1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
|
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/escape-analysis.h"
#include "src/codegen/tick-counter.h"
#include "src/compiler/linkage.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/operator-properties.h"
#include "src/compiler/simplified-operator.h"
#include "src/handles/handles-inl.h"
#include "src/init/bootstrapper.h"
#include "src/objects/map-inl.h"
#ifdef DEBUG
#define TRACE(...) \
do { \
if (FLAG_trace_turbo_escape) PrintF(__VA_ARGS__); \
} while (false)
#else
#define TRACE(...)
#endif
namespace v8 {
namespace internal {
namespace compiler {
template <class T>
class Sidetable {
public:
explicit Sidetable(Zone* zone) : map_(zone) {}
T& operator[](const Node* node) {
NodeId id = node->id();
if (id >= map_.size()) {
map_.resize(id + 1);
}
return map_[id];
}
private:
ZoneVector<T> map_;
};
template <class T>
class SparseSidetable {
public:
explicit SparseSidetable(Zone* zone, T def_value = T())
: def_value_(std::move(def_value)), map_(zone) {}
void Set(const Node* node, T value) {
auto iter = map_.find(node->id());
if (iter != map_.end()) {
iter->second = std::move(value);
} else if (value != def_value_) {
map_.insert(iter, std::make_pair(node->id(), std::move(value)));
}
}
const T& Get(const Node* node) const {
auto iter = map_.find(node->id());
return iter != map_.end() ? iter->second : def_value_;
}
private:
T def_value_;
ZoneUnorderedMap<NodeId, T> map_;
};
// Keeps track of the changes to the current node during reduction.
// Encapsulates the current state of the IR graph and the reducer state like
// side-tables. All access to the IR and the reducer state should happen through
// a ReduceScope to ensure that changes and dependencies are tracked and all
// necessary node revisitations happen.
class ReduceScope {
public:
using Reduction = EffectGraphReducer::Reduction;
explicit ReduceScope(Node* node, Reduction* reduction)
: current_node_(node), reduction_(reduction) {}
protected:
Node* current_node() const { return current_node_; }
Reduction* reduction() { return reduction_; }
private:
Node* current_node_;
Reduction* reduction_;
};
// A VariableTracker object keeps track of the values of variables at all points
// of the effect chain and introduces new phi nodes when necessary.
// Initially and by default, variables are mapped to nullptr, which means that
// the variable allocation point does not dominate the current point on the
// effect chain. We map variables that represent uninitialized memory to the
// Dead node to ensure it is not read.
// Unmapped values are impossible by construction, it is indistinguishable if a
// PersistentMap does not contain an element or maps it to the default element.
class VariableTracker {
private:
// The state of all variables at one point in the effect chain.
class State {
public:
using Map = PersistentMap<Variable, Node*>;
explicit State(Zone* zone) : map_(zone) {}
Node* Get(Variable var) const {
CHECK(var != Variable::Invalid());
return map_.Get(var);
}
void Set(Variable var, Node* node) {
CHECK(var != Variable::Invalid());
return map_.Set(var, node);
}
Map::iterator begin() const { return map_.begin(); }
Map::iterator end() const { return map_.end(); }
bool operator!=(const State& other) const { return map_ != other.map_; }
private:
Map map_;
};
public:
VariableTracker(JSGraph* graph, EffectGraphReducer* reducer, Zone* zone);
VariableTracker(const VariableTracker&) = delete;
VariableTracker& operator=(const VariableTracker&) = delete;
Variable NewVariable() { return Variable(next_variable_++); }
Node* Get(Variable var, Node* effect) { return table_.Get(effect).Get(var); }
Zone* zone() { return zone_; }
class V8_NODISCARD Scope : public ReduceScope {
public:
Scope(VariableTracker* tracker, Node* node, Reduction* reduction);
~Scope();
Maybe<Node*> Get(Variable var) {
Node* node = current_state_.Get(var);
if (node && node->opcode() == IrOpcode::kDead) {
// TODO(turbofan): We use {Dead} as a sentinel for uninitialized memory.
// Reading uninitialized memory can only happen in unreachable code. In
// this case, we have to mark the object as escaping to avoid dead nodes
// in the graph. This is a workaround that should be removed once we can
// handle dead nodes everywhere.
return Nothing<Node*>();
}
return Just(node);
}
void Set(Variable var, Node* node) { current_state_.Set(var, node); }
private:
VariableTracker* states_;
State current_state_;
};
private:
State MergeInputs(Node* effect_phi);
Zone* zone_;
JSGraph* graph_;
SparseSidetable<State> table_;
ZoneVector<Node*> buffer_;
EffectGraphReducer* reducer_;
int next_variable_ = 0;
TickCounter* const tick_counter_;
};
// Encapsulates the current state of the escape analysis reducer to preserve
// invariants regarding changes and re-visitation.
class EscapeAnalysisTracker : public ZoneObject {
public:
EscapeAnalysisTracker(JSGraph* jsgraph, EffectGraphReducer* reducer,
Zone* zone)
: virtual_objects_(zone),
replacements_(zone),
variable_states_(jsgraph, reducer, zone),
jsgraph_(jsgraph),
zone_(zone) {}
EscapeAnalysisTracker(const EscapeAnalysisTracker&) = delete;
EscapeAnalysisTracker& operator=(const EscapeAnalysisTracker&) = delete;
class V8_NODISCARD Scope : public VariableTracker::Scope {
public:
Scope(EffectGraphReducer* reducer, EscapeAnalysisTracker* tracker,
Node* node, Reduction* reduction)
: VariableTracker::Scope(&tracker->variable_states_, node, reduction),
tracker_(tracker),
reducer_(reducer) {}
const VirtualObject* GetVirtualObject(Node* node) {
VirtualObject* vobject = tracker_->virtual_objects_.Get(node);
if (vobject) vobject->AddDependency(current_node());
return vobject;
}
// Create or retrieve a virtual object for the current node.
const VirtualObject* InitVirtualObject(int size) {
DCHECK_EQ(IrOpcode::kAllocate, current_node()->opcode());
VirtualObject* vobject = tracker_->virtual_objects_.Get(current_node());
if (vobject) {
CHECK(vobject->size() == size);
} else {
vobject = tracker_->NewVirtualObject(size);
}
if (vobject) vobject->AddDependency(current_node());
vobject_ = vobject;
return vobject;
}
void SetVirtualObject(Node* object) {
vobject_ = tracker_->virtual_objects_.Get(object);
}
void SetEscaped(Node* node) {
if (VirtualObject* object = tracker_->virtual_objects_.Get(node)) {
if (object->HasEscaped()) return;
TRACE("Setting %s#%d to escaped because of use by %s#%d\n",
node->op()->mnemonic(), node->id(),
current_node()->op()->mnemonic(), current_node()->id());
object->SetEscaped();
object->RevisitDependants(reducer_);
}
}
// The inputs of the current node have to be accessed through the scope to
// ensure that they respect the node replacements.
Node* ValueInput(int i) {
return tracker_->ResolveReplacement(
NodeProperties::GetValueInput(current_node(), i));
}
Node* ContextInput() {
return tracker_->ResolveReplacement(
NodeProperties::GetContextInput(current_node()));
}
void SetReplacement(Node* replacement) {
replacement_ = replacement;
vobject_ =
replacement ? tracker_->virtual_objects_.Get(replacement) : nullptr;
if (replacement) {
TRACE("Set %s#%d as replacement.\n", replacement->op()->mnemonic(),
replacement->id());
} else {
TRACE("Set nullptr as replacement.\n");
}
}
void MarkForDeletion() { SetReplacement(tracker_->jsgraph_->Dead()); }
~Scope() {
if (replacement_ != tracker_->replacements_[current_node()] ||
vobject_ != tracker_->virtual_objects_.Get(current_node())) {
reduction()->set_value_changed();
}
tracker_->replacements_[current_node()] = replacement_;
tracker_->virtual_objects_.Set(current_node(), vobject_);
}
private:
EscapeAnalysisTracker* tracker_;
EffectGraphReducer* reducer_;
VirtualObject* vobject_ = nullptr;
Node* replacement_ = nullptr;
};
Node* GetReplacementOf(Node* node) { return replacements_[node]; }
Node* ResolveReplacement(Node* node) {
if (Node* replacement = GetReplacementOf(node)) {
return replacement;
}
return node;
}
private:
friend class EscapeAnalysisResult;
static const size_t kMaxTrackedObjects = 100;
VirtualObject* NewVirtualObject(int size) {
if (next_object_id_ >= kMaxTrackedObjects) return nullptr;
return zone_->New<VirtualObject>(&variable_states_, next_object_id_++,
size);
}
SparseSidetable<VirtualObject*> virtual_objects_;
Sidetable<Node*> replacements_;
VariableTracker variable_states_;
VirtualObject::Id next_object_id_ = 0;
JSGraph* const jsgraph_;
Zone* const zone_;
};
EffectGraphReducer::EffectGraphReducer(
Graph* graph, std::function<void(Node*, Reduction*)> reduce,
TickCounter* tick_counter, Zone* zone)
: graph_(graph),
state_(graph, kNumStates),
revisit_(zone),
stack_(zone),
reduce_(std::move(reduce)),
tick_counter_(tick_counter) {}
void EffectGraphReducer::ReduceFrom(Node* node) {
// Perform DFS and eagerly trigger revisitation as soon as possible.
// A stack element {node, i} indicates that input i of node should be visited
// next.
DCHECK(stack_.empty());
stack_.push({node, 0});
while (!stack_.empty()) {
tick_counter_->TickAndMaybeEnterSafepoint();
Node* current = stack_.top().node;
int& input_index = stack_.top().input_index;
if (input_index < current->InputCount()) {
Node* input = current->InputAt(input_index);
input_index++;
switch (state_.Get(input)) {
case State::kVisited:
// The input is already reduced.
break;
case State::kOnStack:
// The input is on the DFS stack right now, so it will be revisited
// later anyway.
break;
case State::kUnvisited:
case State::kRevisit: {
state_.Set(input, State::kOnStack);
stack_.push({input, 0});
break;
}
}
} else {
stack_.pop();
Reduction reduction;
reduce_(current, &reduction);
for (Edge edge : current->use_edges()) {
// Mark uses for revisitation.
Node* use = edge.from();
if (NodeProperties::IsEffectEdge(edge)) {
if (reduction.effect_changed()) Revisit(use);
} else {
if (reduction.value_changed()) Revisit(use);
}
}
state_.Set(current, State::kVisited);
// Process the revisitation buffer immediately. This improves performance
// of escape analysis. Using a stack for {revisit_} reverses the order in
// which the revisitation happens. This also seems to improve performance.
while (!revisit_.empty()) {
Node* revisit = revisit_.top();
if (state_.Get(revisit) == State::kRevisit) {
state_.Set(revisit, State::kOnStack);
stack_.push({revisit, 0});
}
revisit_.pop();
}
}
}
}
void EffectGraphReducer::Revisit(Node* node) {
if (state_.Get(node) == State::kVisited) {
TRACE(" Queueing for revisit: %s#%d\n", node->op()->mnemonic(),
node->id());
state_.Set(node, State::kRevisit);
revisit_.push(node);
}
}
VariableTracker::VariableTracker(JSGraph* graph, EffectGraphReducer* reducer,
Zone* zone)
: zone_(zone),
graph_(graph),
table_(zone, State(zone)),
buffer_(zone),
reducer_(reducer),
tick_counter_(reducer->tick_counter()) {}
VariableTracker::Scope::Scope(VariableTracker* states, Node* node,
Reduction* reduction)
: ReduceScope(node, reduction),
states_(states),
current_state_(states->zone_) {
switch (node->opcode()) {
case IrOpcode::kEffectPhi:
current_state_ = states_->MergeInputs(node);
break;
default:
int effect_inputs = node->op()->EffectInputCount();
if (effect_inputs == 1) {
current_state_ =
states_->table_.Get(NodeProperties::GetEffectInput(node, 0));
} else {
DCHECK_EQ(0, effect_inputs);
}
}
}
VariableTracker::Scope::~Scope() {
if (!reduction()->effect_changed() &&
states_->table_.Get(current_node()) != current_state_) {
reduction()->set_effect_changed();
}
states_->table_.Set(current_node(), current_state_);
}
VariableTracker::State VariableTracker::MergeInputs(Node* effect_phi) {
// A variable that is mapped to [nullptr] was not assigned a value on every
// execution path to the current effect phi. Relying on the invariant that
// every variable is initialized (at least with a sentinel like the Dead
// node), this means that the variable initialization does not dominate the
// current point. So for loop effect phis, we can keep nullptr for a variable
// as long as the first input of the loop has nullptr for this variable. For
// non-loop effect phis, we can even keep it nullptr as long as any input has
// nullptr.
DCHECK_EQ(IrOpcode::kEffectPhi, effect_phi->opcode());
int arity = effect_phi->op()->EffectInputCount();
Node* control = NodeProperties::GetControlInput(effect_phi, 0);
TRACE("control: %s#%d\n", control->op()->mnemonic(), control->id());
bool is_loop = control->opcode() == IrOpcode::kLoop;
buffer_.reserve(arity + 1);
State first_input = table_.Get(NodeProperties::GetEffectInput(effect_phi, 0));
State result = first_input;
for (std::pair<Variable, Node*> var_value : first_input) {
tick_counter_->TickAndMaybeEnterSafepoint();
if (Node* value = var_value.second) {
Variable var = var_value.first;
TRACE("var %i:\n", var.id_);
buffer_.clear();
buffer_.push_back(value);
bool identical_inputs = true;
int num_defined_inputs = 1;
TRACE(" input 0: %s#%d\n", value->op()->mnemonic(), value->id());
for (int i = 1; i < arity; ++i) {
Node* next_value =
table_.Get(NodeProperties::GetEffectInput(effect_phi, i)).Get(var);
if (next_value != value) identical_inputs = false;
if (next_value != nullptr) {
num_defined_inputs++;
TRACE(" input %i: %s#%d\n", i, next_value->op()->mnemonic(),
next_value->id());
} else {
TRACE(" input %i: nullptr\n", i);
}
buffer_.push_back(next_value);
}
Node* old_value = table_.Get(effect_phi).Get(var);
if (old_value) {
TRACE(" old: %s#%d\n", old_value->op()->mnemonic(), old_value->id());
} else {
TRACE(" old: nullptr\n");
}
// Reuse a previously created phi node if possible.
if (old_value && old_value->opcode() == IrOpcode::kPhi &&
NodeProperties::GetControlInput(old_value, 0) == control) {
// Since a phi node can never dominate its control node,
// [old_value] cannot originate from the inputs. Thus [old_value]
// must have been created by a previous reduction of this [effect_phi].
for (int i = 0; i < arity; ++i) {
Node* old_input = NodeProperties::GetValueInput(old_value, i);
Node* new_input = buffer_[i] ? buffer_[i] : graph_->Dead();
if (old_input != new_input) {
NodeProperties::ReplaceValueInput(old_value, new_input, i);
reducer_->Revisit(old_value);
}
}
result.Set(var, old_value);
} else {
if (num_defined_inputs == 1 && is_loop) {
// For loop effect phis, the variable initialization dominates iff it
// dominates the first input.
DCHECK_EQ(2, arity);
DCHECK_EQ(value, buffer_[0]);
result.Set(var, value);
} else if (num_defined_inputs < arity) {
// If the variable is undefined on some input of this non-loop effect
// phi, then its initialization does not dominate this point.
result.Set(var, nullptr);
} else {
DCHECK_EQ(num_defined_inputs, arity);
// We only create a phi if the values are different.
if (identical_inputs) {
result.Set(var, value);
} else {
TRACE("Creating new phi\n");
buffer_.push_back(control);
Node* phi = graph_->graph()->NewNode(
graph_->common()->Phi(MachineRepresentation::kTagged, arity),
arity + 1, &buffer_.front());
// TODO(turbofan): Computing precise types here is tricky, because
// of the necessary revisitations. If we really need this, we should
// probably do it afterwards.
NodeProperties::SetType(phi, Type::Any());
reducer_->AddRoot(phi);
result.Set(var, phi);
}
}
}
#ifdef DEBUG
if (Node* result_node = result.Get(var)) {
TRACE(" result: %s#%d\n", result_node->op()->mnemonic(),
result_node->id());
} else {
TRACE(" result: nullptr\n");
}
#endif
}
}
return result;
}
namespace {
int OffsetOfFieldAccess(const Operator* op) {
DCHECK(op->opcode() == IrOpcode::kLoadField ||
op->opcode() == IrOpcode::kStoreField);
FieldAccess access = FieldAccessOf(op);
return access.offset;
}
int OffsetOfElementAt(ElementAccess const& access, int index) {
DCHECK_GE(index, 0);
DCHECK_GE(ElementSizeLog2Of(access.machine_type.representation()),
kTaggedSizeLog2);
return access.header_size +
(index << ElementSizeLog2Of(access.machine_type.representation()));
}
Maybe<int> OffsetOfElementsAccess(const Operator* op, Node* index_node) {
DCHECK(op->opcode() == IrOpcode::kLoadElement ||
op->opcode() == IrOpcode::kStoreElement);
Type index_type = NodeProperties::GetType(index_node);
if (!index_type.Is(Type::OrderedNumber())) return Nothing<int>();
double max = index_type.Max();
double min = index_type.Min();
int index = static_cast<int>(min);
if (index < 0 || index != min || index != max) return Nothing<int>();
return Just(OffsetOfElementAt(ElementAccessOf(op), index));
}
Node* LowerCompareMapsWithoutLoad(Node* checked_map,
ZoneHandleSet<Map> const& checked_against,
JSGraph* jsgraph) {
Node* true_node = jsgraph->TrueConstant();
Node* false_node = jsgraph->FalseConstant();
Node* replacement = false_node;
for (Handle<Map> map : checked_against) {
Node* map_node = jsgraph->HeapConstant(map);
// We cannot create a HeapConstant type here as we are off-thread.
NodeProperties::SetType(map_node, Type::Internal());
Node* comparison = jsgraph->graph()->NewNode(
jsgraph->simplified()->ReferenceEqual(), checked_map, map_node);
NodeProperties::SetType(comparison, Type::Boolean());
if (replacement == false_node) {
replacement = comparison;
} else {
replacement = jsgraph->graph()->NewNode(
jsgraph->common()->Select(MachineRepresentation::kTaggedPointer),
comparison, true_node, replacement);
NodeProperties::SetType(replacement, Type::Boolean());
}
}
return replacement;
}
void ReduceNode(const Operator* op, EscapeAnalysisTracker::Scope* current,
JSGraph* jsgraph) {
switch (op->opcode()) {
case IrOpcode::kAllocate: {
NumberMatcher size(current->ValueInput(0));
if (!size.HasResolvedValue()) break;
int size_int = static_cast<int>(size.ResolvedValue());
if (size_int != size.ResolvedValue()) break;
if (const VirtualObject* vobject = current->InitVirtualObject(size_int)) {
// Initialize with dead nodes as a sentinel for uninitialized memory.
for (Variable field : *vobject) {
current->Set(field, jsgraph->Dead());
}
}
break;
}
case IrOpcode::kFinishRegion:
current->SetVirtualObject(current->ValueInput(0));
break;
case IrOpcode::kStoreField: {
Node* object = current->ValueInput(0);
Node* value = current->ValueInput(1);
const VirtualObject* vobject = current->GetVirtualObject(object);
Variable var;
if (vobject && !vobject->HasEscaped() &&
vobject->FieldAt(OffsetOfFieldAccess(op)).To(&var)) {
current->Set(var, value);
current->MarkForDeletion();
} else {
current->SetEscaped(object);
current->SetEscaped(value);
}
break;
}
case IrOpcode::kStoreElement: {
Node* object = current->ValueInput(0);
Node* index = current->ValueInput(1);
Node* value = current->ValueInput(2);
const VirtualObject* vobject = current->GetVirtualObject(object);
int offset;
Variable var;
if (vobject && !vobject->HasEscaped() &&
OffsetOfElementsAccess(op, index).To(&offset) &&
vobject->FieldAt(offset).To(&var)) {
current->Set(var, value);
current->MarkForDeletion();
} else {
current->SetEscaped(value);
current->SetEscaped(object);
}
break;
}
case IrOpcode::kLoadField: {
Node* object = current->ValueInput(0);
const VirtualObject* vobject = current->GetVirtualObject(object);
Variable var;
Node* value;
if (vobject && !vobject->HasEscaped() &&
vobject->FieldAt(OffsetOfFieldAccess(op)).To(&var) &&
current->Get(var).To(&value)) {
current->SetReplacement(value);
} else {
current->SetEscaped(object);
}
break;
}
case IrOpcode::kLoadElement: {
Node* object = current->ValueInput(0);
Node* index = current->ValueInput(1);
const VirtualObject* vobject = current->GetVirtualObject(object);
int offset;
Variable var;
Node* value;
if (vobject && !vobject->HasEscaped() &&
OffsetOfElementsAccess(op, index).To(&offset) &&
vobject->FieldAt(offset).To(&var) && current->Get(var).To(&value)) {
current->SetReplacement(value);
break;
} else if (vobject && !vobject->HasEscaped()) {
// Compute the known length (aka the number of elements) of {object}
// based on the virtual object information.
ElementAccess const& access = ElementAccessOf(op);
int const length =
(vobject->size() - access.header_size) >>
ElementSizeLog2Of(access.machine_type.representation());
Variable var0, var1;
Node* value0;
Node* value1;
if (length == 1 &&
vobject->FieldAt(OffsetOfElementAt(access, 0)).To(&var) &&
current->Get(var).To(&value) &&
(value == nullptr ||
NodeProperties::GetType(value).Is(access.type))) {
// The {object} has no elements, and we know that the LoadElement
// {index} must be within bounds, thus it must always yield this
// one element of {object}.
current->SetReplacement(value);
break;
} else if (length == 2 &&
vobject->FieldAt(OffsetOfElementAt(access, 0)).To(&var0) &&
current->Get(var0).To(&value0) &&
(value0 == nullptr ||
NodeProperties::GetType(value0).Is(access.type)) &&
vobject->FieldAt(OffsetOfElementAt(access, 1)).To(&var1) &&
current->Get(var1).To(&value1) &&
(value1 == nullptr ||
NodeProperties::GetType(value1).Is(access.type))) {
if (value0 && value1) {
// The {object} has exactly two elements, so the LoadElement
// must return one of them (i.e. either the element at index
// 0 or the one at index 1). So we can turn the LoadElement
// into a Select operation instead (still allowing the {object}
// to be scalar replaced). We must however mark the elements
// of the {object} itself as escaping.
Node* check =
jsgraph->graph()->NewNode(jsgraph->simplified()->NumberEqual(),
index, jsgraph->ZeroConstant());
NodeProperties::SetType(check, Type::Boolean());
Node* select = jsgraph->graph()->NewNode(
jsgraph->common()->Select(access.machine_type.representation()),
check, value0, value1);
NodeProperties::SetType(select, access.type);
current->SetReplacement(select);
current->SetEscaped(value0);
current->SetEscaped(value1);
break;
} else {
// If the variables have no values, we have
// not reached the fixed-point yet.
break;
}
}
}
current->SetEscaped(object);
break;
}
case IrOpcode::kTypeGuard: {
current->SetVirtualObject(current->ValueInput(0));
break;
}
case IrOpcode::kReferenceEqual: {
Node* left = current->ValueInput(0);
Node* right = current->ValueInput(1);
const VirtualObject* left_object = current->GetVirtualObject(left);
const VirtualObject* right_object = current->GetVirtualObject(right);
Node* replacement = nullptr;
if (left_object && !left_object->HasEscaped()) {
if (right_object && !right_object->HasEscaped() &&
left_object->id() == right_object->id()) {
replacement = jsgraph->TrueConstant();
} else {
replacement = jsgraph->FalseConstant();
}
} else if (right_object && !right_object->HasEscaped()) {
replacement = jsgraph->FalseConstant();
}
// TODO(turbofan) This is a workaround for uninhabited types. If we
// replaced a value of uninhabited type with a constant, we would
// widen the type of the node. This could produce inconsistent
// types (which might confuse representation selection). We get
// around this by refusing to constant-fold and escape-analyze
// if the type is not inhabited.
if (replacement && !NodeProperties::GetType(left).IsNone() &&
!NodeProperties::GetType(right).IsNone()) {
current->SetReplacement(replacement);
break;
}
current->SetEscaped(left);
current->SetEscaped(right);
break;
}
case IrOpcode::kCheckMaps: {
CheckMapsParameters params = CheckMapsParametersOf(op);
Node* checked = current->ValueInput(0);
const VirtualObject* vobject = current->GetVirtualObject(checked);
Variable map_field;
Node* map;
if (vobject && !vobject->HasEscaped() &&
vobject->FieldAt(HeapObject::kMapOffset).To(&map_field) &&
current->Get(map_field).To(&map)) {
if (map) {
Type const map_type = NodeProperties::GetType(map);
if (map_type.IsHeapConstant() &&
params.maps().contains(
map_type.AsHeapConstant()->Ref().AsMap().object())) {
current->MarkForDeletion();
break;
}
} else {
// If the variable has no value, we have not reached the fixed-point
// yet.
break;
}
}
current->SetEscaped(checked);
break;
}
case IrOpcode::kCompareMaps: {
Node* object = current->ValueInput(0);
const VirtualObject* vobject = current->GetVirtualObject(object);
Variable map_field;
Node* object_map;
if (vobject && !vobject->HasEscaped() &&
vobject->FieldAt(HeapObject::kMapOffset).To(&map_field) &&
current->Get(map_field).To(&object_map)) {
if (object_map) {
current->SetReplacement(LowerCompareMapsWithoutLoad(
object_map, CompareMapsParametersOf(op), jsgraph));
break;
} else {
// If the variable has no value, we have not reached the fixed-point
// yet.
break;
}
}
current->SetEscaped(object);
break;
}
case IrOpcode::kCheckHeapObject: {
Node* checked = current->ValueInput(0);
switch (checked->opcode()) {
case IrOpcode::kAllocate:
case IrOpcode::kFinishRegion:
case IrOpcode::kHeapConstant:
current->SetReplacement(checked);
break;
default:
current->SetEscaped(checked);
break;
}
break;
}
case IrOpcode::kMapGuard: {
Node* object = current->ValueInput(0);
const VirtualObject* vobject = current->GetVirtualObject(object);
if (vobject && !vobject->HasEscaped()) {
current->MarkForDeletion();
}
break;
}
case IrOpcode::kStateValues:
case IrOpcode::kFrameState:
// These uses are always safe.
break;
default: {
// For unknown nodes, treat all value inputs as escaping.
int value_input_count = op->ValueInputCount();
for (int i = 0; i < value_input_count; ++i) {
Node* input = current->ValueInput(i);
current->SetEscaped(input);
}
if (OperatorProperties::HasContextInput(op)) {
current->SetEscaped(current->ContextInput());
}
break;
}
}
}
} // namespace
void EscapeAnalysis::Reduce(Node* node, Reduction* reduction) {
const Operator* op = node->op();
TRACE("Reducing %s#%d\n", op->mnemonic(), node->id());
EscapeAnalysisTracker::Scope current(this, tracker_, node, reduction);
ReduceNode(op, ¤t, jsgraph());
}
EscapeAnalysis::EscapeAnalysis(JSGraph* jsgraph, TickCounter* tick_counter,
Zone* zone)
: EffectGraphReducer(
jsgraph->graph(),
[this](Node* node, Reduction* reduction) { Reduce(node, reduction); },
tick_counter, zone),
tracker_(zone->New<EscapeAnalysisTracker>(jsgraph, this, zone)),
jsgraph_(jsgraph) {}
Node* EscapeAnalysisResult::GetReplacementOf(Node* node) {
Node* replacement = tracker_->GetReplacementOf(node);
// Replacements cannot have replacements. This is important to ensure
// re-visitation: If a replacement is replaced, then all nodes accessing
// the replacement have to be updated.
if (replacement) DCHECK_NULL(tracker_->GetReplacementOf(replacement));
return replacement;
}
Node* EscapeAnalysisResult::GetVirtualObjectField(const VirtualObject* vobject,
int field, Node* effect) {
return tracker_->variable_states_.Get(vobject->FieldAt(field).FromJust(),
effect);
}
const VirtualObject* EscapeAnalysisResult::GetVirtualObject(Node* node) {
return tracker_->virtual_objects_.Get(node);
}
VirtualObject::VirtualObject(VariableTracker* var_states, VirtualObject::Id id,
int size)
: Dependable(var_states->zone()), id_(id), fields_(var_states->zone()) {
DCHECK(IsAligned(size, kTaggedSize));
TRACE("Creating VirtualObject id:%d size:%d\n", id, size);
int num_fields = size / kTaggedSize;
fields_.reserve(num_fields);
for (int i = 0; i < num_fields; ++i) {
fields_.push_back(var_states->NewVariable());
}
}
#undef TRACE
} // namespace compiler
} // namespace internal
} // namespace v8
|