1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/crankshaft/hydrogen-escape-analysis.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
bool HEscapeAnalysisPhase::HasNoEscapingUses(HValue* value, int size) {
for (HUseIterator it(value->uses()); !it.Done(); it.Advance()) {
HValue* use = it.value();
if (use->HasEscapingOperandAt(it.index())) {
if (FLAG_trace_escape_analysis) {
PrintF("#%d (%s) escapes through #%d (%s) @%d\n", value->id(),
value->Mnemonic(), use->id(), use->Mnemonic(), it.index());
}
return false;
}
if (use->HasOutOfBoundsAccess(size)) {
if (FLAG_trace_escape_analysis) {
PrintF("#%d (%s) out of bounds at #%d (%s) @%d\n", value->id(),
value->Mnemonic(), use->id(), use->Mnemonic(), it.index());
}
return false;
}
int redefined_index = use->RedefinedOperandIndex();
if (redefined_index == it.index() && !HasNoEscapingUses(use, size)) {
if (FLAG_trace_escape_analysis) {
PrintF("#%d (%s) escapes redefinition #%d (%s) @%d\n", value->id(),
value->Mnemonic(), use->id(), use->Mnemonic(), it.index());
}
return false;
}
}
return true;
}
void HEscapeAnalysisPhase::CollectCapturedValues() {
int block_count = graph()->blocks()->length();
for (int i = 0; i < block_count; ++i) {
HBasicBlock* block = graph()->blocks()->at(i);
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
HInstruction* instr = it.Current();
if (!instr->IsAllocate()) continue;
HAllocate* allocate = HAllocate::cast(instr);
if (!allocate->size()->IsInteger32Constant()) continue;
int size_in_bytes = allocate->size()->GetInteger32Constant();
if (HasNoEscapingUses(instr, size_in_bytes)) {
if (FLAG_trace_escape_analysis) {
PrintF("#%d (%s) is being captured\n", instr->id(),
instr->Mnemonic());
}
captured_.Add(instr, zone());
}
}
}
}
HCapturedObject* HEscapeAnalysisPhase::NewState(HInstruction* previous) {
Zone* zone = graph()->zone();
HCapturedObject* state =
new(zone) HCapturedObject(number_of_values_, number_of_objects_, zone);
state->InsertAfter(previous);
return state;
}
// Create a new state for replacing HAllocate instructions.
HCapturedObject* HEscapeAnalysisPhase::NewStateForAllocation(
HInstruction* previous) {
HConstant* undefined = graph()->GetConstantUndefined();
HCapturedObject* state = NewState(previous);
for (int index = 0; index < number_of_values_; index++) {
state->SetOperandAt(index, undefined);
}
return state;
}
// Create a new state full of phis for loop header entries.
HCapturedObject* HEscapeAnalysisPhase::NewStateForLoopHeader(
HInstruction* previous,
HCapturedObject* old_state) {
HBasicBlock* block = previous->block();
HCapturedObject* state = NewState(previous);
for (int index = 0; index < number_of_values_; index++) {
HValue* operand = old_state->OperandAt(index);
HPhi* phi = NewPhiAndInsert(block, operand, index);
state->SetOperandAt(index, phi);
}
return state;
}
// Create a new state by copying an existing one.
HCapturedObject* HEscapeAnalysisPhase::NewStateCopy(
HInstruction* previous,
HCapturedObject* old_state) {
HCapturedObject* state = NewState(previous);
for (int index = 0; index < number_of_values_; index++) {
HValue* operand = old_state->OperandAt(index);
state->SetOperandAt(index, operand);
}
return state;
}
// Insert a newly created phi into the given block and fill all incoming
// edges with the given value.
HPhi* HEscapeAnalysisPhase::NewPhiAndInsert(HBasicBlock* block,
HValue* incoming_value,
int index) {
Zone* zone = graph()->zone();
HPhi* phi = new(zone) HPhi(HPhi::kInvalidMergedIndex, zone);
for (int i = 0; i < block->predecessors()->length(); i++) {
phi->AddInput(incoming_value);
}
block->AddPhi(phi);
return phi;
}
// Insert a newly created value check as a replacement for map checks.
HValue* HEscapeAnalysisPhase::NewMapCheckAndInsert(HCapturedObject* state,
HCheckMaps* mapcheck) {
Zone* zone = graph()->zone();
HValue* value = state->map_value();
// TODO(mstarzinger): This will narrow a map check against a set of maps
// down to the first element in the set. Revisit and fix this.
HCheckValue* check = HCheckValue::New(graph()->isolate(), zone, NULL, value,
mapcheck->maps()->at(0), false);
check->InsertBefore(mapcheck);
return check;
}
// Replace a field load with a given value, forcing Smi representation if
// necessary.
HValue* HEscapeAnalysisPhase::NewLoadReplacement(
HLoadNamedField* load, HValue* load_value) {
HValue* replacement = load_value;
Representation representation = load->representation();
if (representation.IsSmiOrInteger32() || representation.IsDouble()) {
Zone* zone = graph()->zone();
HInstruction* new_instr = HForceRepresentation::New(
graph()->isolate(), zone, NULL, load_value, representation);
new_instr->InsertAfter(load);
replacement = new_instr;
}
return replacement;
}
// Performs a forward data-flow analysis of all loads and stores on the
// given captured allocation. This uses a reverse post-order iteration
// over affected basic blocks. All non-escaping instructions are handled
// and replaced during the analysis.
void HEscapeAnalysisPhase::AnalyzeDataFlow(HInstruction* allocate) {
HBasicBlock* allocate_block = allocate->block();
block_states_.AddBlock(NULL, graph()->blocks()->length(), zone());
// Iterate all blocks starting with the allocation block, since the
// allocation cannot dominate blocks that come before.
int start = allocate_block->block_id();
for (int i = start; i < graph()->blocks()->length(); i++) {
HBasicBlock* block = graph()->blocks()->at(i);
HCapturedObject* state = StateAt(block);
// Skip blocks that are not dominated by the captured allocation.
if (!allocate_block->Dominates(block) && allocate_block != block) continue;
if (FLAG_trace_escape_analysis) {
PrintF("Analyzing data-flow in B%d\n", block->block_id());
}
// Go through all instructions of the current block.
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
HInstruction* instr = it.Current();
switch (instr->opcode()) {
case HValue::kAllocate: {
if (instr != allocate) continue;
state = NewStateForAllocation(allocate);
break;
}
case HValue::kLoadNamedField: {
HLoadNamedField* load = HLoadNamedField::cast(instr);
int index = load->access().offset() / kPointerSize;
if (load->object() != allocate) continue;
DCHECK(load->access().IsInobject());
HValue* replacement =
NewLoadReplacement(load, state->OperandAt(index));
load->DeleteAndReplaceWith(replacement);
if (FLAG_trace_escape_analysis) {
PrintF("Replacing load #%d with #%d (%s)\n", load->id(),
replacement->id(), replacement->Mnemonic());
}
break;
}
case HValue::kStoreNamedField: {
HStoreNamedField* store = HStoreNamedField::cast(instr);
int index = store->access().offset() / kPointerSize;
if (store->object() != allocate) continue;
DCHECK(store->access().IsInobject());
state = NewStateCopy(store->previous(), state);
state->SetOperandAt(index, store->value());
if (store->has_transition()) {
state->SetOperandAt(0, store->transition());
}
if (store->HasObservableSideEffects()) {
state->ReuseSideEffectsFromStore(store);
}
store->DeleteAndReplaceWith(store->ActualValue());
if (FLAG_trace_escape_analysis) {
PrintF("Replacing store #%d%s\n", instr->id(),
store->has_transition() ? " (with transition)" : "");
}
break;
}
case HValue::kArgumentsObject:
case HValue::kCapturedObject:
case HValue::kSimulate: {
for (int i = 0; i < instr->OperandCount(); i++) {
if (instr->OperandAt(i) != allocate) continue;
instr->SetOperandAt(i, state);
}
break;
}
case HValue::kCheckHeapObject: {
HCheckHeapObject* check = HCheckHeapObject::cast(instr);
if (check->value() != allocate) continue;
check->DeleteAndReplaceWith(check->ActualValue());
break;
}
case HValue::kCheckMaps: {
HCheckMaps* mapcheck = HCheckMaps::cast(instr);
if (mapcheck->value() != allocate) continue;
NewMapCheckAndInsert(state, mapcheck);
mapcheck->DeleteAndReplaceWith(mapcheck->ActualValue());
break;
}
default:
// Nothing to see here, move along ...
break;
}
}
// Propagate the block state forward to all successor blocks.
for (int i = 0; i < block->end()->SuccessorCount(); i++) {
HBasicBlock* succ = block->end()->SuccessorAt(i);
if (!allocate_block->Dominates(succ)) continue;
if (succ->predecessors()->length() == 1) {
// Case 1: This is the only predecessor, just reuse state.
SetStateAt(succ, state);
} else if (StateAt(succ) == NULL && succ->IsLoopHeader()) {
// Case 2: This is a state that enters a loop header, be
// pessimistic about loop headers, add phis for all values.
SetStateAt(succ, NewStateForLoopHeader(succ->first(), state));
} else if (StateAt(succ) == NULL) {
// Case 3: This is the first state propagated forward to the
// successor, leave a copy of the current state.
SetStateAt(succ, NewStateCopy(succ->first(), state));
} else {
// Case 4: This is a state that needs merging with previously
// propagated states, potentially introducing new phis lazily or
// adding values to existing phis.
HCapturedObject* succ_state = StateAt(succ);
for (int index = 0; index < number_of_values_; index++) {
HValue* operand = state->OperandAt(index);
HValue* succ_operand = succ_state->OperandAt(index);
if (succ_operand->IsPhi() && succ_operand->block() == succ) {
// Phi already exists, add operand.
HPhi* phi = HPhi::cast(succ_operand);
phi->SetOperandAt(succ->PredecessorIndexOf(block), operand);
} else if (succ_operand != operand) {
// Phi does not exist, introduce one.
HPhi* phi = NewPhiAndInsert(succ, succ_operand, index);
phi->SetOperandAt(succ->PredecessorIndexOf(block), operand);
succ_state->SetOperandAt(index, phi);
}
}
}
}
}
// All uses have been handled.
DCHECK(allocate->HasNoUses());
allocate->DeleteAndReplaceWith(NULL);
}
void HEscapeAnalysisPhase::PerformScalarReplacement() {
for (int i = 0; i < captured_.length(); i++) {
HAllocate* allocate = HAllocate::cast(captured_.at(i));
// Compute number of scalar values and start with clean slate.
int size_in_bytes = allocate->size()->GetInteger32Constant();
number_of_values_ = size_in_bytes / kPointerSize;
number_of_objects_++;
block_states_.Rewind(0);
// Perform actual analysis step.
AnalyzeDataFlow(allocate);
cumulative_values_ += number_of_values_;
DCHECK(allocate->HasNoUses());
DCHECK(!allocate->IsLinked());
}
}
void HEscapeAnalysisPhase::Run() {
// TODO(mstarzinger): We disable escape analysis with OSR for now, because
// spill slots might be uninitialized. Needs investigation.
if (graph()->has_osr()) return;
int max_fixpoint_iteration_count = FLAG_escape_analysis_iterations;
for (int i = 0; i < max_fixpoint_iteration_count; i++) {
CollectCapturedValues();
if (captured_.is_empty()) break;
PerformScalarReplacement();
captured_.Rewind(0);
}
}
} // namespace internal
} // namespace v8
|