1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
|
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/memory-lowering.h"
#include "src/codegen/interface-descriptors.h"
#include "src/common/external-pointer.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/linkage.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/node.h"
#include "src/compiler/simplified-operator.h"
#include "src/roots/roots-inl.h"
namespace v8 {
namespace internal {
namespace compiler {
// An allocation group represents a set of allocations that have been folded
// together.
class MemoryLowering::AllocationGroup final : public ZoneObject {
public:
AllocationGroup(Node* node, AllocationType allocation, Zone* zone);
AllocationGroup(Node* node, AllocationType allocation, Node* size,
Zone* zone);
~AllocationGroup() = default;
void Add(Node* object);
bool Contains(Node* object) const;
bool IsYoungGenerationAllocation() const {
return allocation() == AllocationType::kYoung;
}
AllocationType allocation() const { return allocation_; }
Node* size() const { return size_; }
private:
ZoneSet<NodeId> node_ids_;
AllocationType const allocation_;
Node* const size_;
DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationGroup);
};
MemoryLowering::MemoryLowering(JSGraph* jsgraph, Zone* zone,
JSGraphAssembler* graph_assembler,
PoisoningMitigationLevel poisoning_level,
AllocationFolding allocation_folding,
WriteBarrierAssertFailedCallback callback,
const char* function_debug_name)
: isolate_(jsgraph->isolate()),
zone_(zone),
graph_(jsgraph->graph()),
common_(jsgraph->common()),
machine_(jsgraph->machine()),
graph_assembler_(graph_assembler),
allocation_folding_(allocation_folding),
poisoning_level_(poisoning_level),
write_barrier_assert_failed_(callback),
function_debug_name_(function_debug_name) {}
Zone* MemoryLowering::graph_zone() const { return graph()->zone(); }
Reduction MemoryLowering::Reduce(Node* node) {
switch (node->opcode()) {
case IrOpcode::kAllocate:
// Allocate nodes were purged from the graph in effect-control
// linearization.
UNREACHABLE();
case IrOpcode::kAllocateRaw:
return ReduceAllocateRaw(node);
case IrOpcode::kLoadFromObject:
return ReduceLoadFromObject(node);
case IrOpcode::kLoadElement:
return ReduceLoadElement(node);
case IrOpcode::kLoadField:
return ReduceLoadField(node);
case IrOpcode::kStoreToObject:
return ReduceStoreToObject(node);
case IrOpcode::kStoreElement:
return ReduceStoreElement(node);
case IrOpcode::kStoreField:
return ReduceStoreField(node);
case IrOpcode::kStore:
return ReduceStore(node);
default:
return NoChange();
}
}
#define __ gasm()->
Reduction MemoryLowering::ReduceAllocateRaw(
Node* node, AllocationType allocation_type,
AllowLargeObjects allow_large_objects, AllocationState const** state_ptr) {
DCHECK_EQ(IrOpcode::kAllocateRaw, node->opcode());
DCHECK_IMPLIES(allocation_folding_ == AllocationFolding::kDoAllocationFolding,
state_ptr != nullptr);
// Code objects may have a maximum size smaller than kMaxHeapObjectSize due to
// guard pages. If we need to support allocating code here we would need to
// call MemoryChunkLayout::MaxRegularCodeObjectSize() at runtime.
DCHECK_NE(allocation_type, AllocationType::kCode);
Node* value;
Node* size = node->InputAt(0);
Node* effect = node->InputAt(1);
Node* control = node->InputAt(2);
gasm()->InitializeEffectControl(effect, control);
Node* allocate_builtin;
if (allocation_type == AllocationType::kYoung) {
if (allow_large_objects == AllowLargeObjects::kTrue) {
allocate_builtin = __ AllocateInYoungGenerationStubConstant();
} else {
allocate_builtin = __ AllocateRegularInYoungGenerationStubConstant();
}
} else {
if (allow_large_objects == AllowLargeObjects::kTrue) {
allocate_builtin = __ AllocateInOldGenerationStubConstant();
} else {
allocate_builtin = __ AllocateRegularInOldGenerationStubConstant();
}
}
// Determine the top/limit addresses.
Node* top_address = __ ExternalConstant(
allocation_type == AllocationType::kYoung
? ExternalReference::new_space_allocation_top_address(isolate())
: ExternalReference::old_space_allocation_top_address(isolate()));
Node* limit_address = __ ExternalConstant(
allocation_type == AllocationType::kYoung
? ExternalReference::new_space_allocation_limit_address(isolate())
: ExternalReference::old_space_allocation_limit_address(isolate()));
// Check if we can fold this allocation into a previous allocation represented
// by the incoming {state}.
IntPtrMatcher m(size);
if (m.IsInRange(0, kMaxRegularHeapObjectSize) && FLAG_inline_new &&
allocation_folding_ == AllocationFolding::kDoAllocationFolding) {
intptr_t const object_size = m.ResolvedValue();
AllocationState const* state = *state_ptr;
if (state->size() <= kMaxRegularHeapObjectSize - object_size &&
state->group()->allocation() == allocation_type) {
// We can fold this Allocate {node} into the allocation {group}
// represented by the given {state}. Compute the upper bound for
// the new {state}.
intptr_t const state_size = state->size() + object_size;
// Update the reservation check to the actual maximum upper bound.
AllocationGroup* const group = state->group();
if (machine()->Is64()) {
if (OpParameter<int64_t>(group->size()->op()) < state_size) {
NodeProperties::ChangeOp(group->size(),
common()->Int64Constant(state_size));
}
} else {
if (OpParameter<int32_t>(group->size()->op()) < state_size) {
NodeProperties::ChangeOp(
group->size(),
common()->Int32Constant(static_cast<int32_t>(state_size)));
}
}
// Update the allocation top with the new object allocation.
// TODO(bmeurer): Defer writing back top as much as possible.
Node* top = __ IntAdd(state->top(), size);
__ Store(StoreRepresentation(MachineType::PointerRepresentation(),
kNoWriteBarrier),
top_address, __ IntPtrConstant(0), top);
// Compute the effective inner allocated address.
value = __ BitcastWordToTagged(
__ IntAdd(state->top(), __ IntPtrConstant(kHeapObjectTag)));
effect = gasm()->effect();
control = gasm()->control();
// Extend the allocation {group}.
group->Add(value);
*state_ptr =
AllocationState::Open(group, state_size, top, effect, zone());
} else {
auto call_runtime = __ MakeDeferredLabel();
auto done = __ MakeLabel(MachineType::PointerRepresentation());
// Setup a mutable reservation size node; will be patched as we fold
// additional allocations into this new group.
Node* size = __ UniqueIntPtrConstant(object_size);
// Load allocation top and limit.
Node* top =
__ Load(MachineType::Pointer(), top_address, __ IntPtrConstant(0));
Node* limit =
__ Load(MachineType::Pointer(), limit_address, __ IntPtrConstant(0));
// Check if we need to collect garbage before we can start bump pointer
// allocation (always done for folded allocations).
Node* check = __ UintLessThan(__ IntAdd(top, size), limit);
__ GotoIfNot(check, &call_runtime);
__ Goto(&done, top);
__ Bind(&call_runtime);
{
if (!allocate_operator_.is_set()) {
auto descriptor = AllocateDescriptor{};
auto call_descriptor = Linkage::GetStubCallDescriptor(
graph_zone(), descriptor, descriptor.GetStackParameterCount(),
CallDescriptor::kCanUseRoots, Operator::kNoThrow);
allocate_operator_.set(common()->Call(call_descriptor));
}
Node* vfalse = __ BitcastTaggedToWord(
__ Call(allocate_operator_.get(), allocate_builtin, size));
vfalse = __ IntSub(vfalse, __ IntPtrConstant(kHeapObjectTag));
__ Goto(&done, vfalse);
}
__ Bind(&done);
// Compute the new top and write it back.
top = __ IntAdd(done.PhiAt(0), __ IntPtrConstant(object_size));
__ Store(StoreRepresentation(MachineType::PointerRepresentation(),
kNoWriteBarrier),
top_address, __ IntPtrConstant(0), top);
// Compute the initial object address.
value = __ BitcastWordToTagged(
__ IntAdd(done.PhiAt(0), __ IntPtrConstant(kHeapObjectTag)));
effect = gasm()->effect();
control = gasm()->control();
// Start a new allocation group.
AllocationGroup* group =
zone()->New<AllocationGroup>(value, allocation_type, size, zone());
*state_ptr =
AllocationState::Open(group, object_size, top, effect, zone());
}
} else {
auto call_runtime = __ MakeDeferredLabel();
auto done = __ MakeLabel(MachineRepresentation::kTaggedPointer);
// Load allocation top and limit.
Node* top =
__ Load(MachineType::Pointer(), top_address, __ IntPtrConstant(0));
Node* limit =
__ Load(MachineType::Pointer(), limit_address, __ IntPtrConstant(0));
// Compute the new top.
Node* new_top = __ IntAdd(top, size);
// Check if we can do bump pointer allocation here.
Node* check = __ UintLessThan(new_top, limit);
__ GotoIfNot(check, &call_runtime);
if (allow_large_objects == AllowLargeObjects::kTrue) {
__ GotoIfNot(
__ UintLessThan(size, __ IntPtrConstant(kMaxRegularHeapObjectSize)),
&call_runtime);
}
__ Store(StoreRepresentation(MachineType::PointerRepresentation(),
kNoWriteBarrier),
top_address, __ IntPtrConstant(0), new_top);
__ Goto(&done, __ BitcastWordToTagged(
__ IntAdd(top, __ IntPtrConstant(kHeapObjectTag))));
__ Bind(&call_runtime);
if (!allocate_operator_.is_set()) {
auto descriptor = AllocateDescriptor{};
auto call_descriptor = Linkage::GetStubCallDescriptor(
graph_zone(), descriptor, descriptor.GetStackParameterCount(),
CallDescriptor::kCanUseRoots, Operator::kNoThrow);
allocate_operator_.set(common()->Call(call_descriptor));
}
__ Goto(&done, __ Call(allocate_operator_.get(), allocate_builtin, size));
__ Bind(&done);
value = done.PhiAt(0);
effect = gasm()->effect();
control = gasm()->control();
if (state_ptr) {
// Create an unfoldable allocation group.
AllocationGroup* group =
zone()->New<AllocationGroup>(value, allocation_type, zone());
*state_ptr = AllocationState::Closed(group, effect, zone());
}
}
return Replace(value);
}
Reduction MemoryLowering::ReduceLoadFromObject(Node* node) {
DCHECK_EQ(IrOpcode::kLoadFromObject, node->opcode());
ObjectAccess const& access = ObjectAccessOf(node->op());
NodeProperties::ChangeOp(node, machine()->Load(access.machine_type));
return Changed(node);
}
Reduction MemoryLowering::ReduceLoadElement(Node* node) {
DCHECK_EQ(IrOpcode::kLoadElement, node->opcode());
ElementAccess const& access = ElementAccessOf(node->op());
Node* index = node->InputAt(1);
node->ReplaceInput(1, ComputeIndex(access, index));
MachineType type = access.machine_type;
if (NeedsPoisoning(access.load_sensitivity)) {
NodeProperties::ChangeOp(node, machine()->PoisonedLoad(type));
} else {
NodeProperties::ChangeOp(node, machine()->Load(type));
}
return Changed(node);
}
Node* MemoryLowering::DecodeExternalPointer(
Node* node, ExternalPointerTag external_pointer_tag) {
#ifdef V8_HEAP_SANDBOX
DCHECK(V8_HEAP_SANDBOX_BOOL);
DCHECK(node->opcode() == IrOpcode::kLoad ||
node->opcode() == IrOpcode::kPoisonedLoad);
Node* effect = NodeProperties::GetEffectInput(node);
Node* control = NodeProperties::GetControlInput(node);
__ InitializeEffectControl(effect, control);
// Clone the load node and put it here.
// TODO(turbofan): consider adding GraphAssembler::Clone() suitable for
// cloning nodes from arbitrary locaions in effect/control chains.
Node* index = __ AddNode(graph()->CloneNode(node));
// Uncomment this to generate a breakpoint for debugging purposes.
// __ DebugBreak();
// Decode loaded external pointer.
STATIC_ASSERT(kExternalPointerSize == kSystemPointerSize);
Node* external_pointer_table_address = __ ExternalConstant(
ExternalReference::external_pointer_table_address(isolate()));
Node* table = __ Load(MachineType::Pointer(), external_pointer_table_address,
Internals::kExternalPointerTableBufferOffset);
// TODO(v8:10391, saelo): bounds check if table is not caged
Node* offset = __ Int32Mul(index, __ Int32Constant(8));
Node* decoded_ptr =
__ Load(MachineType::Pointer(), table, __ ChangeUint32ToUint64(offset));
if (external_pointer_tag != 0) {
Node* tag = __ IntPtrConstant(external_pointer_tag);
decoded_ptr = __ WordXor(decoded_ptr, tag);
}
return decoded_ptr;
#else
return node;
#endif // V8_HEAP_SANDBOX
}
Reduction MemoryLowering::ReduceLoadField(Node* node) {
DCHECK_EQ(IrOpcode::kLoadField, node->opcode());
FieldAccess const& access = FieldAccessOf(node->op());
Node* offset = __ IntPtrConstant(access.offset - access.tag());
node->InsertInput(graph_zone(), 1, offset);
MachineType type = access.machine_type;
if (V8_HEAP_SANDBOX_BOOL &&
access.type.Is(Type::SandboxedExternalPointer())) {
// External pointer table indices are 32bit numbers
type = MachineType::Uint32();
}
if (NeedsPoisoning(access.load_sensitivity)) {
NodeProperties::ChangeOp(node, machine()->PoisonedLoad(type));
} else {
NodeProperties::ChangeOp(node, machine()->Load(type));
}
if (V8_HEAP_SANDBOX_BOOL &&
access.type.Is(Type::SandboxedExternalPointer())) {
#ifdef V8_HEAP_SANDBOX
ExternalPointerTag tag = access.external_pointer_tag;
#else
ExternalPointerTag tag = kExternalPointerNullTag;
#endif
node = DecodeExternalPointer(node, tag);
return Replace(node);
} else {
DCHECK(!access.type.Is(Type::SandboxedExternalPointer()));
}
return Changed(node);
}
Reduction MemoryLowering::ReduceStoreToObject(Node* node,
AllocationState const* state) {
DCHECK_EQ(IrOpcode::kStoreToObject, node->opcode());
ObjectAccess const& access = ObjectAccessOf(node->op());
Node* object = node->InputAt(0);
Node* value = node->InputAt(2);
WriteBarrierKind write_barrier_kind = ComputeWriteBarrierKind(
node, object, value, state, access.write_barrier_kind);
NodeProperties::ChangeOp(
node, machine()->Store(StoreRepresentation(
access.machine_type.representation(), write_barrier_kind)));
return Changed(node);
}
Reduction MemoryLowering::ReduceStoreElement(Node* node,
AllocationState const* state) {
DCHECK_EQ(IrOpcode::kStoreElement, node->opcode());
ElementAccess const& access = ElementAccessOf(node->op());
Node* object = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
node->ReplaceInput(1, ComputeIndex(access, index));
WriteBarrierKind write_barrier_kind = ComputeWriteBarrierKind(
node, object, value, state, access.write_barrier_kind);
NodeProperties::ChangeOp(
node, machine()->Store(StoreRepresentation(
access.machine_type.representation(), write_barrier_kind)));
return Changed(node);
}
Reduction MemoryLowering::ReduceStoreField(Node* node,
AllocationState const* state) {
DCHECK_EQ(IrOpcode::kStoreField, node->opcode());
FieldAccess const& access = FieldAccessOf(node->op());
// External pointer must never be stored by optimized code.
DCHECK_IMPLIES(V8_HEAP_SANDBOX_BOOL,
!access.type.Is(Type::ExternalPointer()) &&
!access.type.Is(Type::SandboxedExternalPointer()));
Node* object = node->InputAt(0);
Node* value = node->InputAt(1);
WriteBarrierKind write_barrier_kind = ComputeWriteBarrierKind(
node, object, value, state, access.write_barrier_kind);
Node* offset = __ IntPtrConstant(access.offset - access.tag());
node->InsertInput(graph_zone(), 1, offset);
NodeProperties::ChangeOp(
node, machine()->Store(StoreRepresentation(
access.machine_type.representation(), write_barrier_kind)));
return Changed(node);
}
Reduction MemoryLowering::ReduceStore(Node* node,
AllocationState const* state) {
DCHECK_EQ(IrOpcode::kStore, node->opcode());
StoreRepresentation representation = StoreRepresentationOf(node->op());
Node* object = node->InputAt(0);
Node* value = node->InputAt(2);
WriteBarrierKind write_barrier_kind = ComputeWriteBarrierKind(
node, object, value, state, representation.write_barrier_kind());
if (write_barrier_kind != representation.write_barrier_kind()) {
NodeProperties::ChangeOp(
node, machine()->Store(StoreRepresentation(
representation.representation(), write_barrier_kind)));
return Changed(node);
}
return NoChange();
}
Node* MemoryLowering::ComputeIndex(ElementAccess const& access, Node* index) {
int const element_size_shift =
ElementSizeLog2Of(access.machine_type.representation());
if (element_size_shift) {
index = __ WordShl(index, __ IntPtrConstant(element_size_shift));
}
int const fixed_offset = access.header_size - access.tag();
if (fixed_offset) {
index = __ IntAdd(index, __ IntPtrConstant(fixed_offset));
}
return index;
}
#undef __
namespace {
bool ValueNeedsWriteBarrier(Node* value, Isolate* isolate) {
while (true) {
switch (value->opcode()) {
case IrOpcode::kBitcastWordToTaggedSigned:
return false;
case IrOpcode::kHeapConstant: {
RootIndex root_index;
if (isolate->roots_table().IsRootHandle(HeapConstantOf(value->op()),
&root_index) &&
RootsTable::IsImmortalImmovable(root_index)) {
return false;
}
break;
}
default:
break;
}
return true;
}
}
} // namespace
Reduction MemoryLowering::ReduceAllocateRaw(Node* node) {
DCHECK_EQ(IrOpcode::kAllocateRaw, node->opcode());
const AllocateParameters& allocation = AllocateParametersOf(node->op());
return ReduceAllocateRaw(node, allocation.allocation_type(),
allocation.allow_large_objects(), nullptr);
}
WriteBarrierKind MemoryLowering::ComputeWriteBarrierKind(
Node* node, Node* object, Node* value, AllocationState const* state,
WriteBarrierKind write_barrier_kind) {
if (state && state->IsYoungGenerationAllocation() &&
state->group()->Contains(object)) {
write_barrier_kind = kNoWriteBarrier;
}
if (!ValueNeedsWriteBarrier(value, isolate())) {
write_barrier_kind = kNoWriteBarrier;
}
if (write_barrier_kind == WriteBarrierKind::kAssertNoWriteBarrier) {
write_barrier_assert_failed_(node, object, function_debug_name_, zone());
}
return write_barrier_kind;
}
bool MemoryLowering::NeedsPoisoning(LoadSensitivity load_sensitivity) const {
// Safe loads do not need poisoning.
if (load_sensitivity == LoadSensitivity::kSafe) return false;
switch (poisoning_level_) {
case PoisoningMitigationLevel::kDontPoison:
return false;
case PoisoningMitigationLevel::kPoisonAll:
return true;
case PoisoningMitigationLevel::kPoisonCriticalOnly:
return load_sensitivity == LoadSensitivity::kCritical;
}
UNREACHABLE();
}
MemoryLowering::AllocationGroup::AllocationGroup(Node* node,
AllocationType allocation,
Zone* zone)
: node_ids_(zone), allocation_(allocation), size_(nullptr) {
node_ids_.insert(node->id());
}
MemoryLowering::AllocationGroup::AllocationGroup(Node* node,
AllocationType allocation,
Node* size, Zone* zone)
: node_ids_(zone), allocation_(allocation), size_(size) {
node_ids_.insert(node->id());
}
void MemoryLowering::AllocationGroup::Add(Node* node) {
node_ids_.insert(node->id());
}
bool MemoryLowering::AllocationGroup::Contains(Node* node) const {
// Additions should stay within the same allocated object, so it's safe to
// ignore them.
while (node_ids_.find(node->id()) == node_ids_.end()) {
switch (node->opcode()) {
case IrOpcode::kBitcastTaggedToWord:
case IrOpcode::kBitcastWordToTagged:
case IrOpcode::kInt32Add:
case IrOpcode::kInt64Add:
node = NodeProperties::GetValueInput(node, 0);
break;
default:
return false;
}
}
return true;
}
MemoryLowering::AllocationState::AllocationState()
: group_(nullptr),
size_(std::numeric_limits<int>::max()),
top_(nullptr),
effect_(nullptr) {}
MemoryLowering::AllocationState::AllocationState(AllocationGroup* group,
Node* effect)
: group_(group),
size_(std::numeric_limits<int>::max()),
top_(nullptr),
effect_(effect) {}
MemoryLowering::AllocationState::AllocationState(AllocationGroup* group,
intptr_t size, Node* top,
Node* effect)
: group_(group), size_(size), top_(top), effect_(effect) {}
bool MemoryLowering::AllocationState::IsYoungGenerationAllocation() const {
return group() && group()->IsYoungGenerationAllocation();
}
} // namespace compiler
} // namespace internal
} // namespace v8
|