1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
|
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
#define V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
#include "src/assembler.h"
#include "src/compiler/common-operator.h"
#include "src/compiler/graph.h"
#include "src/compiler/linkage.h"
#include "src/compiler/machine-operator.h"
#include "src/compiler/node.h"
#include "src/compiler/operator.h"
#include "src/factory.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
namespace compiler {
class BasicBlock;
class RawMachineLabel;
class Schedule;
// The RawMachineAssembler produces a low-level IR graph. All nodes are wired
// into a graph and also placed into a schedule immediately, hence subsequent
// code generation can happen without the need for scheduling.
//
// In order to create a schedule on-the-fly, the assembler keeps track of basic
// blocks by having one current basic block being populated and by referencing
// other basic blocks through the use of labels.
//
// Also note that the generated graph is only valid together with the generated
// schedule, using one without the other is invalid as the graph is inherently
// non-schedulable due to missing control and effect dependencies.
class V8_EXPORT_PRIVATE RawMachineAssembler {
public:
RawMachineAssembler(
Isolate* isolate, Graph* graph, CallDescriptor* call_descriptor,
MachineRepresentation word = MachineType::PointerRepresentation(),
MachineOperatorBuilder::Flags flags =
MachineOperatorBuilder::Flag::kNoFlags,
MachineOperatorBuilder::AlignmentRequirements alignment_requirements =
MachineOperatorBuilder::AlignmentRequirements::
FullUnalignedAccessSupport());
~RawMachineAssembler() {}
Isolate* isolate() const { return isolate_; }
Graph* graph() const { return graph_; }
Zone* zone() const { return graph()->zone(); }
MachineOperatorBuilder* machine() { return &machine_; }
CommonOperatorBuilder* common() { return &common_; }
CallDescriptor* call_descriptor() const { return call_descriptor_; }
// Finalizes the schedule and exports it to be used for code generation. Note
// that this RawMachineAssembler becomes invalid after export.
Schedule* Export();
// ===========================================================================
// The following utility methods create new nodes with specific operators and
// place them into the current basic block. They don't perform control flow,
// hence will not switch the current basic block.
Node* NullConstant() {
return HeapConstant(isolate()->factory()->null_value());
}
Node* UndefinedConstant() {
return HeapConstant(isolate()->factory()->undefined_value());
}
// Constants.
Node* PointerConstant(void* value) {
return IntPtrConstant(reinterpret_cast<intptr_t>(value));
}
Node* IntPtrConstant(intptr_t value) {
// TODO(dcarney): mark generated code as unserializable if value != 0.
return kPointerSize == 8 ? Int64Constant(value)
: Int32Constant(static_cast<int>(value));
}
Node* RelocatableIntPtrConstant(intptr_t value, RelocInfo::Mode rmode);
Node* Int32Constant(int32_t value) {
return AddNode(common()->Int32Constant(value));
}
Node* StackSlot(MachineRepresentation rep) {
return AddNode(machine()->StackSlot(rep));
}
Node* Int64Constant(int64_t value) {
return AddNode(common()->Int64Constant(value));
}
Node* NumberConstant(double value) {
return AddNode(common()->NumberConstant(value));
}
Node* Float32Constant(float value) {
return AddNode(common()->Float32Constant(value));
}
Node* Float64Constant(double value) {
return AddNode(common()->Float64Constant(value));
}
Node* HeapConstant(Handle<HeapObject> object) {
return AddNode(common()->HeapConstant(object));
}
Node* BooleanConstant(bool value) {
Handle<Object> object = isolate()->factory()->ToBoolean(value);
return HeapConstant(Handle<HeapObject>::cast(object));
}
Node* ExternalConstant(ExternalReference address) {
return AddNode(common()->ExternalConstant(address));
}
Node* RelocatableInt32Constant(int32_t value, RelocInfo::Mode rmode) {
return AddNode(common()->RelocatableInt32Constant(value, rmode));
}
Node* RelocatableInt64Constant(int64_t value, RelocInfo::Mode rmode) {
return AddNode(common()->RelocatableInt64Constant(value, rmode));
}
Node* Projection(int index, Node* a) {
return AddNode(common()->Projection(index), a);
}
// Memory Operations.
Node* Load(MachineType rep, Node* base) {
return Load(rep, base, IntPtrConstant(0));
}
Node* Load(MachineType rep, Node* base, Node* index) {
return AddNode(machine()->Load(rep), base, index);
}
Node* Store(MachineRepresentation rep, Node* base, Node* value,
WriteBarrierKind write_barrier) {
return Store(rep, base, IntPtrConstant(0), value, write_barrier);
}
Node* Store(MachineRepresentation rep, Node* base, Node* index, Node* value,
WriteBarrierKind write_barrier) {
return AddNode(machine()->Store(StoreRepresentation(rep, write_barrier)),
base, index, value);
}
Node* Retain(Node* value) { return AddNode(common()->Retain(), value); }
// Unaligned memory operations
Node* UnalignedLoad(MachineType rep, Node* base) {
return UnalignedLoad(rep, base, IntPtrConstant(0));
}
Node* UnalignedLoad(MachineType rep, Node* base, Node* index) {
if (machine()->UnalignedLoadSupported(rep, 1)) {
return AddNode(machine()->Load(rep), base, index);
} else {
return AddNode(machine()->UnalignedLoad(rep), base, index);
}
}
Node* UnalignedStore(MachineRepresentation rep, Node* base, Node* value) {
return UnalignedStore(rep, base, IntPtrConstant(0), value);
}
Node* UnalignedStore(MachineRepresentation rep, Node* base, Node* index,
Node* value) {
MachineType t = MachineType::TypeForRepresentation(rep);
if (machine()->UnalignedStoreSupported(t, 1)) {
return AddNode(machine()->Store(StoreRepresentation(
rep, WriteBarrierKind::kNoWriteBarrier)),
base, index, value);
} else {
return AddNode(
machine()->UnalignedStore(UnalignedStoreRepresentation(rep)), base,
index, value);
}
}
// Atomic memory operations.
Node* AtomicLoad(MachineType rep, Node* base, Node* index) {
return AddNode(machine()->AtomicLoad(rep), base, index);
}
Node* AtomicStore(MachineRepresentation rep, Node* base, Node* index,
Node* value) {
return AddNode(machine()->AtomicStore(rep), base, index, value);
}
// Arithmetic Operations.
Node* WordAnd(Node* a, Node* b) {
return AddNode(machine()->WordAnd(), a, b);
}
Node* WordOr(Node* a, Node* b) { return AddNode(machine()->WordOr(), a, b); }
Node* WordXor(Node* a, Node* b) {
return AddNode(machine()->WordXor(), a, b);
}
Node* WordShl(Node* a, Node* b) {
return AddNode(machine()->WordShl(), a, b);
}
Node* WordShr(Node* a, Node* b) {
return AddNode(machine()->WordShr(), a, b);
}
Node* WordSar(Node* a, Node* b) {
return AddNode(machine()->WordSar(), a, b);
}
Node* WordRor(Node* a, Node* b) {
return AddNode(machine()->WordRor(), a, b);
}
Node* WordEqual(Node* a, Node* b) {
return AddNode(machine()->WordEqual(), a, b);
}
Node* WordNotEqual(Node* a, Node* b) {
return Word32BinaryNot(WordEqual(a, b));
}
Node* WordNot(Node* a) {
if (machine()->Is32()) {
return Word32Not(a);
} else {
return Word64Not(a);
}
}
Node* Word32And(Node* a, Node* b) {
return AddNode(machine()->Word32And(), a, b);
}
Node* Word32Or(Node* a, Node* b) {
return AddNode(machine()->Word32Or(), a, b);
}
Node* Word32Xor(Node* a, Node* b) {
return AddNode(machine()->Word32Xor(), a, b);
}
Node* Word32Shl(Node* a, Node* b) {
return AddNode(machine()->Word32Shl(), a, b);
}
Node* Word32Shr(Node* a, Node* b) {
return AddNode(machine()->Word32Shr(), a, b);
}
Node* Word32Sar(Node* a, Node* b) {
return AddNode(machine()->Word32Sar(), a, b);
}
Node* Word32Ror(Node* a, Node* b) {
return AddNode(machine()->Word32Ror(), a, b);
}
Node* Word32Clz(Node* a) { return AddNode(machine()->Word32Clz(), a); }
Node* Word32Equal(Node* a, Node* b) {
return AddNode(machine()->Word32Equal(), a, b);
}
Node* Word32NotEqual(Node* a, Node* b) {
return Word32BinaryNot(Word32Equal(a, b));
}
Node* Word32Not(Node* a) { return Word32Xor(a, Int32Constant(-1)); }
Node* Word32BinaryNot(Node* a) { return Word32Equal(a, Int32Constant(0)); }
Node* Word64And(Node* a, Node* b) {
return AddNode(machine()->Word64And(), a, b);
}
Node* Word64Or(Node* a, Node* b) {
return AddNode(machine()->Word64Or(), a, b);
}
Node* Word64Xor(Node* a, Node* b) {
return AddNode(machine()->Word64Xor(), a, b);
}
Node* Word64Shl(Node* a, Node* b) {
return AddNode(machine()->Word64Shl(), a, b);
}
Node* Word64Shr(Node* a, Node* b) {
return AddNode(machine()->Word64Shr(), a, b);
}
Node* Word64Sar(Node* a, Node* b) {
return AddNode(machine()->Word64Sar(), a, b);
}
Node* Word64Ror(Node* a, Node* b) {
return AddNode(machine()->Word64Ror(), a, b);
}
Node* Word64Clz(Node* a) { return AddNode(machine()->Word64Clz(), a); }
Node* Word64Equal(Node* a, Node* b) {
return AddNode(machine()->Word64Equal(), a, b);
}
Node* Word64NotEqual(Node* a, Node* b) {
return Word32BinaryNot(Word64Equal(a, b));
}
Node* Word64Not(Node* a) { return Word64Xor(a, Int64Constant(-1)); }
Node* Int32Add(Node* a, Node* b) {
return AddNode(machine()->Int32Add(), a, b);
}
Node* Int32AddWithOverflow(Node* a, Node* b) {
return AddNode(machine()->Int32AddWithOverflow(), a, b);
}
Node* Int32Sub(Node* a, Node* b) {
return AddNode(machine()->Int32Sub(), a, b);
}
Node* Int32SubWithOverflow(Node* a, Node* b) {
return AddNode(machine()->Int32SubWithOverflow(), a, b);
}
Node* Int32Mul(Node* a, Node* b) {
return AddNode(machine()->Int32Mul(), a, b);
}
Node* Int32MulHigh(Node* a, Node* b) {
return AddNode(machine()->Int32MulHigh(), a, b);
}
Node* Int32MulWithOverflow(Node* a, Node* b) {
return AddNode(machine()->Int32MulWithOverflow(), a, b);
}
Node* Int32Div(Node* a, Node* b) {
return AddNode(machine()->Int32Div(), a, b);
}
Node* Int32Mod(Node* a, Node* b) {
return AddNode(machine()->Int32Mod(), a, b);
}
Node* Int32LessThan(Node* a, Node* b) {
return AddNode(machine()->Int32LessThan(), a, b);
}
Node* Int32LessThanOrEqual(Node* a, Node* b) {
return AddNode(machine()->Int32LessThanOrEqual(), a, b);
}
Node* Uint32Div(Node* a, Node* b) {
return AddNode(machine()->Uint32Div(), a, b);
}
Node* Uint32LessThan(Node* a, Node* b) {
return AddNode(machine()->Uint32LessThan(), a, b);
}
Node* Uint32LessThanOrEqual(Node* a, Node* b) {
return AddNode(machine()->Uint32LessThanOrEqual(), a, b);
}
Node* Uint32Mod(Node* a, Node* b) {
return AddNode(machine()->Uint32Mod(), a, b);
}
Node* Uint32MulHigh(Node* a, Node* b) {
return AddNode(machine()->Uint32MulHigh(), a, b);
}
Node* Int32GreaterThan(Node* a, Node* b) { return Int32LessThan(b, a); }
Node* Int32GreaterThanOrEqual(Node* a, Node* b) {
return Int32LessThanOrEqual(b, a);
}
Node* Uint32GreaterThan(Node* a, Node* b) { return Uint32LessThan(b, a); }
Node* Uint32GreaterThanOrEqual(Node* a, Node* b) {
return Uint32LessThanOrEqual(b, a);
}
Node* Int32Neg(Node* a) { return Int32Sub(Int32Constant(0), a); }
Node* Int64Add(Node* a, Node* b) {
return AddNode(machine()->Int64Add(), a, b);
}
Node* Int64AddWithOverflow(Node* a, Node* b) {
return AddNode(machine()->Int64AddWithOverflow(), a, b);
}
Node* Int64Sub(Node* a, Node* b) {
return AddNode(machine()->Int64Sub(), a, b);
}
Node* Int64SubWithOverflow(Node* a, Node* b) {
return AddNode(machine()->Int64SubWithOverflow(), a, b);
}
Node* Int64Mul(Node* a, Node* b) {
return AddNode(machine()->Int64Mul(), a, b);
}
Node* Int64Div(Node* a, Node* b) {
return AddNode(machine()->Int64Div(), a, b);
}
Node* Int64Mod(Node* a, Node* b) {
return AddNode(machine()->Int64Mod(), a, b);
}
Node* Int64Neg(Node* a) { return Int64Sub(Int64Constant(0), a); }
Node* Int64LessThan(Node* a, Node* b) {
return AddNode(machine()->Int64LessThan(), a, b);
}
Node* Int64LessThanOrEqual(Node* a, Node* b) {
return AddNode(machine()->Int64LessThanOrEqual(), a, b);
}
Node* Uint64LessThan(Node* a, Node* b) {
return AddNode(machine()->Uint64LessThan(), a, b);
}
Node* Uint64LessThanOrEqual(Node* a, Node* b) {
return AddNode(machine()->Uint64LessThanOrEqual(), a, b);
}
Node* Int64GreaterThan(Node* a, Node* b) { return Int64LessThan(b, a); }
Node* Int64GreaterThanOrEqual(Node* a, Node* b) {
return Int64LessThanOrEqual(b, a);
}
Node* Uint64GreaterThan(Node* a, Node* b) { return Uint64LessThan(b, a); }
Node* Uint64GreaterThanOrEqual(Node* a, Node* b) {
return Uint64LessThanOrEqual(b, a);
}
Node* Uint64Div(Node* a, Node* b) {
return AddNode(machine()->Uint64Div(), a, b);
}
Node* Uint64Mod(Node* a, Node* b) {
return AddNode(machine()->Uint64Mod(), a, b);
}
Node* Int32PairAdd(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
return AddNode(machine()->Int32PairAdd(), a_low, a_high, b_low, b_high);
}
Node* Int32PairSub(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
return AddNode(machine()->Int32PairSub(), a_low, a_high, b_low, b_high);
}
Node* Int32PairMul(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
return AddNode(machine()->Int32PairMul(), a_low, a_high, b_low, b_high);
}
Node* Word32PairShl(Node* low_word, Node* high_word, Node* shift) {
return AddNode(machine()->Word32PairShl(), low_word, high_word, shift);
}
Node* Word32PairShr(Node* low_word, Node* high_word, Node* shift) {
return AddNode(machine()->Word32PairShr(), low_word, high_word, shift);
}
Node* Word32PairSar(Node* low_word, Node* high_word, Node* shift) {
return AddNode(machine()->Word32PairSar(), low_word, high_word, shift);
}
#define INTPTR_BINOP(prefix, name) \
Node* IntPtr##name(Node* a, Node* b) { \
return kPointerSize == 8 ? prefix##64##name(a, b) \
: prefix##32##name(a, b); \
}
INTPTR_BINOP(Int, Add);
INTPTR_BINOP(Int, AddWithOverflow);
INTPTR_BINOP(Int, Sub);
INTPTR_BINOP(Int, SubWithOverflow);
INTPTR_BINOP(Int, Mul);
INTPTR_BINOP(Int, Div);
INTPTR_BINOP(Int, LessThan);
INTPTR_BINOP(Int, LessThanOrEqual);
INTPTR_BINOP(Word, Equal);
INTPTR_BINOP(Word, NotEqual);
INTPTR_BINOP(Int, GreaterThanOrEqual);
INTPTR_BINOP(Int, GreaterThan);
#undef INTPTR_BINOP
#define UINTPTR_BINOP(prefix, name) \
Node* UintPtr##name(Node* a, Node* b) { \
return kPointerSize == 8 ? prefix##64##name(a, b) \
: prefix##32##name(a, b); \
}
UINTPTR_BINOP(Uint, LessThan);
UINTPTR_BINOP(Uint, LessThanOrEqual);
UINTPTR_BINOP(Uint, GreaterThanOrEqual);
UINTPTR_BINOP(Uint, GreaterThan);
#undef UINTPTR_BINOP
Node* Float32Add(Node* a, Node* b) {
return AddNode(machine()->Float32Add(), a, b);
}
Node* Float32Sub(Node* a, Node* b) {
return AddNode(machine()->Float32Sub(), a, b);
}
Node* Float32Mul(Node* a, Node* b) {
return AddNode(machine()->Float32Mul(), a, b);
}
Node* Float32Div(Node* a, Node* b) {
return AddNode(machine()->Float32Div(), a, b);
}
Node* Float32Abs(Node* a) { return AddNode(machine()->Float32Abs(), a); }
Node* Float32Neg(Node* a) { return AddNode(machine()->Float32Neg(), a); }
Node* Float32Sqrt(Node* a) { return AddNode(machine()->Float32Sqrt(), a); }
Node* Float32Equal(Node* a, Node* b) {
return AddNode(machine()->Float32Equal(), a, b);
}
Node* Float32NotEqual(Node* a, Node* b) {
return Word32BinaryNot(Float32Equal(a, b));
}
Node* Float32LessThan(Node* a, Node* b) {
return AddNode(machine()->Float32LessThan(), a, b);
}
Node* Float32LessThanOrEqual(Node* a, Node* b) {
return AddNode(machine()->Float32LessThanOrEqual(), a, b);
}
Node* Float32GreaterThan(Node* a, Node* b) { return Float32LessThan(b, a); }
Node* Float32GreaterThanOrEqual(Node* a, Node* b) {
return Float32LessThanOrEqual(b, a);
}
Node* Float32Max(Node* a, Node* b) {
return AddNode(machine()->Float32Max(), a, b);
}
Node* Float32Min(Node* a, Node* b) {
return AddNode(machine()->Float32Min(), a, b);
}
Node* Float64Add(Node* a, Node* b) {
return AddNode(machine()->Float64Add(), a, b);
}
Node* Float64Sub(Node* a, Node* b) {
return AddNode(machine()->Float64Sub(), a, b);
}
Node* Float64Mul(Node* a, Node* b) {
return AddNode(machine()->Float64Mul(), a, b);
}
Node* Float64Div(Node* a, Node* b) {
return AddNode(machine()->Float64Div(), a, b);
}
Node* Float64Mod(Node* a, Node* b) {
return AddNode(machine()->Float64Mod(), a, b);
}
Node* Float64Max(Node* a, Node* b) {
return AddNode(machine()->Float64Max(), a, b);
}
Node* Float64Min(Node* a, Node* b) {
return AddNode(machine()->Float64Min(), a, b);
}
Node* Float64Abs(Node* a) { return AddNode(machine()->Float64Abs(), a); }
Node* Float64Neg(Node* a) { return AddNode(machine()->Float64Neg(), a); }
Node* Float64Acos(Node* a) { return AddNode(machine()->Float64Acos(), a); }
Node* Float64Acosh(Node* a) { return AddNode(machine()->Float64Acosh(), a); }
Node* Float64Asin(Node* a) { return AddNode(machine()->Float64Asin(), a); }
Node* Float64Asinh(Node* a) { return AddNode(machine()->Float64Asinh(), a); }
Node* Float64Atan(Node* a) { return AddNode(machine()->Float64Atan(), a); }
Node* Float64Atanh(Node* a) { return AddNode(machine()->Float64Atanh(), a); }
Node* Float64Atan2(Node* a, Node* b) {
return AddNode(machine()->Float64Atan2(), a, b);
}
Node* Float64Cbrt(Node* a) { return AddNode(machine()->Float64Cbrt(), a); }
Node* Float64Cos(Node* a) { return AddNode(machine()->Float64Cos(), a); }
Node* Float64Cosh(Node* a) { return AddNode(machine()->Float64Cosh(), a); }
Node* Float64Exp(Node* a) { return AddNode(machine()->Float64Exp(), a); }
Node* Float64Expm1(Node* a) { return AddNode(machine()->Float64Expm1(), a); }
Node* Float64Log(Node* a) { return AddNode(machine()->Float64Log(), a); }
Node* Float64Log1p(Node* a) { return AddNode(machine()->Float64Log1p(), a); }
Node* Float64Log10(Node* a) { return AddNode(machine()->Float64Log10(), a); }
Node* Float64Log2(Node* a) { return AddNode(machine()->Float64Log2(), a); }
Node* Float64Pow(Node* a, Node* b) {
return AddNode(machine()->Float64Pow(), a, b);
}
Node* Float64Sin(Node* a) { return AddNode(machine()->Float64Sin(), a); }
Node* Float64Sinh(Node* a) { return AddNode(machine()->Float64Sinh(), a); }
Node* Float64Sqrt(Node* a) { return AddNode(machine()->Float64Sqrt(), a); }
Node* Float64Tan(Node* a) { return AddNode(machine()->Float64Tan(), a); }
Node* Float64Tanh(Node* a) { return AddNode(machine()->Float64Tanh(), a); }
Node* Float64Equal(Node* a, Node* b) {
return AddNode(machine()->Float64Equal(), a, b);
}
Node* Float64NotEqual(Node* a, Node* b) {
return Word32BinaryNot(Float64Equal(a, b));
}
Node* Float64LessThan(Node* a, Node* b) {
return AddNode(machine()->Float64LessThan(), a, b);
}
Node* Float64LessThanOrEqual(Node* a, Node* b) {
return AddNode(machine()->Float64LessThanOrEqual(), a, b);
}
Node* Float64GreaterThan(Node* a, Node* b) { return Float64LessThan(b, a); }
Node* Float64GreaterThanOrEqual(Node* a, Node* b) {
return Float64LessThanOrEqual(b, a);
}
// Conversions.
Node* BitcastTaggedToWord(Node* a) {
return AddNode(machine()->BitcastTaggedToWord(), a);
}
Node* BitcastWordToTagged(Node* a) {
return AddNode(machine()->BitcastWordToTagged(), a);
}
Node* BitcastWordToTaggedSigned(Node* a) {
return AddNode(machine()->BitcastWordToTaggedSigned(), a);
}
Node* TruncateFloat64ToWord32(Node* a) {
return AddNode(machine()->TruncateFloat64ToWord32(), a);
}
Node* ChangeFloat32ToFloat64(Node* a) {
return AddNode(machine()->ChangeFloat32ToFloat64(), a);
}
Node* ChangeInt32ToFloat64(Node* a) {
return AddNode(machine()->ChangeInt32ToFloat64(), a);
}
Node* ChangeUint32ToFloat64(Node* a) {
return AddNode(machine()->ChangeUint32ToFloat64(), a);
}
Node* ChangeFloat64ToInt32(Node* a) {
return AddNode(machine()->ChangeFloat64ToInt32(), a);
}
Node* ChangeFloat64ToUint32(Node* a) {
return AddNode(machine()->ChangeFloat64ToUint32(), a);
}
Node* TruncateFloat64ToUint32(Node* a) {
return AddNode(machine()->TruncateFloat64ToUint32(), a);
}
Node* TruncateFloat32ToInt32(Node* a) {
return AddNode(machine()->TruncateFloat32ToInt32(), a);
}
Node* TruncateFloat32ToUint32(Node* a) {
return AddNode(machine()->TruncateFloat32ToUint32(), a);
}
Node* TryTruncateFloat32ToInt64(Node* a) {
return AddNode(machine()->TryTruncateFloat32ToInt64(), a);
}
Node* TryTruncateFloat64ToInt64(Node* a) {
return AddNode(machine()->TryTruncateFloat64ToInt64(), a);
}
Node* TryTruncateFloat32ToUint64(Node* a) {
return AddNode(machine()->TryTruncateFloat32ToUint64(), a);
}
Node* TryTruncateFloat64ToUint64(Node* a) {
return AddNode(machine()->TryTruncateFloat64ToUint64(), a);
}
Node* ChangeInt32ToInt64(Node* a) {
return AddNode(machine()->ChangeInt32ToInt64(), a);
}
Node* ChangeUint32ToUint64(Node* a) {
return AddNode(machine()->ChangeUint32ToUint64(), a);
}
Node* TruncateFloat64ToFloat32(Node* a) {
return AddNode(machine()->TruncateFloat64ToFloat32(), a);
}
Node* TruncateInt64ToInt32(Node* a) {
return AddNode(machine()->TruncateInt64ToInt32(), a);
}
Node* RoundFloat64ToInt32(Node* a) {
return AddNode(machine()->RoundFloat64ToInt32(), a);
}
Node* RoundInt32ToFloat32(Node* a) {
return AddNode(machine()->RoundInt32ToFloat32(), a);
}
Node* RoundInt64ToFloat32(Node* a) {
return AddNode(machine()->RoundInt64ToFloat32(), a);
}
Node* RoundInt64ToFloat64(Node* a) {
return AddNode(machine()->RoundInt64ToFloat64(), a);
}
Node* RoundUint32ToFloat32(Node* a) {
return AddNode(machine()->RoundUint32ToFloat32(), a);
}
Node* RoundUint64ToFloat32(Node* a) {
return AddNode(machine()->RoundUint64ToFloat32(), a);
}
Node* RoundUint64ToFloat64(Node* a) {
return AddNode(machine()->RoundUint64ToFloat64(), a);
}
Node* BitcastFloat32ToInt32(Node* a) {
return AddNode(machine()->BitcastFloat32ToInt32(), a);
}
Node* BitcastFloat64ToInt64(Node* a) {
return AddNode(machine()->BitcastFloat64ToInt64(), a);
}
Node* BitcastInt32ToFloat32(Node* a) {
return AddNode(machine()->BitcastInt32ToFloat32(), a);
}
Node* BitcastInt64ToFloat64(Node* a) {
return AddNode(machine()->BitcastInt64ToFloat64(), a);
}
Node* Float32RoundDown(Node* a) {
return AddNode(machine()->Float32RoundDown().op(), a);
}
Node* Float64RoundDown(Node* a) {
return AddNode(machine()->Float64RoundDown().op(), a);
}
Node* Float32RoundUp(Node* a) {
return AddNode(machine()->Float32RoundUp().op(), a);
}
Node* Float64RoundUp(Node* a) {
return AddNode(machine()->Float64RoundUp().op(), a);
}
Node* Float32RoundTruncate(Node* a) {
return AddNode(machine()->Float32RoundTruncate().op(), a);
}
Node* Float64RoundTruncate(Node* a) {
return AddNode(machine()->Float64RoundTruncate().op(), a);
}
Node* Float64RoundTiesAway(Node* a) {
return AddNode(machine()->Float64RoundTiesAway().op(), a);
}
Node* Float32RoundTiesEven(Node* a) {
return AddNode(machine()->Float32RoundTiesEven().op(), a);
}
Node* Float64RoundTiesEven(Node* a) {
return AddNode(machine()->Float64RoundTiesEven().op(), a);
}
// Float64 bit operations.
Node* Float64ExtractLowWord32(Node* a) {
return AddNode(machine()->Float64ExtractLowWord32(), a);
}
Node* Float64ExtractHighWord32(Node* a) {
return AddNode(machine()->Float64ExtractHighWord32(), a);
}
Node* Float64InsertLowWord32(Node* a, Node* b) {
return AddNode(machine()->Float64InsertLowWord32(), a, b);
}
Node* Float64InsertHighWord32(Node* a, Node* b) {
return AddNode(machine()->Float64InsertHighWord32(), a, b);
}
Node* Float64SilenceNaN(Node* a) {
return AddNode(machine()->Float64SilenceNaN(), a);
}
// Stack operations.
Node* LoadStackPointer() { return AddNode(machine()->LoadStackPointer()); }
Node* LoadFramePointer() { return AddNode(machine()->LoadFramePointer()); }
Node* LoadParentFramePointer() {
return AddNode(machine()->LoadParentFramePointer());
}
// Parameters.
Node* Parameter(size_t index);
// Pointer utilities.
Node* LoadFromPointer(void* address, MachineType rep, int32_t offset = 0) {
return Load(rep, PointerConstant(address), Int32Constant(offset));
}
Node* StoreToPointer(void* address, MachineRepresentation rep, Node* node) {
return Store(rep, PointerConstant(address), node, kNoWriteBarrier);
}
Node* UnalignedLoadFromPointer(void* address, MachineType rep,
int32_t offset = 0) {
return UnalignedLoad(rep, PointerConstant(address), Int32Constant(offset));
}
Node* UnalignedStoreToPointer(void* address, MachineRepresentation rep,
Node* node) {
return UnalignedStore(rep, PointerConstant(address), node);
}
Node* StringConstant(const char* string) {
return HeapConstant(isolate()->factory()->InternalizeUtf8String(string));
}
// Call a given call descriptor and the given arguments.
Node* CallN(CallDescriptor* desc, Node* function, Node** args);
// Call a given call descriptor and the given arguments and frame-state.
Node* CallNWithFrameState(CallDescriptor* desc, Node* function, Node** args,
Node* frame_state);
// Call to a runtime function with zero arguments.
Node* CallRuntime0(Runtime::FunctionId function, Node* context);
// Call to a runtime function with one arguments.
Node* CallRuntime1(Runtime::FunctionId function, Node* arg0, Node* context);
// Call to a runtime function with two arguments.
Node* CallRuntime2(Runtime::FunctionId function, Node* arg1, Node* arg2,
Node* context);
// Call to a runtime function with three arguments.
Node* CallRuntime3(Runtime::FunctionId function, Node* arg1, Node* arg2,
Node* arg3, Node* context);
// Call to a runtime function with four arguments.
Node* CallRuntime4(Runtime::FunctionId function, Node* arg1, Node* arg2,
Node* arg3, Node* arg4, Node* context);
// Call to a runtime function with five arguments.
Node* CallRuntime5(Runtime::FunctionId function, Node* arg1, Node* arg2,
Node* arg3, Node* arg4, Node* arg5, Node* context);
// Call to a C function with zero arguments.
Node* CallCFunction0(MachineType return_type, Node* function);
// Call to a C function with one parameter.
Node* CallCFunction1(MachineType return_type, MachineType arg0_type,
Node* function, Node* arg0);
// Call to a C function with two arguments.
Node* CallCFunction2(MachineType return_type, MachineType arg0_type,
MachineType arg1_type, Node* function, Node* arg0,
Node* arg1);
// Call to a C function with eight arguments.
Node* CallCFunction8(MachineType return_type, MachineType arg0_type,
MachineType arg1_type, MachineType arg2_type,
MachineType arg3_type, MachineType arg4_type,
MachineType arg5_type, MachineType arg6_type,
MachineType arg7_type, Node* function, Node* arg0,
Node* arg1, Node* arg2, Node* arg3, Node* arg4,
Node* arg5, Node* arg6, Node* arg7);
// Tail call the given call descriptor and the given arguments.
Node* TailCallN(CallDescriptor* call_descriptor, Node* function, Node** args);
// Tail call to a runtime function with zero arguments.
Node* TailCallRuntime0(Runtime::FunctionId function, Node* context);
// Tail call to a runtime function with one argument.
Node* TailCallRuntime1(Runtime::FunctionId function, Node* arg0,
Node* context);
// Tail call to a runtime function with two arguments.
Node* TailCallRuntime2(Runtime::FunctionId function, Node* arg1, Node* arg2,
Node* context);
// Tail call to a runtime function with three arguments.
Node* TailCallRuntime3(Runtime::FunctionId function, Node* arg1, Node* arg2,
Node* arg3, Node* context);
// Tail call to a runtime function with four arguments.
Node* TailCallRuntime4(Runtime::FunctionId function, Node* arg1, Node* arg2,
Node* arg3, Node* arg4, Node* context);
// Tail call to a runtime function with five arguments.
Node* TailCallRuntime5(Runtime::FunctionId function, Node* arg1, Node* arg2,
Node* arg3, Node* arg4, Node* arg5, Node* context);
// Tail call to a runtime function with six arguments.
Node* TailCallRuntime6(Runtime::FunctionId function, Node* arg1, Node* arg2,
Node* arg3, Node* arg4, Node* arg5, Node* arg6,
Node* context);
// ===========================================================================
// The following utility methods deal with control flow, hence might switch
// the current basic block or create new basic blocks for labels.
// Control flow.
void Goto(RawMachineLabel* label);
void Branch(Node* condition, RawMachineLabel* true_val,
RawMachineLabel* false_val);
void Switch(Node* index, RawMachineLabel* default_label,
const int32_t* case_values, RawMachineLabel** case_labels,
size_t case_count);
void Return(Node* value);
void Return(Node* v1, Node* v2);
void Return(Node* v1, Node* v2, Node* v3);
void PopAndReturn(Node* pop, Node* value);
void PopAndReturn(Node* pop, Node* v1, Node* v2);
void PopAndReturn(Node* pop, Node* v1, Node* v2, Node* v3);
void Bind(RawMachineLabel* label);
void Deoptimize(Node* state);
void DebugBreak();
void Comment(const char* msg);
// Add success / exception successor blocks and ends the current block ending
// in a potentially throwing call node.
void Continuations(Node* call, RawMachineLabel* if_success,
RawMachineLabel* if_exception);
// Variables.
Node* Phi(MachineRepresentation rep, Node* n1, Node* n2) {
return AddNode(common()->Phi(rep, 2), n1, n2, graph()->start());
}
Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3) {
return AddNode(common()->Phi(rep, 3), n1, n2, n3, graph()->start());
}
Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3, Node* n4) {
return AddNode(common()->Phi(rep, 4), n1, n2, n3, n4, graph()->start());
}
Node* Phi(MachineRepresentation rep, int input_count, Node* const* inputs);
void AppendPhiInput(Node* phi, Node* new_input);
// ===========================================================================
// The following generic node creation methods can be used for operators that
// are not covered by the above utility methods. There should rarely be a need
// to do that outside of testing though.
Node* AddNode(const Operator* op, int input_count, Node* const* inputs);
Node* AddNode(const Operator* op) {
return AddNode(op, 0, static_cast<Node* const*>(nullptr));
}
template <class... TArgs>
Node* AddNode(const Operator* op, Node* n1, TArgs... args) {
Node* buffer[] = {n1, args...};
return AddNode(op, sizeof...(args) + 1, buffer);
}
private:
Node* MakeNode(const Operator* op, int input_count, Node* const* inputs);
BasicBlock* Use(RawMachineLabel* label);
BasicBlock* EnsureBlock(RawMachineLabel* label);
BasicBlock* CurrentBlock();
Schedule* schedule() { return schedule_; }
size_t parameter_count() const { return call_descriptor_->ParameterCount(); }
Isolate* isolate_;
Graph* graph_;
Schedule* schedule_;
MachineOperatorBuilder machine_;
CommonOperatorBuilder common_;
CallDescriptor* call_descriptor_;
NodeVector parameters_;
BasicBlock* current_block_;
DISALLOW_COPY_AND_ASSIGN(RawMachineAssembler);
};
class V8_EXPORT_PRIVATE RawMachineLabel final {
public:
enum Type { kDeferred, kNonDeferred };
explicit RawMachineLabel(Type type = kNonDeferred)
: deferred_(type == kDeferred) {}
~RawMachineLabel();
private:
BasicBlock* block_ = nullptr;
bool used_ = false;
bool bound_ = false;
bool deferred_;
friend class RawMachineAssembler;
DISALLOW_COPY_AND_ASSIGN(RawMachineLabel);
};
} // namespace compiler
} // namespace internal
} // namespace v8
#endif // V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
|