1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/loop-peeling.h"
#include "src/compiler/node.h"
#include "src/compiler/node-marker.h"
#include "src/compiler/node-properties.h"
#include "src/zone.h"
// Loop peeling is an optimization that copies the body of a loop, creating
// a new copy of the body called the "peeled iteration" that represents the
// first iteration. Beginning with a loop as follows:
// E
// | A
// | | (backedges)
// | +---------------|---------------------------------+
// | | +-------------|-------------------------------+ |
// | | | | +--------+ | |
// | | | | | +----+ | | |
// | | | | | | | | | |
// ( Loop )<-------- ( phiA ) | | | |
// | | | | | |
// ((======P=================U=======|=|=====)) | |
// (( | | )) | |
// (( X <---------------------+ | )) | |
// (( | )) | |
// (( body | )) | |
// (( | )) | |
// (( Y <-----------------------+ )) | |
// (( )) | |
// ((===K====L====M==========================)) | |
// | | | | |
// | | +-----------------------------------------+ |
// | +------------------------------------------------+
// |
// exit
// The body of the loop is duplicated so that all nodes considered "inside"
// the loop (e.g. {P, U, X, Y, K, L, M}) have a corresponding copies in the
// peeled iteration (e.g. {P', U', X', Y', K', L', M'}). What were considered
// backedges of the loop correspond to edges from the peeled iteration to
// the main loop body, with multiple backedges requiring a merge.
// Similarly, any exits from the loop body need to be merged with "exits"
// from the peeled iteration, resulting in the graph as follows:
// E
// | A
// | |
// ((=====P'================U'===============))
// (( ))
// (( X'<-------------+ ))
// (( | ))
// (( peeled iteration | ))
// (( | ))
// (( Y'<-----------+ | ))
// (( | | ))
// ((===K'===L'====M'======|=|===============))
// | | | | |
// +--------+ +-+ +-+ | |
// | | | | |
// | Merge <------phi
// | | |
// | +-----+ |
// | | | (backedges)
// | | +---------------|---------------------------------+
// | | | +-------------|-------------------------------+ |
// | | | | | +--------+ | |
// | | | | | | +----+ | | |
// | | | | | | | | | | |
// | ( Loop )<-------- ( phiA ) | | | |
// | | | | | | |
// | ((======P=================U=======|=|=====)) | |
// | (( | | )) | |
// | (( X <---------------------+ | )) | |
// | (( | )) | |
// | (( body | )) | |
// | (( | )) | |
// | (( Y <-----------------------+ )) | |
// | (( )) | |
// | ((===K====L====M==========================)) | |
// | | | | | |
// | | | +-----------------------------------------+ |
// | | +------------------------------------------------+
// | |
// | |
// +----+ +-+
// | |
// Merge
// |
// exit
// Note that the boxes ((===)) above are not explicitly represented in the
// graph, but are instead computed by the {LoopFinder}.
namespace v8 {
namespace internal {
namespace compiler {
struct Peeling {
// Maps a node to its index in the {pairs} vector.
NodeMarker<size_t> node_map;
// The vector which contains the mapped nodes.
NodeVector* pairs;
Peeling(Graph* graph, Zone* tmp_zone, size_t max, NodeVector* p)
: node_map(graph, static_cast<uint32_t>(max)), pairs(p) {}
Node* map(Node* node) {
if (node_map.Get(node) == 0) return node;
return pairs->at(node_map.Get(node));
}
void Insert(Node* original, Node* copy) {
node_map.Set(original, 1 + pairs->size());
pairs->push_back(original);
pairs->push_back(copy);
}
void CopyNodes(Graph* graph, Zone* tmp_zone, Node* dead, NodeRange nodes) {
NodeVector inputs(tmp_zone);
// Copy all the nodes first.
for (Node* node : nodes) {
inputs.clear();
for (Node* input : node->inputs()) inputs.push_back(map(input));
Insert(node, graph->NewNode(node->op(), node->InputCount(), &inputs[0]));
}
// Fix remaining inputs of the copies.
for (Node* original : nodes) {
Node* copy = pairs->at(node_map.Get(original));
for (int i = 0; i < copy->InputCount(); i++) {
copy->ReplaceInput(i, map(original->InputAt(i)));
}
}
}
bool Marked(Node* node) { return node_map.Get(node) > 0; }
};
class PeeledIterationImpl : public PeeledIteration {
public:
NodeVector node_pairs_;
explicit PeeledIterationImpl(Zone* zone) : node_pairs_(zone) {}
};
Node* PeeledIteration::map(Node* node) {
// TODO(turbofan): we use a simple linear search, since the peeled iteration
// is really only used in testing.
PeeledIterationImpl* impl = static_cast<PeeledIterationImpl*>(this);
for (size_t i = 0; i < impl->node_pairs_.size(); i += 2) {
if (impl->node_pairs_[i] == node) return impl->node_pairs_[i + 1];
}
return node;
}
static void FindLoopExits(LoopTree* loop_tree, LoopTree::Loop* loop,
NodeVector& exits, NodeVector& rets) {
// Look for returns and if projections that are outside the loop but whose
// control input is inside the loop.
for (Node* node : loop_tree->LoopNodes(loop)) {
for (Node* use : node->uses()) {
if (!loop_tree->Contains(loop, use)) {
if (IrOpcode::IsIfProjectionOpcode(use->opcode())) {
// This is a branch from inside the loop to outside the loop.
exits.push_back(use);
} else if (use->opcode() == IrOpcode::kReturn &&
loop_tree->Contains(loop,
NodeProperties::GetControlInput(use))) {
// This is a return from inside the loop.
rets.push_back(use);
}
}
}
}
}
bool LoopPeeler::CanPeel(LoopTree* loop_tree, LoopTree::Loop* loop) {
Zone zone;
NodeVector exits(&zone);
NodeVector rets(&zone);
FindLoopExits(loop_tree, loop, exits, rets);
return exits.size() <= 1u;
}
PeeledIteration* LoopPeeler::Peel(Graph* graph, CommonOperatorBuilder* common,
LoopTree* loop_tree, LoopTree::Loop* loop,
Zone* tmp_zone) {
//============================================================================
// Find the loop exit region to determine if this loop can be peeled.
//============================================================================
NodeVector exits(tmp_zone);
NodeVector rets(tmp_zone);
FindLoopExits(loop_tree, loop, exits, rets);
if (exits.size() != 1) return nullptr; // not peelable currently.
//============================================================================
// Construct the peeled iteration.
//============================================================================
PeeledIterationImpl* iter = new (tmp_zone) PeeledIterationImpl(tmp_zone);
size_t estimated_peeled_size =
5 + (loop->TotalSize() + exits.size() + rets.size()) * 2;
Peeling peeling(graph, tmp_zone, estimated_peeled_size, &iter->node_pairs_);
Node* dead = graph->NewNode(common->Dead());
// Map the loop header nodes to their entry values.
for (Node* node : loop_tree->HeaderNodes(loop)) {
peeling.Insert(node, node->InputAt(kAssumedLoopEntryIndex));
}
// Copy all the nodes of loop body for the peeled iteration.
peeling.CopyNodes(graph, tmp_zone, dead, loop_tree->BodyNodes(loop));
//============================================================================
// Replace the entry to the loop with the output of the peeled iteration.
//============================================================================
Node* loop_node = loop_tree->GetLoopControl(loop);
Node* new_entry;
int backedges = loop_node->InputCount() - 1;
if (backedges > 1) {
// Multiple backedges from original loop, therefore multiple output edges
// from the peeled iteration.
NodeVector inputs(tmp_zone);
for (int i = 1; i < loop_node->InputCount(); i++) {
inputs.push_back(peeling.map(loop_node->InputAt(i)));
}
Node* merge =
graph->NewNode(common->Merge(backedges), backedges, &inputs[0]);
// Merge values from the multiple output edges of the peeled iteration.
for (Node* node : loop_tree->HeaderNodes(loop)) {
if (node->opcode() == IrOpcode::kLoop) continue; // already done.
inputs.clear();
for (int i = 0; i < backedges; i++) {
inputs.push_back(peeling.map(node->InputAt(1 + i)));
}
for (Node* input : inputs) {
if (input != inputs[0]) { // Non-redundant phi.
inputs.push_back(merge);
const Operator* op = common->ResizeMergeOrPhi(node->op(), backedges);
Node* phi = graph->NewNode(op, backedges + 1, &inputs[0]);
node->ReplaceInput(0, phi);
break;
}
}
}
new_entry = merge;
} else {
// Only one backedge, simply replace the input to loop with output of
// peeling.
for (Node* node : loop_tree->HeaderNodes(loop)) {
node->ReplaceInput(0, peeling.map(node->InputAt(0)));
}
new_entry = peeling.map(loop_node->InputAt(1));
}
loop_node->ReplaceInput(0, new_entry);
//============================================================================
// Duplicate the loop exit region and add a merge.
//============================================================================
// Currently we are limited to peeling loops with a single exit. The exit is
// the postdominator of the loop (ignoring returns).
Node* postdom = exits[0];
for (Node* node : rets) exits.push_back(node);
for (Node* use : postdom->uses()) {
if (NodeProperties::IsPhi(use)) exits.push_back(use);
}
NodeRange exit_range(&exits[0], &exits[0] + exits.size());
peeling.CopyNodes(graph, tmp_zone, dead, exit_range);
Node* merge = graph->NewNode(common->Merge(2), postdom, peeling.map(postdom));
postdom->ReplaceUses(merge);
merge->ReplaceInput(0, postdom); // input 0 overwritten by above line.
// Find and update all the edges into either the loop or exit region.
for (int i = 0; i < 2; i++) {
NodeRange range = i == 0 ? loop_tree->LoopNodes(loop) : exit_range;
ZoneVector<Edge> value_edges(tmp_zone);
ZoneVector<Edge> effect_edges(tmp_zone);
for (Node* node : range) {
// Gather value and effect edges from outside the region.
for (Edge edge : node->use_edges()) {
if (!peeling.Marked(edge.from())) {
// Edge from outside the loop into the region.
if (NodeProperties::IsValueEdge(edge) ||
NodeProperties::IsContextEdge(edge)) {
value_edges.push_back(edge);
} else if (NodeProperties::IsEffectEdge(edge)) {
effect_edges.push_back(edge);
} else {
// don't do anything for control edges.
// TODO(titzer): should update control edges to peeled?
}
}
}
// Update all the value and effect edges at once.
if (!value_edges.empty()) {
// TODO(titzer): machine type is wrong here.
Node* phi = graph->NewNode(common->Phi(kMachAnyTagged, 2), node,
peeling.map(node), merge);
for (Edge edge : value_edges) edge.UpdateTo(phi);
value_edges.clear();
}
if (!effect_edges.empty()) {
Node* effect_phi = graph->NewNode(common->EffectPhi(2), node,
peeling.map(node), merge);
for (Edge edge : effect_edges) edge.UpdateTo(effect_phi);
effect_edges.clear();
}
}
}
return iter;
}
} // namespace compiler
} // namespace internal
} // namespace v8
|