector<int>> index_to_float32_reg_code_;
base::Optional<ZoneVector<RegisterIndex>> simd128_reg_code_to_index_;
base::Optional<ZoneVector<int>> index_to_simd128_reg_code_;
};
SinglePassRegisterAllocator::SinglePassRegisterAllocator(
RegisterKind kind, MidTierRegisterAllocationData* data)
: virtual_register_to_reg_(data->code()->VirtualRegisterCount(),
data->allocation_zone()),
register_state_(nullptr),
current_block_(nullptr),
kind_(kind),
num_allocatable_registers_(
GetAllocatableRegisterCount(data->config(), kind)),
reg_code_to_index_(GetRegisterCount(data->config(), kind),
data->allocation_zone()),
index_to_reg_code_(GetAllocatableRegisterCodes(data->config(), kind)),
assigned_registers_(data->code_zone()->New<BitVector>(
GetRegisterCount(data->config(), kind), data->code_zone())),
data_(data),
in_use_at_instr_start_bits_(),
in_use_at_instr_end_bits_(),
allocated_registers_bits_() {
for (int i = 0; i < num_allocatable_registers_; i++) {
int reg_code = index_to_reg_code_[i];
reg_code_to_index_[reg_code] = RegisterIndex(i);
}
// If the architecture has non-simple FP aliasing, initialize float and
// simd128 specific register details.
if (!kSimpleFPAliasing && kind == RegisterKind::kDouble) {
const RegisterConfiguration* config = data->config();
// Float registers.
float32_reg_code_to_index_.emplace(config->num_float_registers(),
data->allocation_zone());
index_to_float32_reg_code_.emplace(num_allocatable_registers_, -1,
data->allocation_zone());
for (int i = 0; i < config->num_allocatable_float_registers(); i++) {
int reg_code = config->allocatable_float_codes()[i];
// Only add even float register codes to avoid overlapping multiple float
// registers on each RegisterIndex.
if (reg_code % 2 != 0) continue;
int double_reg_base_code;
CHECK_EQ(1, config->GetAliases(MachineRepresentation::kFloat32, reg_code,
MachineRepresentation::kFloat64,
&double_reg_base_code));
RegisterIndex double_reg(reg_code_to_index_[double_reg_base_code]);
float32_reg_code_to_index_->at(reg_code) = double_reg;
index_to_float32_reg_code_->at(double_reg.ToInt()) = reg_code;
}
// Simd128 registers.
simd128_reg_code_to_index_.emplace(config->num_simd128_registers(),
data->allocation_zone());
index_to_simd128_reg_code_.emplace(num_allocatable_registers_, -1,
data->allocation_zone());
for (int i = 0; i < config->num_allocatable_simd128_registers(); i++) {
int reg_code = config->allocatable_simd128_codes()[i];
int double_reg_base_code;
CHECK_EQ(2, config->GetAliases(MachineRepresentation::kSimd128, reg_code,
MachineRepresentation::kFloat64,
&double_reg_base_code));
RegisterIndex double_reg(reg_code_to_index_[double_reg_base_code]);
simd128_reg_code_to_index_->at(reg_code) = double_reg;
index_to_simd128_reg_code_->at(double_reg.ToInt()) = reg_code;
}
}
}
int SinglePassRegisterAllocator::VirtualRegisterForRegister(RegisterIndex reg) {
return register_state()->VirtualRegisterForRegister(reg);
}
RegisterIndex SinglePassRegisterAllocator::RegisterForVirtualRegister(
int virtual_register) {
DCHECK_NE(virtual_register, InstructionOperand::kInvalidVirtualRegister);
return virtual_register_to_reg_[virtual_register];
}
void SinglePassRegisterAllocator::UpdateForDeferredBlock(int instr_index) {
if (!HasRegisterState()) return;
for (RegisterIndex reg : *register_state()) {
SpillRegisterForDeferred(reg, instr_index);
}
}
void SinglePassRegisterAllocator::EndInstruction() {
in_use_at_instr_end_bits_.Reset();
in_use_at_instr_start_bits_.Reset();
}
void SinglePassRegisterAllocator::StartBlock(const InstructionBlock* block) {
DCHECK(!HasRegisterState());
DCHECK_NULL(current_block_);
DCHECK(in_use_at_instr_start_bits_.IsEmpty());
DCHECK(in_use_at_instr_end_bits_.IsEmpty());
DCHECK(allocated_registers_bits_.IsEmpty());
// Update the current block we are processing.
current_block_ = block;
if (block->SuccessorCount() == 1) {
// If we have only a single successor, we can directly clone our state
// from that successor.
CloneStateFrom(block->successors()[0]);
} else if (block->SuccessorCount() > 1) {
// If we have multiple successors, merge the state from all the successors
// into our block.
MergeStateFrom(block->successors());
}
}
void SinglePassRegisterAllocator::EndBlock(const InstructionBlock* block) {
DCHECK(in_use_at_instr_start_bits_.IsEmpty());
DCHECK(in_use_at_instr_end_bits_.IsEmpty());
// If we didn't allocate any registers of this kind, or we have reached the
// start, nothing to do here.
if (!HasRegisterState() || block->PredecessorCount() == 0) {
current_block_ = nullptr;
return;
}
if (block->PredecessorCount() > 1) {
register_state()->AddSharedUses(
static_cast<int>(block->PredecessorCount()) - 1);
}
BlockState& block_state = data()->block_state(block->rpo_number());
block_state.set_register_in_state(register_state(), kind());
// Remove virtual register to register mappings and clear register state.
// We will update the register state when starting the next block.
while (!allocated_registers_bits_.IsEmpty()) {
RegisterIndex reg = allocated_registers_bits_.GetFirstSet();
FreeRegister(reg, VirtualRegisterForRegister(reg));
}
current_block_ = nullptr;
register_state_ = nullptr;
}
void SinglePassRegisterAllocator::CloneStateFrom(RpoNumber successor) {
BlockState& block_state = data()->block_state(successor);
RegisterState* successor_registers = block_state.register_in_state(kind());
if (successor_registers != nullptr) {
if (data()->GetBlock(successor)->PredecessorCount() == 1) {
// Avoids cloning for successors where we are the only predecessor.
register_state_ = successor_registers;
} else {
register_state_ = successor_registers->Clone();
}
UpdateVirtualRegisterState();
}
}
void SinglePassRegisterAllocator::MergeStateFrom(
const InstructionBlock::Successors& successors) {
for (RpoNumber successor : successors) {
BlockState& block_state = data()->block_state(successor);
RegisterState* successor_registers = block_state.register_in_state(kind());
if (successor_registers == nullptr) {
continue;
}
if (register_state_ == nullptr) {
// If we haven't merged any register state yet, just use successor's
// register directly.
register_state_ = successor_registers;
UpdateVirtualRegisterState();
} else {
// Otherwise try to merge our state with the existing state.
RegisterBitVector processed_regs;
RegisterBitVector succ_allocated_regs =
GetAllocatedRegBitVector(successor_registers);
for (RegisterIndex reg : *successor_registers) {
// If |reg| isn't allocated in successor registers, nothing to do.
if (!successor_registers->IsAllocated(reg)) continue;
int virtual_register =
successor_registers->VirtualRegisterForRegister(reg);
MachineRepresentation rep = RepresentationFor(virtual_register);
// If we have already processed |reg|, e.g., adding gap move to that
// register, then we can continue.
if (processed_regs.Contains(reg, rep)) continue;
processed_regs.Add(reg, rep);
if (register_state()->IsAllocated(reg)) {
if (successor_registers->Equals(reg, register_state())) {
// Both match, keep the merged register data.
register_state()->CommitAtMerge(reg);
} else {
// Try to find a new register for this successor register in the
// merge block, and add a gap move on entry of the successor block.
RegisterIndex new_reg =
RegisterForVirtualRegister(virtual_register);
if (!new_reg.is_valid()) {
new_reg = ChooseFreeRegister(
allocated_registers_bits_.Union(succ_allocated_regs), rep);
} else if (new_reg != reg) {
// Spill the |new_reg| in the successor block to be able to use it
// for this gap move. It would be spilled anyway since it contains
// a different virtual register than the merge block.
SpillRegisterAtMerge(successor_registers, new_reg);
}
if (new_reg.is_valid()) {
MoveRegisterOnMerge(new_reg, reg, virtual_register, successor,
successor_registers);
processed_regs.Add(new_reg, rep);
} else {
SpillRegisterAtMerge(successor_registers, reg);
}
}
} else {
DCHECK(successor_registers->IsAllocated(reg));
if (RegisterForVirtualRegister(virtual_register).is_valid()) {
// If we already hold the virtual register in a different register
// then spill this register in the sucessor block to avoid
// invalidating the 1:1 vreg<->reg mapping.
// TODO(rmcilroy): Add a gap move to avoid spilling.
SpillRegisterAtMerge(successor_registers, reg);
} else {
// Register is free in our current register state, so merge the
// successor block's register details into it.
register_state()->CopyFrom(reg, successor_registers);
AssignRegister(reg, virtual_register, UsePosition::kNone);
}
}
}
}
}
}
RegisterBitVector SinglePassRegisterAllocator::GetAllocatedRegBitVector(
RegisterState* reg_state) {
RegisterBitVector allocated_regs;
for (RegisterIndex reg : *reg_state) {
if (reg_state->IsAllocated(reg)) {
int virtual_register = reg_state->VirtualRegisterForRegister(reg);
allocated_regs.Add(reg, RepresentationFor(virtual_register));
}
}
return allocated_regs;
}
void SinglePassRegisterAllocator::SpillRegisterAtMerge(RegisterState* reg_state,
RegisterIndex reg) {
DCHECK_NE(reg_state, register_state());
if (reg_state->IsAllocated(reg)) {
int virtual_register = reg_state->VirtualRegisterForRegister(reg);
AllocatedOperand allocated = AllocatedOperandForReg(reg, virtual_register);
reg_state->Spill(reg, allocated, current_block(), data());
}
}
void SinglePassRegisterAllocator::MoveRegisterOnMerge(
RegisterIndex from, RegisterIndex to, int virtual_register,
RpoNumber successor, RegisterState* succ_state) {
int instr_index = data()->GetBlock(successor)->first_instruction_index();
MoveOperands* move =
data()->AddPendingOperandGapMove(instr_index, Instruction::START);
succ_state->Commit(to, AllocatedOperandForReg(to, virtual_register),
&move->destination(), data());
AllocatePendingUse(from, virtual_register, &move->source(), instr_index);
}
void SinglePassRegisterAllocator::UpdateVirtualRegisterState() {
// Update to the new register state and update vreg_to_register map and
// resetting any shared registers that were spilled by another block.
DCHECK(HasRegisterState());
for (RegisterIndex reg : *register_state()) {
register_state()->ResetIfSpilledWhileShared(reg);
int virtual_register = VirtualRegisterForRegister(reg);
if (virtual_register != InstructionOperand::kInvalidVirtualRegister) {
AssignRegister(reg, virtual_register, UsePosition::kNone);
}
}
CheckConsistency();
}
void SinglePassRegisterAllocator::CheckConsistency() {
#ifdef DEBUG
for (int virtual_register = 0;
virtual_register < data()->code()->VirtualRegisterCount();
virtual_register++) {
RegisterIndex reg = RegisterForVirtualRegister(virtual_register);
if (reg.is_valid()) {
CHECK_EQ(virtual_register, VirtualRegisterForRegister(reg));
CHECK(allocated_registers_bits_.Contains(
reg, RepresentationFor(virtual_register)));
}
}
for (RegisterIndex reg : *register_state()) {
int virtual_register = VirtualRegisterForRegister(reg);
if (virtual_register != InstructionOperand::kInvalidVirtualRegister) {
CHECK_EQ(reg, RegisterForVirtualRegister(virtual_register));
CHECK(allocated_registers_bits_.Contains(
reg, RepresentationFor(virtual_register)));
}
}
#endif
}
RegisterIndex SinglePassRegisterAllocator::FromRegCode(
int reg_code, MachineRepresentation rep) const {
if (!kSimpleFPAliasing && kind() == RegisterKind::kDouble) {
if (rep == MachineRepresentation::kFloat32) {
return RegisterIndex(float32_reg_code_to_index_->at(reg_code));
} else if (rep == MachineRepresentation::kSimd128) {
return RegisterIndex(simd128_reg_code_to_index_->at(reg_code));
}
DCHECK_EQ(rep, MachineRepresentation::kFloat64);
}
return RegisterIndex(reg_code_to_index_[reg_code]);
}
int SinglePassRegisterAllocator::ToRegCode(RegisterIndex reg,
MachineRepresentation rep) const {
if (!kSimpleFPAliasing && kind() == RegisterKind::kDouble) {
if (rep == MachineRepresentation::kFloat32) {
DCHECK_NE(-1, index_to_float32_reg_code_->at(reg.ToInt()));
return index_to_float32_reg_code_->at(reg.ToInt());
} else if (rep == MachineRepresentation::kSimd128) {
DCHECK_NE(-1, index_to_simd128_reg_code_->at(reg.ToInt()));
return index_to_simd128_reg_code_->at(reg.ToInt());
}
DCHECK_EQ(rep, MachineRepresentation::kFloat64);
}
return index_to_reg_code_[reg.ToInt()];
}
bool SinglePassRegisterAllocator::VirtualRegisterIsUnallocatedOrInReg(
int virtual_register, RegisterIndex reg) {
RegisterIndex existing_reg = RegisterForVirtualRegister(virtual_register);
return !existing_reg.is_valid() || existing_reg == reg;
}
bool SinglePassRegisterAllocator::IsFreeOrSameVirtualRegister(
RegisterIndex reg, int virtual_register) {
int allocated_vreg = VirtualRegisterForRegister(reg);
return allocated_vreg == InstructionOperand::kInvalidVirtualRegister ||
allocated_vreg == virtual_register;
}
void SinglePassRegisterAllocator::EmitGapMoveFromOutput(InstructionOperand from,
InstructionOperand to,
int instr_index) {
DCHECK(from.IsAllocated());
DCHECK(to.IsAllocated());
const InstructionBlock* block = current_block();
DCHECK_EQ(data()->GetBlock(instr_index), block);
if (instr_index == block->last_instruction_index()) {
// Add gap move to the first instruction of every successor block.
for (const RpoNumber succ : block->successors()) {
const InstructionBlock* successor = data()->GetBlock(succ);
DCHECK_EQ(1, successor->PredecessorCount());
data()->AddGapMove(successor->first_instruction_index(),
Instruction::START, from, to);
}
} else {
data()->AddGapMove(instr_index + 1, Instruction::START, from, to);
}
}
void SinglePassRegisterAllocator::AssignRegister(RegisterIndex reg,
int virtual_register,
UsePosition pos) {
MachineRepresentation rep = RepresentationFor(virtual_register);
assigned_registers()->Add(ToRegCode(reg, rep));
allocated_registers_bits_.Add(reg, rep);
MarkRegisterUse(reg, rep, pos);
if (virtual_register != InstructionOperand::kInvalidVirtualRegister) {
virtual_register_to_reg_[virtual_register] = reg;
}
}
void SinglePassRegisterAllocator::MarkRegisterUse(RegisterIndex reg,
MachineRepresentation rep,
UsePosition pos) {
if (pos == UsePosition::kStart || pos == UsePosition::kAll) {
in_use_at_instr_start_bits_.Add(reg, rep);
}
if (pos == UsePosition::kEnd || pos == UsePosition::kAll) {
in_use_at_instr_end_bits_.Add(reg, rep);
}
}
void SinglePassRegisterAllocator::FreeRegister(RegisterIndex reg,
int virtual_register) {
allocated_registers_bits_.Clear(reg, RepresentationFor(virtual_register));
if (virtual_register != InstructionOperand::kInvalidVirtualRegister) {
virtual_register_to_reg_[virtual_register] = RegisterIndex::Invalid();
}
}
RegisterIndex SinglePassRegisterAllocator::ChooseRegisterFor(
VirtualRegisterData& virtual_register, int instr_index, UsePosition pos,
bool must_use_register) {
// If register is already allocated to the virtual register, use that.
RegisterIndex reg = RegisterForVirtualRegister(virtual_register.vreg());
// If we don't need a register, only try to allocate one if the virtual
// register hasn't yet been spilled, to try to avoid spilling it.
if (!reg.is_valid() && (must_use_register ||
!virtual_register.IsSpilledAt(instr_index, data()))) {
reg = ChooseRegisterFor(RepresentationFor(virtual_register.vreg()), pos,
must_use_register);
}
return reg;
}
RegisterIndex SinglePassRegisterAllocator::ChooseRegisterFor(
MachineRepresentation rep, UsePosition pos, bool must_use_register) {
RegisterIndex reg = ChooseFreeRegister(rep, pos);
if (!reg.is_valid() && must_use_register) {
reg = ChooseRegisterToSpill(rep, pos);
SpillRegister(reg);
}
return reg;
}
RegisterBitVector SinglePassRegisterAllocator::InUseBitmap(UsePosition pos) {
switch (pos) {
case UsePosition::kStart:
return in_use_at_instr_start_bits_;
case UsePosition::kEnd:
return in_use_at_instr_end_bits_;
case UsePosition::kAll:
return in_use_at_instr_start_bits_.Union(in_use_at_instr_end_bits_);
case UsePosition::kNone:
UNREACHABLE();
}
}
bool SinglePassRegisterAllocator::IsValidForRep(RegisterIndex reg,
MachineRepresentation rep) {
if (kSimpleFPAliasing || kind() == RegisterKind::kGeneral) {
return true;
} else {
switch (rep) {
case MachineRepresentation::kFloat32:
return index_to_float32_reg_code_->at(reg.ToInt()) != -1;
case MachineRepresentation::kFloat64:
return true;
case MachineRepresentation::kSimd128:
return index_to_simd128_reg_code_->at(reg.ToInt()) != -1;
default:
UNREACHABLE();
}
}
}
RegisterIndex SinglePassRegisterAllocator::ChooseFreeRegister(
MachineRepresentation rep, UsePosition pos) {
// Take the first free, non-blocked register, if available.
// TODO(rmcilroy): Consider a better heuristic.
RegisterBitVector allocated_or_in_use =
InUseBitmap(pos).Union(allocated_registers_bits_);
return ChooseFreeRegister(allocated_or_in_use, rep);
}
RegisterIndex SinglePassRegisterAllocator::ChooseFreeRegister(
const RegisterBitVector& allocated_regs, MachineRepresentation rep) {
RegisterIndex chosen_reg = RegisterIndex::Invalid();
if (kSimpleFPAliasing || kind() == RegisterKind::kGeneral) {
chosen_reg = allocated_regs.GetFirstCleared(num_allocatable_registers());
} else {
// If we don't have simple fp aliasing, we need to check each register
// individually to get one with the required representation.
for (RegisterIndex reg : *register_state()) {
if (IsValidForRep(reg, rep) && !allocated_regs.Contains(reg, rep)) {
chosen_reg = reg;
break;
}
}
}
DCHECK_IMPLIES(chosen_reg.is_valid(), IsValidForRep(chosen_reg, rep));
return chosen_reg;
}
RegisterIndex SinglePassRegisterAllocator::ChooseRegisterToSpill(
MachineRepresentation rep, UsePosition pos) {
RegisterBitVector in_use = InUseBitmap(pos);
// Choose a register that will need to be spilled. Preferentially choose:
// - A register with only pending uses, to avoid having to add a gap move for
// a non-pending use.
// - A register holding a virtual register that has already been spilled, to
// avoid adding a new gap move to spill the virtual register when it is
// output.
// - Prefer the register holding the virtual register with the earliest
// definition point, since it is more likely to be spilled anyway.
RegisterIndex chosen_reg;
int earliest_definition = kMaxInt;
bool pending_only_use = false;
bool already_spilled = false;
for (RegisterIndex reg : *register_state()) {
// Skip if register is in use, or not valid for representation.
if (!IsValidForRep(reg, rep) || in_use.Contains(reg, rep)) continue;
VirtualRegisterData& vreg_data =
VirtualRegisterDataFor(VirtualRegisterForRegister(reg));
if ((!pending_only_use && register_state()->HasPendingUsesOnly(reg)) ||
(!already_spilled && vreg_data.HasSpillOperand()) ||
vreg_data.output_instr_index() < earliest_definition) {
chosen_reg = reg;
earliest_definition = vreg_data.output_instr_index();
pending_only_use = register_state()->HasPendingUsesOnly(reg);
already_spilled = vreg_data.HasSpillOperand();
}
}
// There should always be an unblocked register available.
DCHECK(chosen_reg.is_valid());
DCHECK(IsValidForRep(chosen_reg, rep));
return chosen_reg;
}
void SinglePassRegisterAllocator::CommitRegister(RegisterIndex reg,
int virtual_register,
InstructionOperand* operand,
UsePosition pos) {
// Committing the output operation, and mark the register use in this
// instruction, then mark it as free going forward.
AllocatedOperand allocated = AllocatedOperandForReg(reg, virtual_register);
register_state()->Commit(reg, allocated, operand, data());
MarkRegisterUse(reg, RepresentationFor(virtual_register), pos);
FreeRegister(reg, virtual_register);
CheckConsistency();
}
void SinglePassRegisterAllocator::SpillRegister(RegisterIndex reg) {
if (!register_state()->IsAllocated(reg)) return;
// Spill the register and free register.
int virtual_register = VirtualRegisterForRegister(reg);
AllocatedOperand allocated = AllocatedOperandForReg(reg, virtual_register);
register_state()->Spill(reg, allocated, current_block(), data());
FreeRegister(reg, virtual_register);
}
void SinglePassRegisterAllocator::SpillAllRegisters() {
if (!HasRegisterState()) return;
for (RegisterIndex reg : *register_state()) {
SpillRegister(reg);
}
}
void SinglePassRegisterAllocator::SpillRegisterForVirtualRegister(
int virtual_register) {
DCHECK_NE(virtual_register, InstructionOperand::kInvalidVirtualRegister);
RegisterIndex reg = RegisterForVirtualRegister(virtual_register);
if (reg.is_valid()) {
SpillRegister(reg);
}
}
void SinglePassRegisterAllocator::SpillRegisterForDeferred(RegisterIndex reg,
int instr_index) {
// Committing the output operation, and mark the register use in this
// instruction, then mark it as free going forward.
if (register_state()->IsAllocated(reg) && register_state()->IsShared(reg)) {
int virtual_register = VirtualRegisterForRegister(reg);
AllocatedOperand allocated = AllocatedOperandForReg(reg, virtual_register);
register_state()->SpillForDeferred(reg, allocated, instr_index, data());
FreeRegister(reg, virtual_register);
}
CheckConsistency();
}
void SinglePassRegisterAllocator::AllocateDeferredBlockSpillOutput(
int instr_index, RpoNumber deferred_block, int virtual_register) {
DCHECK(data()->GetBlock(deferred_block)->IsDeferred());
VirtualRegisterData& vreg_data =
data()->VirtualRegisterDataFor(virtual_register);
if (!vreg_data.NeedsSpillAtOutput() &&
!DefinedAfter(virtual_register, instr_index, UsePosition::kEnd)) {
// If a register has been assigned to the virtual register, and the virtual
// register still doesn't need to be spilled at it's output, and add a
// pending move to output the virtual register to it's spill slot on entry
// of the deferred block (to avoid spilling on in non-deferred code).
// TODO(rmcilroy): Consider assigning a register even if the virtual
// register isn't yet assigned - currently doing this regresses performance.
RegisterIndex reg = RegisterForVirtualRegister(virtual_register);
if (reg.is_valid()) {
int deferred_block_start =
data()->GetBlock(deferred_block)->first_instruction_index();
register_state()->MoveToSpillSlotOnDeferred(reg, virtual_register,
deferred_block_start, data());
return;
} else {
vreg_data.MarkAsNeedsSpillAtOutput();
}
}
}
AllocatedOperand SinglePassRegisterAllocator::AllocatedOperandForReg(
RegisterIndex reg, int virtual_register) {
MachineRepresentation rep = RepresentationFor(virtual_register);
return AllocatedOperand(AllocatedOperand::REGISTER, rep, ToRegCode(reg, rep));
}
void SinglePassRegisterAllocator::AllocateUse(RegisterIndex reg,
int virtual_register,
InstructionOperand* operand,
int instr_index,
UsePosition pos) {
DCHECK_NE(virtual_register, InstructionOperand::kInvalidVirtualRegister);
DCHECK(IsFreeOrSameVirtualRegister(reg, virtual_register));
AllocatedOperand allocated = AllocatedOperandForReg(reg, virtual_register);
register_state()->Commit(reg, allocated, operand, data());
register_state()->AllocateUse(reg, virtual_register, operand, instr_index,
data());
AssignRegister(reg, virtual_register, pos);
CheckConsistency();
}
void SinglePassRegisterAllocator::AllocatePendingUse(
RegisterIndex reg, int virtual_register, InstructionOperand* operand,
int instr_index) {
DCHECK_NE(virtual_register, InstructionOperand::kInvalidVirtualRegister);
DCHECK(IsFreeOrSameVirtualRegister(reg, virtual_register));
register_state()->AllocatePendingUse(reg, virtual_register, operand,
instr_index);
// Since this is a pending use and the operand doesn't need to use a register,
// allocate with UsePosition::kNone to avoid blocking it's use by other
// operands in this instruction.
AssignRegister(reg, virtual_register, UsePosition::kNone);
CheckConsistency();
}
void SinglePassRegisterAllocator::AllocateUseWithMove(
RegisterIndex reg, int virtual_register, UnallocatedOperand* operand,
int instr_index, UsePosition pos) {
AllocatedOperand to = AllocatedOperandForReg(reg, virtual_register);
UnallocatedOperand from = UnallocatedOperand(
UnallocatedOperand::REGISTER_OR_SLOT, virtual_register);
data()->AddGapMove(instr_index, Instruction::END, from, to);
InstructionOperand::ReplaceWith(operand, &to);
MarkRegisterUse(reg, RepresentationFor(virtual_register), pos);
CheckConsistency();
}
void SinglePassRegisterAllocator::AllocateInput(UnallocatedOperand* operand,
int instr_index) {
EnsureRegisterState();
int virtual_register = operand->virtual_register();
MachineRepresentation rep = RepresentationFor(virtual_register);
VirtualRegisterData& vreg_data = VirtualRegisterDataFor(virtual_register);
// Spill slot policy operands.
if (operand->HasFixedSlotPolicy()) {
// If the operand is from a fixed slot, allocate it to that fixed slot,
// then add a gap move from an unconstrained copy of that input operand,
// and spill the gap move's input operand.
// TODO(rmcilroy): We could allocate a register for the gap move however
// we would need to wait until we've done all the allocations for the
// instruction since the allocation needs to reflect the state before
// the instruction (at the gap move). For now spilling is fine since
// fixed slot inputs are uncommon.
UnallocatedOperand input_copy(UnallocatedOperand::REGISTER_OR_SLOT,
virtual_register);
AllocatedOperand allocated = AllocatedOperand(
AllocatedOperand::STACK_SLOT, rep, operand->fixed_slot_index());
InstructionOperand::ReplaceWith(operand, &allocated);
MoveOperands* move_op =
data()->AddGapMove(instr_index, Instruction::END, input_copy, *operand);
vreg_data.SpillOperand(&move_op->source(), instr_index, data());
return;
} else if (operand->HasSlotPolicy()) {
vreg_data.SpillOperand(operand, instr_index, data());
return;
}
// Otherwise try to allocate a register for the operation.
UsePosition pos =
operand->IsUsedAtStart() ? UsePosition::kStart : UsePosition::kAll;
if (operand->HasFixedRegisterPolicy() ||
operand->HasFixedFPRegisterPolicy()) {
// With a fixed register operand, we must use that register.
RegisterIndex reg = FromRegCode(operand->fixed_register_index(), rep);
if (!VirtualRegisterIsUnallocatedOrInReg(virtual_register, reg)) {
// If the virtual register is already in a different register, then just
// add a gap move from that register to the fixed register.
AllocateUseWithMove(reg, virtual_register, operand, instr_index, pos);
} else {
// Otherwise allocate a use of the fixed register for |virtual_register|.
AllocateUse(reg, virtual_register, operand, instr_index, pos);
}
} else {
bool must_use_register = operand->HasRegisterPolicy() ||
(vreg_data.is_constant() &&
!operand->HasRegisterOrSlotOrConstantPolicy());
RegisterIndex reg =
ChooseRegisterFor(vreg_data, instr_index, pos, must_use_register);
if (reg.is_valid()) {
if (must_use_register) {
AllocateUse(reg, virtual_register, operand, instr_index, pos);
} else {
AllocatePendingUse(reg, virtual_register, operand, instr_index);
}
} else {
vreg_data.SpillOperand(operand, instr_index, data());
}
}
}
void SinglePassRegisterAllocator::AllocateGapMoveInput(
UnallocatedOperand* operand, int instr_index) {
EnsureRegisterState();
int virtual_register = operand->virtual_register();
VirtualRegisterData& vreg_data = VirtualRegisterDataFor(virtual_register);
// Gap move inputs should be unconstrained.
DCHECK(operand->HasRegisterOrSlotPolicy());
RegisterIndex reg =
ChooseRegisterFor(vreg_data, instr_index, UsePosition::kStart, false);
if (reg.is_valid()) {
AllocatePendingUse(reg, virtual_register, operand, instr_index);
} else {
vreg_data.SpillOperand(operand, instr_index, data());
}
}
void SinglePassRegisterAllocator::AllocateConstantOutput(
ConstantOperand* operand) {
EnsureRegisterState();
// If the constant is allocated to a register, spill it now to add the
// necessary gap moves from the constant operand to the register.
int virtual_register = operand->virtual_register();
SpillRegisterForVirtualRegister(virtual_register);
}
void SinglePassRegisterAllocator::AllocateOutput(UnallocatedOperand* operand,
int instr_index) {
AllocateOutput(operand, instr_index, UsePosition::kEnd);
}
RegisterIndex SinglePassRegisterAllocator::AllocateOutput(
UnallocatedOperand* operand, int instr_index, UsePosition pos) {
EnsureRegisterState();
int virtual_register = operand->virtual_register();
VirtualRegisterData& vreg_data = VirtualRegisterDataFor(virtual_register);
RegisterIndex reg;
if (operand->HasSlotPolicy() || operand->HasFixedSlotPolicy()) {
// We can't allocate a register for output given the policy, so make sure
// to spill the register holding this virtual register if any.
SpillRegisterForVirtualRegister(virtual_register);
reg = RegisterIndex::Invalid();
} else if (operand->HasFixedPolicy()) {
reg = FromRegCode(operand->fixed_register_index(),
RepresentationFor(virtual_register));
} else {
reg = ChooseRegisterFor(vreg_data, instr_index, pos,
operand->HasRegisterPolicy());
}
// TODO(rmcilroy): support secondary storage.
if (!reg.is_valid()) {
vreg_data.SpillOperand(operand, instr_index, data());
} else {
InstructionOperand move_output_to;
if (!VirtualRegisterIsUnallocatedOrInReg(virtual_register, reg)) {
// If the |virtual register| was in a different register (e.g., due to
// the output having a fixed register), then commit its use in that
// register here, and move it from the output operand below.
RegisterIndex existing_reg = RegisterForVirtualRegister(virtual_register);
// Don't mark |existing_reg| as used in this instruction, since it is used
// in the (already allocated) following instruction's gap-move.
CommitRegister(existing_reg, virtual_register, &move_output_to,
UsePosition::kNone);
}
CommitRegister(reg, virtual_register, operand, pos);
if (move_output_to.IsAllocated()) {
// Emit a move from output to the register that the |virtual_register| was
// allocated to.
EmitGapMoveFromOutput(*operand, move_output_to, instr_index);
}
if (vreg_data.NeedsSpillAtOutput()) {
vreg_data.EmitGapMoveFromOutputToSpillSlot(
*AllocatedOperand::cast(operand), current_block(), instr_index,
data());
} else if (vreg_data.NeedsSpillAtDeferredBlocks()) {
vreg_data.EmitDeferredSpillOutputs(data());
}
}
return reg;
}
void SinglePassRegisterAllocator::AllocateSameInputOutput(
UnallocatedOperand* output, UnallocatedOperand* input, int instr_index) {
EnsureRegisterState();
int input_vreg = input->virtual_register();
int output_vreg = output->virtual_register();
// The input operand has the details of the register constraints, so replace
// the output operand with a copy of the input, with the output's vreg.
UnallocatedOperand output_as_input(*input, output_vreg);
InstructionOperand::ReplaceWith(output, &output_as_input);
RegisterIndex reg = AllocateOutput(output, instr_index, UsePosition::kAll);
if (reg.is_valid()) {
// Replace the input operand with an unallocated fixed register policy for
// the same register.
UnallocatedOperand::ExtendedPolicy policy =
kind() == RegisterKind::kGeneral
? UnallocatedOperand::FIXED_REGISTER
: UnallocatedOperand::FIXED_FP_REGISTER;
MachineRepresentation rep = RepresentationFor(input_vreg);
UnallocatedOperand fixed_input(policy, ToRegCode(reg, rep), input_vreg);
InstructionOperand::ReplaceWith(input, &fixed_input);
} else {
// Output was spilled. Due to the SameAsInput allocation policy, we need to
// make the input operand the same as the output, i.e., the output virtual
// register's spill slot. As such, spill this input operand using the output
// virtual register's spill slot, then add a gap-move to move the input
// value into this spill slot.
VirtualRegisterData& output_vreg_data = VirtualRegisterDataFor(output_vreg);
output_vreg_data.SpillOperand(input, instr_index, data());
// Add an unconstrained gap move for the input virtual register.
UnallocatedOperand unconstrained_input(UnallocatedOperand::REGISTER_OR_SLOT,
input_vreg);
MoveOperands* move_ops = data()->AddGapMove(
instr_index, Instruction::END, unconstrained_input, PendingOperand());
output_vreg_data.SpillOperand(&move_ops->destination(), instr_index,
data());
}
}
void SinglePassRegisterAllocator::AllocateTemp(UnallocatedOperand* operand,
int instr_index) {
EnsureRegisterState();
int virtual_register = operand->virtual_register();
RegisterIndex reg;
DCHECK(!operand->HasFixedSlotPolicy());
if (operand->HasSlotPolicy()) {
reg = RegisterIndex::Invalid();
} else if (operand->HasFixedRegisterPolicy() ||
operand->HasFixedFPRegisterPolicy()) {
reg = FromRegCode(operand->fixed_register_index(),
RepresentationFor(virtual_register));
} else {
reg = ChooseRegisterFor(RepresentationFor(virtual_register),
UsePosition::kAll, operand->HasRegisterPolicy());
}
if (reg.is_valid()) {
DCHECK(virtual_register == InstructionOperand::kInvalidVirtualRegister ||
VirtualRegisterIsUnallocatedOrInReg(virtual_register, reg));
CommitRegister(reg, virtual_register, operand, UsePosition::kAll);
} else {
VirtualRegisterData& vreg_data = VirtualRegisterDataFor(virtual_register);
vreg_data.SpillOperand(operand, instr_index, data());
}
}
bool SinglePassRegisterAllocator::DefinedAfter(int virtual_register,
int instr_index,
UsePosition pos) {
if (virtual_register == InstructionOperand::kInvalidVirtualRegister)
return false;
int defined_at =
VirtualRegisterDataFor(virtual_register).output_instr_index();
return defined_at > instr_index ||
(defined_at == instr_index && pos == UsePosition::kStart);
}
void SinglePassRegisterAllocator::ReserveFixedInputRegister(
const UnallocatedOperand* operand, int instr_index) {
ReserveFixedRegister(
operand, instr_index,
operand->IsUsedAtStart() ? UsePosition::kStart : UsePosition::kAll);
}
void SinglePassRegisterAllocator::ReserveFixedTempRegister(
const UnallocatedOperand* operand, int instr_index) {
ReserveFixedRegister(operand, instr_index, UsePosition::kAll);
}
void SinglePassRegisterAllocator::ReserveFixedOutputRegister(
const UnallocatedOperand* operand, int instr_index) {
ReserveFixedRegister(operand, instr_index, UsePosition::kEnd);
}
void SinglePassRegisterAllocator::ReserveFixedRegister(
const UnallocatedOperand* operand, int instr_index, UsePosition pos) {
EnsureRegisterState();
int virtual_register = operand->virtual_register();
MachineRepresentation rep = RepresentationFor(virtual_register);
RegisterIndex reg = FromRegCode(operand->fixed_register_index(), rep);
if (!IsFreeOrSameVirtualRegister(reg, virtual_register) &&
!DefinedAfter(virtual_register, instr_index, pos)) {
// If register is in-use by a different virtual register, spill it now.
// TODO(rmcilroy): Consider moving to a unconstrained register instead of
// spilling.
SpillRegister(reg);
}
MarkRegisterUse(reg, rep, pos);
}
void SinglePassRegisterAllocator::AllocatePhiGapMove(int to_vreg, int from_vreg,
int instr_index) {
EnsureRegisterState();
RegisterIndex from_register = RegisterForVirtualRegister(from_vreg);
RegisterIndex to_register = RegisterForVirtualRegister(to_vreg);
// If to_register isn't marked as a phi gap move, we can't use it as such.
if (to_register.is_valid() && !register_state()->IsPhiGapMove(to_register)) {
to_register = RegisterIndex::Invalid();
}
if (to_register.is_valid() && !from_register.is_valid()) {
// If |to| virtual register is allocated to a register, and the |from|
// virtual register isn't allocated, then commit this register and
// re-allocate it to the |from| virtual register.
InstructionOperand operand;
CommitRegister(to_register, to_vreg, &operand, UsePosition::kAll);
AllocateUse(to_register, from_vreg, &operand, instr_index,
UsePosition::kAll);
} else {
// Otherwise add a gap move.
MoveOperands* move =
data()->AddPendingOperandGapMove(instr_index, Instruction::END);
PendingOperand* to_operand = PendingOperand::cast(&move->destination());
PendingOperand* from_operand = PendingOperand::cast(&move->source());
// Commit the |to| side to either a register or the pending spills.
if (to_register.is_valid()) {
CommitRegister(to_register, to_vreg, to_operand, UsePosition::kAll);
} else {
VirtualRegisterDataFor(to_vreg).SpillOperand(to_operand, instr_index,
data());
}
// The from side is unconstrained.
UnallocatedOperand unconstrained_input(UnallocatedOperand::REGISTER_OR_SLOT,
from_vreg);
InstructionOperand::ReplaceWith(from_operand, &unconstrained_input);
}
}
void SinglePassRegisterAllocator::AllocatePhi(int virtual_register,
const InstructionBlock* block) {
VirtualRegisterData& vreg_data = VirtualRegisterDataFor(virtual_register);
if (vreg_data.NeedsSpillAtOutput() || block->IsLoopHeader()) {
// If the Phi needs to be spilled, just spill here directly so that all
// gap moves into the Phi move into the spill slot.
SpillRegisterForVirtualRegister(virtual_register);
} else {
RegisterIndex reg = RegisterForVirtualRegister(virtual_register);
if (reg.is_valid()) {
// If the register is valid, assign it as a phi gap move to be processed
// at the successor blocks. If no register or spill slot was used then
// the virtual register was never used.
register_state()->UseForPhiGapMove(reg);
}
}
}
void SinglePassRegisterAllocator::EnsureRegisterState() {
if (!HasRegisterState()) {
register_state_ = RegisterState::New(kind(), num_allocatable_registers_,
data()->allocation_zone());
}
}
class MidTierOutputProcessor final {
public:
explicit MidTierOutputProcessor(MidTierRegisterAllocationData* data);
void InitializeBlockState(const InstructionBlock* block);
void DefineOutputs(const InstructionBlock* block);
private:
void PopulateDeferredBlockRegion(RpoNumber initial_block);
VirtualRegisterData& VirtualRegisterDataFor(int virtual_register) const {
return data()->VirtualRegisterDataFor(virtual_register);
}
MachineRepresentation RepresentationFor(int virtual_register) const {
return data()->RepresentationFor(virtual_register);
}
bool IsDeferredBlockBoundary(const ZoneVector<RpoNumber>& blocks) {
return blocks.size() == 1 && !data()->GetBlock(blocks[0])->IsDeferred();
}
MidTierRegisterAllocationData* data() const { return data_; }
InstructionSequence* code() const { return data()->code(); }
Zone* zone() const { return data()->allocation_zone(); }
MidTierRegisterAllocationData* const data_;
ZoneQueue<RpoNumber> deferred_blocks_worklist_;
ZoneSet<RpoNumber> deferred_blocks_processed_;
};
MidTierOutputProcessor::MidTierOutputProcessor(
MidTierRegisterAllocationData* data)
: data_(data),
deferred_blocks_worklist_(data->allocation_zone()),
deferred_blocks_processed_(data->allocation_zone()) {}
void MidTierOutputProcessor::PopulateDeferredBlockRegion(
RpoNumber initial_block) {
DeferredBlocksRegion* deferred_blocks_region =
zone()->New<DeferredBlocksRegion>(zone(),
code()->InstructionBlockCount());
DCHECK(deferred_blocks_worklist_.empty());
deferred_blocks_worklist_.push(initial_block);
deferred_blocks_processed_.insert(initial_block);
while (!deferred_blocks_worklist_.empty()) {
RpoNumber current = deferred_blocks_worklist_.front();
deferred_blocks_worklist_.pop();
deferred_blocks_region->AddBlock(current, data());
const InstructionBlock* curr_block = data()->GetBlock(current);
// Check for whether the predecessor blocks are still deferred.
if (IsDeferredBlockBoundary(curr_block->predecessors())) {
// If not, mark the predecessor as having a deferred successor.
data()
->block_state(curr_block->predecessors()[0])
.MarkAsDeferredBlockBoundary();
} else {
// Otherwise process predecessors.
for (RpoNumber pred : curr_block->predecessors()) {
if (deferred_blocks_processed_.count(pred) == 0) {
deferred_blocks_worklist_.push(pred);
deferred_blocks_processed_.insert(pred);
}
}
}
// Check for whether the successor blocks are still deferred.
// Process any unprocessed successors if we aren't at a boundary.
if (IsDeferredBlockBoundary(curr_block->successors())) {
// If not, mark the predecessor as having a deferred successor.
data()->block_state(current).MarkAsDeferredBlockBoundary();
} else {
// Otherwise process successors.
for (RpoNumber succ : curr_block->successors()) {
if (deferred_blocks_processed_.count(succ) == 0) {
deferred_blocks_worklist_.push(succ);
deferred_blocks_processed_.insert(succ);
}
}
}
}
}
void MidTierOutputProcessor::InitializeBlockState(
const InstructionBlock* block) {
// Update our predecessor blocks with their successors_phi_index if we have
// phis.
if (block->phis().size()) {
for (int i = 0; i < static_cast<int>(block->PredecessorCount()); ++i) {
data()->block_state(block->predecessors()[i]).set_successors_phi_index(i);
}
}
BlockState& block_state = data()->block_state(block->rpo_number());
if (block->IsDeferred() && !block_state.deferred_blocks_region()) {
PopulateDeferredBlockRegion(block->rpo_number());
}
// Mark this block as dominating itself.
block_state.dominated_blocks()->Add(block->rpo_number().ToInt());
if (block->dominator().IsValid()) {
// Add all the blocks this block dominates to its dominator.
BlockState& dominator_block_state = data()->block_state(block->dominator());
dominator_block_state.dominated_blocks()->Union(
*block_state.dominated_blocks());
} else {
// Only the first block shouldn't have a dominator.
DCHECK_EQ(block, code()->instruction_blocks().front());
}
}
void MidTierOutputProcessor::DefineOutputs(const InstructionBlock* block) {
int block_start = block->first_instruction_index();
bool is_deferred = block->IsDeferred();
for (int index = block->last_instruction_index(); index >= block_start;
index--) {
Instruction* instr = code()->InstructionAt(index);
// For each instruction, define details of the output with the associated
// virtual register data.
for (size_t i = 0; i < instr->OutputCount(); i++) {
InstructionOperand* output = instr->OutputAt(i);
if (output->IsConstant()) {
ConstantOperand* constant_operand = ConstantOperand::cast(output);
int virtual_register = constant_operand->virtual_register();
VirtualRegisterDataFor(virtual_register)
.DefineAsConstantOperand(constant_operand, index, is_deferred);
} else {
DCHECK(output->IsUnallocated());
UnallocatedOperand* unallocated_operand =
UnallocatedOperand::cast(output);
int virtual_register = unallocated_operand->virtual_register();
bool is_exceptional_call_output =
instr->IsCallWithDescriptorFlags() &&
instr->HasCallDescriptorFlag(CallDescriptor::kHasExceptionHandler);
if (unallocated_operand->HasFixedSlotPolicy()) {
// If output has a fixed slot policy, allocate its spill operand now
// so that the register allocator can use this knowledge.
MachineRepresentation rep = RepresentationFor(virtual_register);
AllocatedOperand* fixed_spill_operand =
AllocatedOperand::New(zone(), AllocatedOperand::STACK_SLOT, rep,
unallocated_operand->fixed_slot_index());
VirtualRegisterDataFor(virtual_register)
.DefineAsFixedSpillOperand(fixed_spill_operand, virtual_register,
index, is_deferred,
is_exceptional_call_output);
} else {
VirtualRegisterDataFor(virtual_register)
.DefineAsUnallocatedOperand(virtual_register, index, is_deferred,
is_exceptional_call_output);
}
}
}
// Mark any instructions that require reference maps for later reference map
// processing.
if (instr->HasReferenceMap()) {
data()->reference_map_instructions().push_back(index);
}
}
// Define phi output operands.
for (PhiInstruction* phi : block->phis()) {
int virtual_register = phi->virtual_register();
VirtualRegisterDataFor(virtual_register)
.DefineAsPhi(virtual_register, block->first_instruction_index(),
is_deferred);
}
}
void DefineOutputs(MidTierRegisterAllocationData* data) {
MidTierOutputProcessor processor(data);
for (const InstructionBlock* block :
base::Reversed(data->code()->instruction_blocks())) {
data->tick_counter()->TickAndMaybeEnterSafepoint();
processor.InitializeBlockState(block);
processor.DefineOutputs(block);
}
}
class MidTierRegisterAllocator final {
public:
explicit MidTierRegisterAllocator(MidTierRegisterAllocationData* data);
MidTierRegisterAllocator(const MidTierRegisterAllocator&) = delete;
MidTierRegisterAllocator& operator=(const MidTierRegisterAllocator&) = delete;
void AllocateRegisters(const InstructionBlock* block);
void UpdateSpillRangesForLoops();
SinglePassRegisterAllocator& general_reg_allocator() {
return general_reg_allocator_;
}
SinglePassRegisterAllocator& double_reg_allocator() {
return double_reg_allocator_;
}
private:
void AllocatePhis(const InstructionBlock* block);
void AllocatePhiGapMoves(const InstructionBlock* block);
bool IsFixedRegisterPolicy(const UnallocatedOperand* operand);
void ReserveFixedRegisters(int instr_index);
SinglePassRegisterAllocator& AllocatorFor(MachineRepresentation rep);
SinglePassRegisterAllocator& AllocatorFor(const UnallocatedOperand* operand);
SinglePassRegisterAllocator& AllocatorFor(const ConstantOperand* operand);
VirtualRegisterData& VirtualRegisterDataFor(int virtual_register) const {
return data()->VirtualRegisterDataFor(virtual_register);
}
MachineRepresentation RepresentationFor(int virtual_register) const {
return data()->RepresentationFor(virtual_register);
}
MidTierRegisterAllocationData* data() const { return data_; }
InstructionSequence* code() const { return data()->code(); }
Zone* allocation_zone() const { return data()->allocation_zone(); }
MidTierRegisterAllocationData* const data_;
SinglePassRegisterAllocator general_reg_allocator_;
SinglePassRegisterAllocator double_reg_allocator_;
};
MidTierRegisterAllocator::MidTierRegisterAllocator(
MidTierRegisterAllocationData* data)
: data_(data),
general_reg_allocator_(RegisterKind::kGeneral, data),
double_reg_allocator_(RegisterKind::kDouble, data) {}
void MidTierRegisterAllocator::AllocateRegisters(
const InstructionBlock* block) {
RpoNumber block_rpo = block->rpo_number();
bool is_deferred_block_boundary =
data()->block_state(block_rpo).is_deferred_block_boundary();
general_reg_allocator().StartBlock(block);
double_reg_allocator().StartBlock(block);
// If the block is not deferred but has deferred successors, then try to
// output spill slots for virtual_registers that are only spilled in the
// deferred blocks at the start of those deferred blocks to avoid spilling
// them at their output in non-deferred blocks.
if (is_deferred_block_boundary && !block->IsDeferred()) {
for (RpoNumber successor : block->successors()) {
if (!data()->GetBlock(successor)->IsDeferred()) continue;
DCHECK_GT(successor, block_rpo);
for (int virtual_register :
*data()->block_state(successor).deferred_blocks_region()) {
USE(virtual_register);
AllocatorFor(RepresentationFor(virtual_register))
.AllocateDeferredBlockSpillOutput(block->last_instruction_index(),
successor, virtual_register);
}
}
}
// Allocate registers for instructions in reverse, from the end of the block
// to the start.
int block_start = block->first_instruction_index();
for (int instr_index = block->last_instruction_index();
instr_index >= block_start; instr_index--) {
Instruction* instr = code()->InstructionAt(instr_index);
// Reserve any fixed register operands to prevent the register being
// allocated to another operand.
ReserveFixedRegisters(instr_index);
// Allocate outputs.
for (size_t i = 0; i < instr->OutputCount(); i++) {
InstructionOperand* output = instr->OutputAt(i);
DCHECK(!output->IsAllocated());
if (output->IsConstant()) {
ConstantOperand* constant_operand = ConstantOperand::cast(output);
AllocatorFor(constant_operand).AllocateConstantOutput(constant_operand);
} else {
UnallocatedOperand* unallocated_output =
UnallocatedOperand::cast(output);
if (unallocated_output->HasSameAsInputPolicy()) {
DCHECK_EQ(i, 0);
UnallocatedOperand* unallocated_input =
UnallocatedOperand::cast(instr->InputAt(0));
DCHECK_EQ(AllocatorFor(unallocated_input).kind(),
AllocatorFor(unallocated_output).kind());
AllocatorFor(unallocated_output)
.AllocateSameInputOutput(unallocated_output, unallocated_input,
instr_index);
} else {
AllocatorFor(unallocated_output)
.AllocateOutput(unallocated_output, instr_index);
}
}
}
if (instr->ClobbersRegisters()) {
general_reg_allocator().SpillAllRegisters();
}
if (instr->ClobbersDoubleRegisters()) {
double_reg_allocator().SpillAllRegisters();
}
// Allocate temporaries.
for (size_t i = 0; i < instr->TempCount(); i++) {
UnallocatedOperand* temp = UnallocatedOperand::cast(instr->TempAt(i));
AllocatorFor(temp).AllocateTemp(temp, instr_index);
}
// Allocate inputs that are used across the whole instruction.
for (size_t i = 0; i < instr->InputCount(); i++) {
if (!instr->InputAt(i)->IsUnallocated()) continue;
UnallocatedOperand* input = UnallocatedOperand::cast(instr->InputAt(i));
if (input->IsUsedAtStart()) continue;
AllocatorFor(input).AllocateInput(input, instr_index);
}
// Then allocate inputs that are only used at the start of the instruction.
for (size_t i = 0; i < instr->InputCount(); i++) {
if (!instr->InputAt(i)->IsUnallocated()) continue;
UnallocatedOperand* input = UnallocatedOperand::cast(instr->InputAt(i));
DCHECK(input->IsUsedAtStart());
AllocatorFor(input).AllocateInput(input, instr_index);
}
// If we are allocating for the last instruction in the block, allocate any
// phi gap move operations that are needed to resolve phis in our successor.
if (instr_index == block->last_instruction_index()) {
AllocatePhiGapMoves(block);
// If this block is deferred but it's successor isn't, update the state to
// limit spills to the deferred blocks where possible.
if (is_deferred_block_boundary && block->IsDeferred()) {
general_reg_allocator().UpdateForDeferredBlock(instr_index);
double_reg_allocator().UpdateForDeferredBlock(instr_index);
}
}
// Allocate any unallocated gap move inputs.
ParallelMove* moves = instr->GetParallelMove(Instruction::END);
if (moves != nullptr) {
for (MoveOperands* move : *moves) {
DCHECK(!move->destination().IsUnallocated());
if (move->source().IsUnallocated()) {
UnallocatedOperand* source =
UnallocatedOperand::cast(&move->source());
AllocatorFor(source).AllocateGapMoveInput(source, instr_index);
}
}
}
general_reg_allocator().EndInstruction();
double_reg_allocator().EndInstruction();
}
// For now we spill all registers at a loop header.
// TODO(rmcilroy): Add support for register allocations across loops.
if (block->IsLoopHeader()) {
general_reg_allocator().SpillAllRegisters();
double_reg_allocator().SpillAllRegisters();
}
AllocatePhis(block);
general_reg_allocator().EndBlock(block);
double_reg_allocator().EndBlock(block);
}
SinglePassRegisterAllocator& MidTierRegisterAllocator::AllocatorFor(
MachineRepresentation rep) {
if (IsFloatingPoint(rep)) {
return double_reg_allocator();
} else {
return general_reg_allocator();
}
}
SinglePassRegisterAllocator& MidTierRegisterAllocator::AllocatorFor(
const UnallocatedOperand* operand) {
return AllocatorFor(RepresentationFor(operand->virtual_register()));
}
SinglePassRegisterAllocator& MidTierRegisterAllocator::AllocatorFor(
const ConstantOperand* operand) {
return AllocatorFor(RepresentationFor(operand->virtual_register()));
}
bool MidTierRegisterAllocator::IsFixedRegisterPolicy(
const UnallocatedOperand* operand) {
return operand->HasFixedRegisterPolicy() ||
operand->HasFixedFPRegisterPolicy();
}
void MidTierRegisterAllocator::ReserveFixedRegisters(int instr_index) {
Instruction* instr = code()->InstructionAt(instr_index);
for (size_t i = 0; i < instr->OutputCount(); i++) {
if (!instr->OutputAt(i)->IsUnallocated()) continue;
const UnallocatedOperand* operand =
UnallocatedOperand::cast(instr->OutputAt(i));
if (operand->HasSameAsInputPolicy()) {
// Input operand has the register constraints, use it here to reserve the
// register for the output (it will be reserved for input below).
operand = UnallocatedOperand::cast(instr->InputAt(i));
}
if (IsFixedRegisterPolicy(operand)) {
AllocatorFor(operand).ReserveFixedOutputRegister(operand, instr_index);
}
}
for (size_t i = 0; i < instr->TempCount(); i++) {
if (!instr->TempAt(i)->IsUnallocated()) continue;
const UnallocatedOperand* operand =
UnallocatedOperand::cast(instr->TempAt(i));
if (IsFixedRegisterPolicy(operand)) {
AllocatorFor(operand).ReserveFixedTempRegister(operand, instr_index);
}
}
for (size_t i = 0; i < instr->InputCount(); i++) {
if (!instr->InputAt(i)->IsUnallocated()) continue;
const UnallocatedOperand* operand =
UnallocatedOperand::cast(instr->InputAt(i));
if (IsFixedRegisterPolicy(operand)) {
AllocatorFor(operand).ReserveFixedInputRegister(operand, instr_index);
}
}
}
void MidTierRegisterAllocator::AllocatePhiGapMoves(
const InstructionBlock* block) {
int successors_phi_index =
data()->block_state(block->rpo_number()).successors_phi_index();
// If successors_phi_index is -1 there are no phi's in the successor.
if (successors_phi_index == -1) return;
// The last instruction of a block with phis can't require reference maps
// since we won't record phi gap moves that get spilled when populating the
// reference maps
int instr_index = block->last_instruction_index();
DCHECK(!code()->InstructionAt(instr_index)->HasReferenceMap());
// If there are phis, we only have a single successor due to edge-split form.
DCHECK_EQ(block->SuccessorCount(), 1);
const InstructionBlock* successor = data()->GetBlock(block->successors()[0]);
for (PhiInstruction* phi : successor->phis()) {
int to_vreg = phi->virtual_register();
int from_vreg = phi->operands()[successors_phi_index];
MachineRepresentation rep = RepresentationFor(to_vreg);
AllocatorFor(rep).AllocatePhiGapMove(to_vreg, from_vreg, instr_index);
}
}
void MidTierRegisterAllocator::AllocatePhis(const InstructionBlock* block) {
for (PhiInstruction* phi : block->phis()) {
int virtual_register = phi->virtual_register();
MachineRepresentation rep = RepresentationFor(virtual_register);
AllocatorFor(rep).AllocatePhi(virtual_register, block);
}
}
void MidTierRegisterAllocator::UpdateSpillRangesForLoops() {
// Extend the spill range of any spill that crosses a loop header to
// the full loop.
for (InstructionBlock* block : code()->instruction_blocks()) {
if (block->IsLoopHeader()) {
RpoNumber last_loop_block =
RpoNumber::FromInt(block->loop_end().ToInt() - 1);
int last_loop_instr =
data()->GetBlock(last_loop_block)->last_instruction_index();
// Extend spill range for all spilled values that are live on entry to the
// loop header.
BitVector::Iterator iterator(&data()->spilled_virtual_registers());
for (; !iterator.Done(); iterator.Advance()) {
const VirtualRegisterData& vreg_data =
VirtualRegisterDataFor(iterator.Current());
if (vreg_data.HasSpillRange() &&
vreg_data.spill_range()->IsLiveAt(block->first_instruction_index(),
block)) {
vreg_data.spill_range()->ExtendRangeTo(last_loop_instr);
}
}
}
}
}
void AllocateRegisters(MidTierRegisterAllocationData* data) {
MidTierRegisterAllocator allocator(data);
for (InstructionBlock* block :
base::Reversed(data->code()->instruction_blocks())) {
data->tick_counter()->TickAndMaybeEnterSafepoint();
allocator.AllocateRegisters(block);
}
allocator.UpdateSpillRangesForLoops();
data->frame()->SetAllocatedRegisters(
allocator.general_reg_allocator().assigned_registers());
data->frame()->SetAllocatedDoubleRegisters(
allocator.double_reg_allocator().assigned_registers());
}
// Spill slot allocator for mid-tier register allocation.
class MidTierSpillSlotAllocator final {
public:
explicit MidTierSpillSlotAllocator(MidTierRegisterAllocationData* data);
MidTierSpillSlotAllocator(const MidTierSpillSlotAllocator&) = delete;
MidTierSpillSlotAllocator& operator=(const MidTierSpillSlotAllocator&) =
delete;
void Allocate(VirtualRegisterData* virtual_register);
private:
class SpillSlot;
void AdvanceTo(int instr_index);
SpillSlot* GetFreeSpillSlot(int byte_width);
MidTierRegisterAllocationData* data() const { return data_; }
InstructionSequence* code() const { return data()->code(); }
Frame* frame() const { return data()->frame(); }
Zone* zone() const { return data()->allocation_zone(); }
struct OrderByLastUse {
bool operator()(const SpillSlot* a, const SpillSlot* b) const;
};
MidTierRegisterAllocationData* const data_;
ZonePriorityQueue<SpillSlot*, OrderByLastUse> allocated_slots_;
ZoneLinkedList<SpillSlot*> free_slots_;
int position_;
};
class MidTierSpillSlotAllocator::SpillSlot : public ZoneObject {
public:
SpillSlot(int stack_slot, int byte_width)
: stack_slot_(stack_slot), byte_width_(byte_width), range_() {}
SpillSlot(const SpillSlot&) = delete;
SpillSlot& operator=(const SpillSlot&) = delete;
void AddRange(const Range& range) { range_.AddRange(range); }
AllocatedOperand ToOperand(MachineRepresentation rep) const {
return AllocatedOperand(AllocatedOperand::STACK_SLOT, rep, stack_slot_);
}
int byte_width() const { return byte_width_; }
int last_use() const { return range_.end(); }
private:
int stack_slot_;
int byte_width_;
Range range_;
};
bool MidTierSpillSlotAllocator::OrderByLastUse::operator()(
const SpillSlot* a, const SpillSlot* b) const {
return a->last_use() > b->last_use();
}
MidTierSpillSlotAllocator::MidTierSpillSlotAllocator(
MidTierRegisterAllocationData* data)
: data_(data),
allocated_slots_(data->allocation_zone()),
free_slots_(data->allocation_zone()),
position_(0) {}
void MidTierSpillSlotAllocator::AdvanceTo(int instr_index) {
// Move any slots that are no longer in use to the free slots list.
DCHECK_LE(position_, instr_index);
while (!allocated_slots_.empty() &&
instr_index > allocated_slots_.top()->last_use()) {
free_slots_.push_front(allocated_slots_.top());
allocated_slots_.pop();
}
position_ = instr_index;
}
MidTierSpillSlotAllocator::SpillSlot*
MidTierSpillSlotAllocator::GetFreeSpillSlot(int byte_width) {
for (auto it = free_slots_.begin(); it != free_slots_.end(); ++it) {
SpillSlot* slot = *it;
if (slot->byte_width() == byte_width) {
free_slots_.erase(it);
return slot;
}
}
return nullptr;
}
void MidTierSpillSlotAllocator::Allocate(
VirtualRegisterData* virtual_register) {
DCHECK(virtual_register->HasPendingSpillOperand());
VirtualRegisterData::SpillRange* spill_range =
virtual_register->spill_range();
MachineRepresentation rep =
data()->RepresentationFor(virtual_register->vreg());
int byte_width = ByteWidthForStackSlot(rep);
Range live_range = spill_range->live_range();
AdvanceTo(live_range.start());
// Try to re-use an existing free spill slot.
SpillSlot* slot = GetFreeSpillSlot(byte_width);
if (slot == nullptr) {
// Otherwise allocate a new slot.
int stack_slot_ = frame()->AllocateSpillSlot(byte_width);
slot = zone()->New<SpillSlot>(stack_slot_, byte_width);
}
// Extend the range of the slot to include this spill range, and allocate the
// pending spill operands with this slot.
slot->AddRange(live_range);
virtual_register->AllocatePendingSpillOperand(slot->ToOperand(rep));
allocated_slots_.push(slot);
}
void AllocateSpillSlots(MidTierRegisterAllocationData* data) {
ZoneVector<VirtualRegisterData*> spilled(data->allocation_zone());
BitVector::Iterator iterator(&data->spilled_virtual_registers());
for (; !iterator.Done(); iterator.Advance()) {
VirtualRegisterData& vreg_data =
data->VirtualRegisterDataFor(iterator.Current());
if (vreg_data.HasPendingSpillOperand()) {
spilled.push_back(&vreg_data);
}
}
// Sort the spill ranges by order of their first use to enable linear
// allocation of spill slots.
std::sort(spilled.begin(), spilled.end(),
[](const VirtualRegisterData* a, const VirtualRegisterData* b) {
return a->spill_range()->live_range().start() <
b->spill_range()->live_range().start();
});
// Allocate a spill slot for each virtual register with a spill range.
MidTierSpillSlotAllocator allocator(data);
for (VirtualRegisterData* spill : spilled) {
allocator.Allocate(spill);
}
}
// Populates reference maps for mid-tier register allocation.
class MidTierReferenceMapPopulator final {
public:
explicit MidTierReferenceMapPopulator(MidTierRegisterAllocationData* data);
MidTierReferenceMapPopulator(const MidTierReferenceMapPopulator&) = delete;
MidTierReferenceMapPopulator& operator=(const MidTierReferenceMapPopulator&) =
delete;
void RecordReferences(const VirtualRegisterData& virtual_register);
private:
MidTierRegisterAllocationData* data() const { return data_; }
InstructionSequence* code() const { return data()->code(); }
MidTierRegisterAllocationData* const data_;
};
MidTierReferenceMapPopulator::MidTierReferenceMapPopulator(
MidTierRegisterAllocationData* data)
: data_(data) {}
void MidTierReferenceMapPopulator::RecordReferences(
const VirtualRegisterData& virtual_register) {
if (!virtual_register.HasAllocatedSpillOperand()) return;
if (!code()->IsReference(virtual_register.vreg())) return;
VirtualRegisterData::SpillRange* spill_range = virtual_register.spill_range();
Range& live_range = spill_range->live_range();
AllocatedOperand allocated =
*AllocatedOperand::cast(virtual_register.spill_operand());
for (int instr_index : data()->reference_map_instructions()) {
if (instr_index > live_range.end() || instr_index < live_range.start())
continue;
Instruction* instr = data()->code()->InstructionAt(instr_index);
DCHECK(instr->HasReferenceMap());
if (spill_range->IsLiveAt(instr_index, instr->block())) {
instr->reference_map()->RecordReference(allocated);
}
}
}
void PopulateReferenceMaps(MidTierRegisterAllocationData* data) {
MidTierReferenceMapPopulator populator(data);
BitVector::Iterator iterator(&data->spilled_virtual_registers());
for (; !iterator.Done(); iterator.Advance()) {
populator.RecordReferences(
data->VirtualRegisterDataFor(iterator.Current()));
}
}
} // namespace compiler
} // namespace internal
} // namespace v8
|