1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/loop-variable-optimizer.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/node-marker.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/node.h"
#include "src/zone/zone-containers.h"
#include "src/zone/zone.h"
namespace v8 {
namespace internal {
namespace compiler {
// Macro for outputting trace information from representation inference.
#define TRACE(...) \
do { \
if (FLAG_trace_turbo_loop) PrintF(__VA_ARGS__); \
} while (false)
LoopVariableOptimizer::LoopVariableOptimizer(Graph* graph,
CommonOperatorBuilder* common,
Zone* zone)
: graph_(graph),
common_(common),
zone_(zone),
limits_(graph->NodeCount(), zone),
reduced_(graph->NodeCount(), zone),
induction_vars_(zone) {}
void LoopVariableOptimizer::Run() {
ZoneQueue<Node*> queue(zone());
queue.push(graph()->start());
NodeMarker<bool> queued(graph(), 2);
while (!queue.empty()) {
Node* node = queue.front();
queue.pop();
queued.Set(node, false);
DCHECK(!reduced_.Get(node));
bool all_inputs_visited = true;
int inputs_end = (node->opcode() == IrOpcode::kLoop)
? kFirstBackedge
: node->op()->ControlInputCount();
for (int i = 0; i < inputs_end; i++) {
if (!reduced_.Get(NodeProperties::GetControlInput(node, i))) {
all_inputs_visited = false;
break;
}
}
if (!all_inputs_visited) continue;
VisitNode(node);
reduced_.Set(node, true);
// Queue control outputs.
for (Edge edge : node->use_edges()) {
if (NodeProperties::IsControlEdge(edge) &&
edge.from()->op()->ControlOutputCount() > 0) {
Node* use = edge.from();
if (use->opcode() == IrOpcode::kLoop &&
edge.index() != kAssumedLoopEntryIndex) {
VisitBackedge(node, use);
} else if (!queued.Get(use)) {
queue.push(use);
queued.Set(use, true);
}
}
}
}
}
void InductionVariable::AddUpperBound(Node* bound,
InductionVariable::ConstraintKind kind) {
if (FLAG_trace_turbo_loop) {
StdoutStream{} << "New upper bound for " << phi()->id() << " (loop "
<< NodeProperties::GetControlInput(phi())->id()
<< "): " << *bound << std::endl;
}
upper_bounds_.push_back(Bound(bound, kind));
}
void InductionVariable::AddLowerBound(Node* bound,
InductionVariable::ConstraintKind kind) {
if (FLAG_trace_turbo_loop) {
StdoutStream{} << "New lower bound for " << phi()->id() << " (loop "
<< NodeProperties::GetControlInput(phi())->id()
<< "): " << *bound;
}
lower_bounds_.push_back(Bound(bound, kind));
}
void LoopVariableOptimizer::VisitBackedge(Node* from, Node* loop) {
if (loop->op()->ControlInputCount() != 2) return;
// Go through the constraints, and update the induction variables in
// this loop if they are involved in the constraint.
for (Constraint constraint : limits_.Get(from)) {
if (constraint.left->opcode() == IrOpcode::kPhi &&
NodeProperties::GetControlInput(constraint.left) == loop) {
auto var = induction_vars_.find(constraint.left->id());
if (var != induction_vars_.end()) {
var->second->AddUpperBound(constraint.right, constraint.kind);
}
}
if (constraint.right->opcode() == IrOpcode::kPhi &&
NodeProperties::GetControlInput(constraint.right) == loop) {
auto var = induction_vars_.find(constraint.right->id());
if (var != induction_vars_.end()) {
var->second->AddLowerBound(constraint.left, constraint.kind);
}
}
}
}
void LoopVariableOptimizer::VisitNode(Node* node) {
switch (node->opcode()) {
case IrOpcode::kMerge:
return VisitMerge(node);
case IrOpcode::kLoop:
return VisitLoop(node);
case IrOpcode::kIfFalse:
return VisitIf(node, false);
case IrOpcode::kIfTrue:
return VisitIf(node, true);
case IrOpcode::kStart:
return VisitStart(node);
case IrOpcode::kLoopExit:
return VisitLoopExit(node);
default:
return VisitOtherControl(node);
}
}
void LoopVariableOptimizer::VisitMerge(Node* node) {
// Merge the limits of all incoming edges.
VariableLimits merged = limits_.Get(node->InputAt(0));
for (int i = 1; i < node->InputCount(); i++) {
merged.ResetToCommonAncestor(limits_.Get(node->InputAt(i)));
}
limits_.Set(node, merged);
}
void LoopVariableOptimizer::VisitLoop(Node* node) {
DetectInductionVariables(node);
// Conservatively take the limits from the loop entry here.
return TakeConditionsFromFirstControl(node);
}
void LoopVariableOptimizer::VisitIf(Node* node, bool polarity) {
Node* branch = node->InputAt(0);
Node* cond = branch->InputAt(0);
VariableLimits limits = limits_.Get(branch);
// Normalize to less than comparison.
switch (cond->opcode()) {
case IrOpcode::kJSLessThan:
case IrOpcode::kNumberLessThan:
case IrOpcode::kSpeculativeNumberLessThan:
AddCmpToLimits(&limits, cond, InductionVariable::kStrict, polarity);
break;
case IrOpcode::kJSGreaterThan:
AddCmpToLimits(&limits, cond, InductionVariable::kNonStrict, !polarity);
break;
case IrOpcode::kJSLessThanOrEqual:
case IrOpcode::kNumberLessThanOrEqual:
case IrOpcode::kSpeculativeNumberLessThanOrEqual:
AddCmpToLimits(&limits, cond, InductionVariable::kNonStrict, polarity);
break;
case IrOpcode::kJSGreaterThanOrEqual:
AddCmpToLimits(&limits, cond, InductionVariable::kStrict, !polarity);
break;
default:
break;
}
limits_.Set(node, limits);
}
void LoopVariableOptimizer::AddCmpToLimits(
VariableLimits* limits, Node* node, InductionVariable::ConstraintKind kind,
bool polarity) {
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (FindInductionVariable(left) || FindInductionVariable(right)) {
if (polarity) {
limits->PushFront(Constraint{left, kind, right}, zone());
} else {
kind = (kind == InductionVariable::kStrict)
? InductionVariable::kNonStrict
: InductionVariable::kStrict;
limits->PushFront(Constraint{right, kind, left}, zone());
}
}
}
void LoopVariableOptimizer::VisitStart(Node* node) { limits_.Set(node, {}); }
void LoopVariableOptimizer::VisitLoopExit(Node* node) {
return TakeConditionsFromFirstControl(node);
}
void LoopVariableOptimizer::VisitOtherControl(Node* node) {
DCHECK_EQ(1, node->op()->ControlInputCount());
return TakeConditionsFromFirstControl(node);
}
void LoopVariableOptimizer::TakeConditionsFromFirstControl(Node* node) {
limits_.Set(node, limits_.Get(NodeProperties::GetControlInput(node, 0)));
}
const InductionVariable* LoopVariableOptimizer::FindInductionVariable(
Node* node) {
auto var = induction_vars_.find(node->id());
if (var != induction_vars_.end()) {
return var->second;
}
return nullptr;
}
InductionVariable* LoopVariableOptimizer::TryGetInductionVariable(Node* phi) {
DCHECK_EQ(2, phi->op()->ValueInputCount());
Node* loop = NodeProperties::GetControlInput(phi);
DCHECK_EQ(IrOpcode::kLoop, loop->opcode());
Node* initial = phi->InputAt(0);
Node* arith = phi->InputAt(1);
InductionVariable::ArithmeticType arithmeticType;
if (arith->opcode() == IrOpcode::kJSAdd ||
arith->opcode() == IrOpcode::kNumberAdd ||
arith->opcode() == IrOpcode::kSpeculativeNumberAdd ||
arith->opcode() == IrOpcode::kSpeculativeSafeIntegerAdd) {
arithmeticType = InductionVariable::ArithmeticType::kAddition;
} else if (arith->opcode() == IrOpcode::kJSSubtract ||
arith->opcode() == IrOpcode::kNumberSubtract ||
arith->opcode() == IrOpcode::kSpeculativeNumberSubtract ||
arith->opcode() == IrOpcode::kSpeculativeSafeIntegerSubtract) {
arithmeticType = InductionVariable::ArithmeticType::kSubtraction;
} else {
return nullptr;
}
// TODO(jarin) Support both sides.
Node* input = arith->InputAt(0);
if (input->opcode() == IrOpcode::kSpeculativeToNumber ||
input->opcode() == IrOpcode::kJSToNumber ||
input->opcode() == IrOpcode::kJSToNumberConvertBigInt) {
input = input->InputAt(0);
}
if (input != phi) return nullptr;
Node* effect_phi = nullptr;
for (Node* use : loop->uses()) {
if (use->opcode() == IrOpcode::kEffectPhi) {
DCHECK_NULL(effect_phi);
effect_phi = use;
}
}
if (!effect_phi) return nullptr;
Node* incr = arith->InputAt(1);
return zone()->New<InductionVariable>(phi, effect_phi, arith, incr, initial,
zone(), arithmeticType);
}
void LoopVariableOptimizer::DetectInductionVariables(Node* loop) {
if (loop->op()->ControlInputCount() != 2) return;
TRACE("Loop variables for loop %i:", loop->id());
for (Edge edge : loop->use_edges()) {
if (NodeProperties::IsControlEdge(edge) &&
edge.from()->opcode() == IrOpcode::kPhi) {
Node* phi = edge.from();
InductionVariable* induction_var = TryGetInductionVariable(phi);
if (induction_var) {
induction_vars_[phi->id()] = induction_var;
TRACE(" %i", induction_var->phi()->id());
}
}
}
TRACE("\n");
}
void LoopVariableOptimizer::ChangeToInductionVariablePhis() {
for (auto entry : induction_vars_) {
// It only make sense to analyze the induction variables if
// there is a bound.
InductionVariable* induction_var = entry.second;
DCHECK_EQ(MachineRepresentation::kTagged,
PhiRepresentationOf(induction_var->phi()->op()));
if (induction_var->upper_bounds().size() == 0 &&
induction_var->lower_bounds().size() == 0) {
continue;
}
// Insert the increment value to the value inputs.
induction_var->phi()->InsertInput(graph()->zone(),
induction_var->phi()->InputCount() - 1,
induction_var->increment());
// Insert the bound inputs to the value inputs.
for (auto bound : induction_var->lower_bounds()) {
induction_var->phi()->InsertInput(
graph()->zone(), induction_var->phi()->InputCount() - 1, bound.bound);
}
for (auto bound : induction_var->upper_bounds()) {
induction_var->phi()->InsertInput(
graph()->zone(), induction_var->phi()->InputCount() - 1, bound.bound);
}
NodeProperties::ChangeOp(
induction_var->phi(),
common()->InductionVariablePhi(induction_var->phi()->InputCount() - 1));
}
}
void LoopVariableOptimizer::ChangeToPhisAndInsertGuards() {
for (auto entry : induction_vars_) {
InductionVariable* induction_var = entry.second;
if (induction_var->phi()->opcode() == IrOpcode::kInductionVariablePhi) {
// Turn the induction variable phi back to normal phi.
int value_count = 2;
Node* control = NodeProperties::GetControlInput(induction_var->phi());
DCHECK_EQ(value_count, control->op()->ControlInputCount());
induction_var->phi()->TrimInputCount(value_count + 1);
induction_var->phi()->ReplaceInput(value_count, control);
NodeProperties::ChangeOp(
induction_var->phi(),
common()->Phi(MachineRepresentation::kTagged, value_count));
// If the backedge is not a subtype of the phi's type, we insert a sigma
// to get the typing right.
Node* backedge_value = induction_var->phi()->InputAt(1);
Type backedge_type = NodeProperties::GetType(backedge_value);
Type phi_type = NodeProperties::GetType(induction_var->phi());
if (!backedge_type.Is(phi_type)) {
Node* loop = NodeProperties::GetControlInput(induction_var->phi());
Node* backedge_control = loop->InputAt(1);
Node* backedge_effect =
NodeProperties::GetEffectInput(induction_var->effect_phi(), 1);
Node* rename =
graph()->NewNode(common()->TypeGuard(phi_type), backedge_value,
backedge_effect, backedge_control);
induction_var->effect_phi()->ReplaceInput(1, rename);
induction_var->phi()->ReplaceInput(1, rename);
}
}
}
}
#undef TRACE
} // namespace compiler
} // namespace internal
} // namespace v8
|