summaryrefslogtreecommitdiff
path: root/deps/v8/src/compiler/store-store-elimination.cc
blob: f6ef3d52429500a79653c43b567558e405a86e98 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/compiler/store-store-elimination.h"

#include "src/codegen/tick-counter.h"
#include "src/compiler/all-nodes.h"
#include "src/compiler/js-graph.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/persistent-map.h"
#include "src/compiler/simplified-operator.h"
#include "src/zone/zone-containers.h"

namespace v8 {
namespace internal {
namespace compiler {

#define TRACE(fmt, ...)                                         \
  do {                                                          \
    if (v8_flags.trace_store_elimination) {                     \
      PrintF("RedundantStoreFinder: " fmt "\n", ##__VA_ARGS__); \
    }                                                           \
  } while (false)

// CHECK_EXTRA is like CHECK, but has two or more arguments: a boolean
// expression, a format string, and any number of extra arguments. The boolean
// expression will be evaluated at runtime. If it evaluates to false, then an
// error message will be shown containing the condition, as well as the extra
// info formatted like with printf.
#define CHECK_EXTRA(condition, fmt, ...)                                      \
  do {                                                                        \
    if (V8_UNLIKELY(!(condition))) {                                          \
      FATAL("Check failed: %s. Extra info: " fmt, #condition, ##__VA_ARGS__); \
    }                                                                         \
  } while (false)

#ifdef DEBUG
#define DCHECK_EXTRA(condition, fmt, ...) \
  CHECK_EXTRA(condition, fmt, ##__VA_ARGS__)
#else
#define DCHECK_EXTRA(condition, fmt, ...) ((void)0)
#endif

namespace {

using StoreOffset = uint32_t;

// Instances of UnobservablesSet are immutable. They represent either a set of
// UnobservableStores, or the "unvisited empty set".
//
// We apply some sharing to save memory. The class UnobservablesSet is only a
// pointer wide, and a copy does not use any heap (or temp_zone) memory. Most
// changes to an UnobservablesSet might allocate in the temp_zone.
//
// The size of an instance should be the size of a pointer, plus additional
// space in the zone in the case of non-unvisited UnobservablesSets. Copying
// an UnobservablesSet allocates no memory.
class UnobservablesSet final {
 public:
  using InnerSetT = PersistentMap<NodeId, bool>;
  using SetT = PersistentMap<StoreOffset, InnerSetT>;

  // Creates a new UnobservablesSet, with the null set.
  static UnobservablesSet Unvisited() { return UnobservablesSet(); }

  // Create a new empty UnobservablesSet. This allocates in the zone, and
  // can probably be optimized to use a global singleton.
  static UnobservablesSet VisitedEmpty(Zone* zone);
  UnobservablesSet(const UnobservablesSet& other) V8_NOEXCEPT = default;
  UnobservablesSet& operator=(const UnobservablesSet& other)
      V8_NOEXCEPT = default;

  // Computes the intersection of two UnobservablesSets. If one of the sets is
  // empty, will return empty.
  UnobservablesSet Intersect(const UnobservablesSet& other,
                             const UnobservablesSet& empty, Zone* zone) const;

  // Returns a set that it is the current one, plus the observation obs passed
  // as parameter. If said obs it's already unobservable, we don't have to
  // create a new one.
  UnobservablesSet Add(NodeId node, StoreOffset offset, Zone* zone) const;

  // Returns a set that it is the current one, except for all of the
  // observations with offset off. This is done by creating a new set and
  // copying all observations with different offsets.
  // We are removing all nodes with offset off since different nodes may
  // alias one another, and currently we don't have the means to know if
  // two nodes are definitely the same value.
  UnobservablesSet RemoveSameOffset(StoreOffset off, Zone* zone) const;

  // Returns a new set where all observations are marked as being observable
  // by GC.
  UnobservablesSet MarkGCObservable(Zone* zone) const;

  bool IsUnvisited() const {
    DCHECK_EQ(unobservable_ == nullptr, gc_observable_ == nullptr);
    return unobservable_ == nullptr;
  }
  bool IsEmpty() const {
    if (IsUnvisited()) return true;
    return unobservable_->begin() == unobservable_->end() &&
           gc_observable_->begin() == gc_observable_->end();
  }

  // We need to guarantee that objects are fully initialized and fields are in
  // sync with their map when a GC is triggered (potentially by any allocation).
  // Therefore initializing or transitioning stores are observable if they are
  // observable by GC. All other stores are not relevant for correct GC
  // behaviour and can be eliminated even if they are observable by GC.
  bool IsUnobservable(NodeId node, StoreOffset offset,
                      bool maybe_initializing_or_transitioning) const {
    if (unobservable_ != nullptr && unobservable_->Get(offset).Get(node)) {
      return true;
    }
    if (!maybe_initializing_or_transitioning && IsGCObservable(node, offset)) {
      return true;
    }
    return false;
  }

  bool IsGCObservable(NodeId node, StoreOffset offset) const {
    return gc_observable_ != nullptr && gc_observable_->Get(offset).Get(node);
  }

  bool operator==(const UnobservablesSet& other) const {
    if (IsUnvisited() || other.IsUnvisited()) {
      return IsEmpty() && other.IsEmpty();
    } else {
      // Both pointers guaranteed not to be nullptrs.
      return *unobservable_ == *(other.unobservable_) &&
             *gc_observable_ == *other.gc_observable_;
    }
  }

  bool operator!=(const UnobservablesSet& other) const {
    return !(*this == other);
  }

 private:
  UnobservablesSet() = default;
  explicit UnobservablesSet(const SetT* unobservable, const SetT* gc_observable)
      : unobservable_(unobservable), gc_observable_(gc_observable) {}

  static SetT* NewSet(Zone* zone) {
    return zone->New<UnobservablesSet::SetT>(zone, InnerSetT(zone));
  }

  const SetT* unobservable_ = nullptr;
  const SetT* gc_observable_ = nullptr;
};

class RedundantStoreFinder final {
 public:
  // Note that we Initialize unobservable_ with js_graph->graph->NodeCount()
  // amount of empty sets.
  RedundantStoreFinder(JSGraph* js_graph, TickCounter* tick_counter,
                       Zone* temp_zone)
      : jsgraph_(js_graph),
        tick_counter_(tick_counter),
        temp_zone_(temp_zone),
        revisit_(temp_zone),
        in_revisit_(js_graph->graph()->NodeCount(), temp_zone),
        unobservable_(js_graph->graph()->NodeCount(),
                      UnobservablesSet::Unvisited(), temp_zone),
        to_remove_(temp_zone),
        unobservables_visited_empty_(
            UnobservablesSet::VisitedEmpty(temp_zone)) {}

  // Crawls from the end of the graph to the beginning, with the objective of
  // finding redundant stores.
  void Find();

  // This method is used for const correctness to go through the final list of
  // redundant stores that are replaced on the graph.
  const ZoneSet<Node*>& to_remove_const() { return to_remove_; }

 private:
  // Assumption: All effectful nodes are reachable from End via a sequence of
  // control, then a sequence of effect edges.
  // Visit goes through the control chain, visiting effectful nodes that it
  // encounters.
  void Visit(Node* node);

  // Marks effect inputs for visiting, if we are able to update this path of
  // the graph.
  void VisitEffectfulNode(Node* node);

  // Compute the intersection of the UnobservablesSets of all effect uses and
  // return it.
  // The result UnobservablesSet will never be null.
  UnobservablesSet RecomputeUseIntersection(Node* node);

  // Recompute unobservables-set for a node. Will also mark superfluous nodes
  // as to be removed.
  UnobservablesSet RecomputeSet(Node* node, const UnobservablesSet& uses);

  // Returns true if node's opcode cannot observe StoreFields.
  static bool CannotObserveStoreField(Node* node);

  void MarkForRevisit(Node* node);
  bool HasBeenVisited(Node* node);

  // To safely cast an offset from a FieldAccess, which has a potentially
  // wider range (namely int).
  StoreOffset ToOffset(const FieldAccess& access) {
    DCHECK_GE(access.offset, 0);
    return static_cast<StoreOffset>(access.offset);
  }

  JSGraph* jsgraph() const { return jsgraph_; }
  Isolate* isolate() { return jsgraph()->isolate(); }
  Zone* temp_zone() const { return temp_zone_; }
  UnobservablesSet& unobservable_for_id(NodeId id) {
    DCHECK_LT(id, unobservable_.size());
    return unobservable_[id];
  }
  ZoneSet<Node*>& to_remove() { return to_remove_; }

  JSGraph* const jsgraph_;
  TickCounter* const tick_counter_;
  Zone* const temp_zone_;

  ZoneStack<Node*> revisit_;
  ZoneVector<bool> in_revisit_;

  // Maps node IDs to UnobservableNodeSets.
  ZoneVector<UnobservablesSet> unobservable_;
  ZoneSet<Node*> to_remove_;
  const UnobservablesSet unobservables_visited_empty_;
};

void RedundantStoreFinder::Find() {
  Visit(jsgraph()->graph()->end());

  while (!revisit_.empty()) {
    tick_counter_->TickAndMaybeEnterSafepoint();
    Node* next = revisit_.top();
    revisit_.pop();
    DCHECK_LT(next->id(), in_revisit_.size());
    in_revisit_[next->id()] = false;
    Visit(next);
  }

#ifdef DEBUG
  // Check that we visited all the StoreFields
  AllNodes all(temp_zone(), jsgraph()->graph());
  for (Node* node : all.reachable) {
    if (node->op()->opcode() == IrOpcode::kStoreField) {
      DCHECK_EXTRA(HasBeenVisited(node), "#%d:%s", node->id(),
                   node->op()->mnemonic());
    }
  }
#endif
}

void RedundantStoreFinder::MarkForRevisit(Node* node) {
  DCHECK_LT(node->id(), in_revisit_.size());
  if (!in_revisit_[node->id()]) {
    revisit_.push(node);
    in_revisit_[node->id()] = true;
  }
}

bool RedundantStoreFinder::HasBeenVisited(Node* node) {
  return !unobservable_for_id(node->id()).IsUnvisited();
}

UnobservablesSet RedundantStoreFinder::RecomputeSet(
    Node* node, const UnobservablesSet& uses) {
  switch (node->op()->opcode()) {
    case IrOpcode::kStoreField: {
      Node* stored_to = node->InputAt(0);
      const FieldAccess& access = FieldAccessOf(node->op());
      StoreOffset offset = ToOffset(access);

      const bool is_not_observable =
          uses.IsUnobservable(stored_to->id(), offset,
                              access.maybe_initializing_or_transitioning_store);

      if (is_not_observable) {
        TRACE("  #%d is StoreField[+%d,%s](#%d), unobservable", node->id(),
              offset, MachineReprToString(access.machine_type.representation()),
              stored_to->id());
        to_remove().insert(node);
        return uses;
      } else {
        const bool is_gc_observable =
            access.maybe_initializing_or_transitioning_store &&
            uses.IsGCObservable(stored_to->id(), offset);
        // A GC observable store could have been unobservable in a previous
        // visit. This is possible if the node that previously shadowed the
        // initializing store is now unobservable, due to additional stores
        // added to the unobservables set. Example:
        //            StoreA --> StoreB (init)
        //               ^
        //               |
        // PathX --> Allocate <-- StoreC <-- PathY
        // When traversing PathX, StoreA will shadow StoreB and we will
        // eliminate StoreB. When traversing PathY, StoreA will be shadowed by
        // StoreC and we will eliminate StoreA, but StoreB is now observable by
        // GC and should not be eliminated.
        if (is_gc_observable) {
          to_remove().erase(node);
        }
        TRACE(
            "  #%d is StoreField[+%d,%s](#%d), observable%s, recording in set",
            node->id(), offset,
            MachineReprToString(access.machine_type.representation()),
            stored_to->id(), is_gc_observable ? " by GC" : "");
        return uses.Add(stored_to->id(), offset, temp_zone());
      }
    }
    case IrOpcode::kLoadField: {
      Node* loaded_from = node->InputAt(0);
      const FieldAccess& access = FieldAccessOf(node->op());
      StoreOffset offset = ToOffset(access);

      TRACE(
          "  #%d is LoadField[+%d,%s](#%d), removing all offsets [+%d] from "
          "set",
          node->id(), offset,
          MachineReprToString(access.machine_type.representation()),
          loaded_from->id(), offset);

      return uses.RemoveSameOffset(offset, temp_zone());
    }
    case IrOpcode::kAllocate:
    case IrOpcode::kAllocateRaw: {
      // Allocations can trigger a GC, therefore stores observable by allocation
      // can not be eliminated, if they are initializing or tranisitioning
      // stores.
      TRACE(
          "  #%d is Allocate or AllocateRaw, marking recorded offsets as "
          "observable by GC",
          node->id());
      return uses.MarkGCObservable(temp_zone());
    }
    default:
      if (CannotObserveStoreField(node)) {
        TRACE("  #%d:%s can observe nothing, set stays unchanged", node->id(),
              node->op()->mnemonic());
        return uses;
      } else {
        TRACE("  #%d:%s might observe anything, recording empty set",
              node->id(), node->op()->mnemonic());
        return unobservables_visited_empty_;
      }
  }
  UNREACHABLE();
}

bool RedundantStoreFinder::CannotObserveStoreField(Node* node) {
  IrOpcode::Value opcode = node->opcode();
  constexpr uint8_t cannot_observe = Operator::kNoRead | Operator::kNoWrite |
                                     Operator::kNoThrow | Operator::kNoDeopt;
  return ((node->op()->properties() & cannot_observe) == cannot_observe) ||
         opcode == IrOpcode::kLoadElement || opcode == IrOpcode::kLoad ||
         opcode == IrOpcode::kLoadImmutable || opcode == IrOpcode::kStore ||
         opcode == IrOpcode::kStoreElement ||
         opcode == IrOpcode::kBitcastWordToTagged ||
         opcode == IrOpcode::kBitcastTaggedToWord;
}

void RedundantStoreFinder::Visit(Node* node) {
  if (!HasBeenVisited(node)) {
    for (int i = 0; i < node->op()->ControlInputCount(); i++) {
      Node* control_input = NodeProperties::GetControlInput(node, i);
      if (!HasBeenVisited(control_input)) {
        MarkForRevisit(control_input);
      }
    }
  }

  bool is_effectful = node->op()->EffectInputCount() >= 1;
  if (is_effectful) {
    // mark all effect inputs for revisiting (if they might have stale state).
    VisitEffectfulNode(node);
    DCHECK(HasBeenVisited(node));
  } else if (!HasBeenVisited(node)) {
    // Mark as visited.
    unobservable_for_id(node->id()) = unobservables_visited_empty_;
  }
}

void RedundantStoreFinder::VisitEffectfulNode(Node* node) {
  if (HasBeenVisited(node)) {
    TRACE("- Revisiting: #%d:%s", node->id(), node->op()->mnemonic());
  }
  UnobservablesSet after_set = RecomputeUseIntersection(node);
  UnobservablesSet before_set = RecomputeSet(node, after_set);
  DCHECK(!before_set.IsUnvisited());

  UnobservablesSet stores_for_node = unobservable_for_id(node->id());
  bool cur_set_changed =
      stores_for_node.IsUnvisited() || stores_for_node != before_set;
  if (!cur_set_changed) {
    // We will not be able to update the part of this chain above any more.
    // Exit.
    TRACE("+ No change: stabilized. Not visiting effect inputs.");
  } else {
    unobservable_for_id(node->id()) = before_set;

    // Mark effect inputs for visiting.
    for (int i = 0; i < node->op()->EffectInputCount(); i++) {
      Node* input = NodeProperties::GetEffectInput(node, i);
      TRACE("    marking #%d:%s for revisit", input->id(),
            input->op()->mnemonic());
      MarkForRevisit(input);
    }
  }
}

UnobservablesSet RedundantStoreFinder::RecomputeUseIntersection(Node* node) {
  // There were no effect uses. Break early.
  if (node->op()->EffectOutputCount() == 0) {
    IrOpcode::Value opcode = node->opcode();
    // List of opcodes that may end this effect chain. The opcodes are not
    // important to the soundness of this optimization; this serves as a
    // general check. Add opcodes to this list as it suits you.
    //
    // Everything is observable after these opcodes; return the empty set.
    DCHECK_EXTRA(
        opcode == IrOpcode::kReturn || opcode == IrOpcode::kTerminate ||
            opcode == IrOpcode::kDeoptimize || opcode == IrOpcode::kThrow ||
            opcode == IrOpcode::kTailCall,
        "for #%d:%s", node->id(), node->op()->mnemonic());
    USE(opcode);

    return unobservables_visited_empty_;
  }

  // {first} == true indicates that we haven't looked at any elements yet.
  // {first} == false indicates that cur_set is the intersection of at least one
  // thing.
  bool first = true;
  UnobservablesSet cur_set = UnobservablesSet::Unvisited();  // irrelevant
  for (Edge edge : node->use_edges()) {
    if (!NodeProperties::IsEffectEdge(edge)) {
      continue;
    }

    // Intersect with the new use node.
    Node* use = edge.from();
    UnobservablesSet new_set = unobservable_for_id(use->id());
    if (first) {
      first = false;
      cur_set = new_set;
      if (cur_set.IsUnvisited()) {
        cur_set = unobservables_visited_empty_;
      }
    } else {
      cur_set =
          cur_set.Intersect(new_set, unobservables_visited_empty_, temp_zone());
    }

    // Break fast for the empty set since the intersection will always be empty.
    if (cur_set.IsEmpty()) {
      break;
    }
  }

  DCHECK(!cur_set.IsUnvisited());
  return cur_set;
}

UnobservablesSet UnobservablesSet::VisitedEmpty(Zone* zone) {
  return UnobservablesSet(NewSet(zone), NewSet(zone));
}

UnobservablesSet UnobservablesSet::Intersect(const UnobservablesSet& other,
                                             const UnobservablesSet& empty,
                                             Zone* zone) const {
  if (IsEmpty() || other.IsEmpty()) return empty;

  UnobservablesSet::SetT* new_unobservable = NewSet(zone);
  UnobservablesSet::SetT* new_gc_observable = NewSet(zone);

  for (auto [offset, inner_unobservable1, inner_unobservable2] :
       unobservable_->Zip(*other.unobservable_)) {
    for (auto [node, value1, value2] :
         inner_unobservable1.Zip(inner_unobservable2)) {
      if (value1 && value2) {
        new_unobservable->Modify(offset, [node = node](InnerSetT* inner) {
          inner->Set(node, true);
        });
      }
    }
  }

  for (auto [offset, inner_gc_observable1, inner_gc_observable2] :
       gc_observable_->Zip(*other.gc_observable_)) {
    for (auto [node, value, other_value] :
         inner_gc_observable1.Zip(inner_gc_observable2)) {
      if ((value || unobservable_->Get(offset).Get(node)) &&
          (other_value || other.unobservable_->Get(offset).Get(node))) {
        new_gc_observable->Modify(offset, [node = node](InnerSetT* inner) {
          inner->Set(node, true);
        });
      }
    }
  }

  return UnobservablesSet(new_unobservable, new_gc_observable);
}

UnobservablesSet UnobservablesSet::Add(NodeId node, StoreOffset offset,
                                       Zone* zone) const {
  if (unobservable_->Get(offset).Get(node)) return *this;

  UnobservablesSet::SetT* new_unobservable = zone->New<SetT>(*unobservable_);
  new_unobservable->Modify(
      offset, [node](auto inner_set) { inner_set->Set(node, true); });

  return UnobservablesSet(new_unobservable, gc_observable_);
}

UnobservablesSet UnobservablesSet::RemoveSameOffset(StoreOffset offset,
                                                    Zone* zone) const {
  UnobservablesSet::SetT* new_unobservable = zone->New<SetT>(*unobservable_);
  new_unobservable->Set(offset, InnerSetT(zone));

  UnobservablesSet::SetT* new_gc_observable = zone->New<SetT>(*gc_observable_);
  new_gc_observable->Set(offset, InnerSetT(zone));

  return UnobservablesSet(new_unobservable, new_gc_observable);
}

UnobservablesSet UnobservablesSet::MarkGCObservable(Zone* zone) const {
  UnobservablesSet::SetT* new_gc_observable = zone->New<SetT>(*gc_observable_);

  for (auto [offset, inner_unobservable] : *unobservable_) {
    new_gc_observable->Modify(offset, [inner_unobservable = inner_unobservable](
                                          InnerSetT* inner_gc_observable) {
      for (auto [node, value] : inner_unobservable) {
        DCHECK_EQ(value, true);
        inner_gc_observable->Set(node, true);
      }
    });
  }

  return UnobservablesSet(NewSet(zone), new_gc_observable);
}

}  // namespace

// static
void StoreStoreElimination::Run(JSGraph* js_graph, TickCounter* tick_counter,
                                Zone* temp_zone) {
  // Find superfluous nodes
  RedundantStoreFinder finder(js_graph, tick_counter, temp_zone);
  finder.Find();

  // Remove superfluous nodes
  for (Node* node : finder.to_remove_const()) {
    if (v8_flags.trace_store_elimination) {
      PrintF("StoreStoreElimination::Run: Eliminating node #%d:%s\n",
             node->id(), node->op()->mnemonic());
    }
    Node* previous_effect = NodeProperties::GetEffectInput(node);
    NodeProperties::ReplaceUses(node, nullptr, previous_effect, nullptr,
                                nullptr);
    node->Kill();
  }
}

#undef TRACE
#undef CHECK_EXTRA
#undef DCHECK_EXTRA

}  // namespace compiler
}  // namespace internal
}  // namespace v8