1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/crankshaft/hydrogen-range-analysis.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
class Pending {
public:
Pending(HBasicBlock* block, int last_changed_range)
: block_(block), last_changed_range_(last_changed_range) {}
HBasicBlock* block() const { return block_; }
int last_changed_range() const { return last_changed_range_; }
private:
HBasicBlock* block_;
int last_changed_range_;
};
void HRangeAnalysisPhase::TraceRange(const char* msg, ...) {
if (FLAG_trace_range) {
va_list arguments;
va_start(arguments, msg);
base::OS::VPrint(msg, arguments);
va_end(arguments);
}
}
void HRangeAnalysisPhase::Run() {
HBasicBlock* block(graph()->entry_block());
ZoneList<Pending> stack(graph()->blocks()->length(), zone());
while (block != NULL) {
TraceRange("Analyzing block B%d\n", block->block_id());
// Infer range based on control flow.
if (block->predecessors()->length() == 1) {
HBasicBlock* pred = block->predecessors()->first();
if (pred->end()->IsCompareNumericAndBranch()) {
InferControlFlowRange(HCompareNumericAndBranch::cast(pred->end()),
block);
}
}
// Process phi instructions.
for (int i = 0; i < block->phis()->length(); ++i) {
HPhi* phi = block->phis()->at(i);
InferRange(phi);
}
// Go through all instructions of the current block.
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
HValue* value = it.Current();
InferRange(value);
// Compute the bailout-on-minus-zero flag.
if (value->IsChange()) {
HChange* instr = HChange::cast(value);
// Propagate flags for negative zero checks upwards from conversions
// int32-to-tagged and int32-to-double.
Representation from = instr->value()->representation();
DCHECK(from.Equals(instr->from()));
if (from.IsSmiOrInteger32()) {
DCHECK(instr->to().IsTagged() ||
instr->to().IsDouble() ||
instr->to().IsSmiOrInteger32());
PropagateMinusZeroChecks(instr->value());
}
}
}
// Continue analysis in all dominated blocks.
const ZoneList<HBasicBlock*>* dominated_blocks(block->dominated_blocks());
if (!dominated_blocks->is_empty()) {
// Continue with first dominated block, and push the
// remaining blocks on the stack (in reverse order).
int last_changed_range = changed_ranges_.length();
for (int i = dominated_blocks->length() - 1; i > 0; --i) {
stack.Add(Pending(dominated_blocks->at(i), last_changed_range), zone());
}
block = dominated_blocks->at(0);
} else if (!stack.is_empty()) {
// Pop next pending block from stack.
Pending pending = stack.RemoveLast();
RollBackTo(pending.last_changed_range());
block = pending.block();
} else {
// All blocks done.
block = NULL;
}
}
// The ranges are not valid anymore due to SSI vs. SSA!
PoisonRanges();
}
void HRangeAnalysisPhase::PoisonRanges() {
#ifdef DEBUG
for (int i = 0; i < graph()->blocks()->length(); ++i) {
HBasicBlock* block = graph()->blocks()->at(i);
for (HInstructionIterator it(block); !it.Done(); it.Advance()) {
HInstruction* instr = it.Current();
if (instr->HasRange()) instr->PoisonRange();
}
}
#endif
}
void HRangeAnalysisPhase::InferControlFlowRange(HCompareNumericAndBranch* test,
HBasicBlock* dest) {
DCHECK((test->FirstSuccessor() == dest) == (test->SecondSuccessor() != dest));
if (test->representation().IsSmiOrInteger32()) {
Token::Value op = test->token();
if (test->SecondSuccessor() == dest) {
op = Token::NegateCompareOp(op);
}
Token::Value inverted_op = Token::ReverseCompareOp(op);
UpdateControlFlowRange(op, test->left(), test->right());
UpdateControlFlowRange(inverted_op, test->right(), test->left());
}
}
// We know that value [op] other. Use this information to update the range on
// value.
void HRangeAnalysisPhase::UpdateControlFlowRange(Token::Value op,
HValue* value,
HValue* other) {
Range temp_range;
Range* range = other->range() != NULL ? other->range() : &temp_range;
Range* new_range = NULL;
TraceRange("Control flow range infer %d %s %d\n",
value->id(),
Token::Name(op),
other->id());
if (op == Token::EQ || op == Token::EQ_STRICT) {
// The same range has to apply for value.
new_range = range->Copy(graph()->zone());
} else if (op == Token::LT || op == Token::LTE) {
new_range = range->CopyClearLower(graph()->zone());
if (op == Token::LT) {
new_range->AddConstant(-1);
}
} else if (op == Token::GT || op == Token::GTE) {
new_range = range->CopyClearUpper(graph()->zone());
if (op == Token::GT) {
new_range->AddConstant(1);
}
}
if (new_range != NULL && !new_range->IsMostGeneric()) {
AddRange(value, new_range);
}
}
void HRangeAnalysisPhase::InferRange(HValue* value) {
DCHECK(!value->HasRange());
if (!value->representation().IsNone()) {
value->ComputeInitialRange(graph()->zone());
Range* range = value->range();
TraceRange("Initial inferred range of %d (%s) set to [%d,%d]\n",
value->id(),
value->Mnemonic(),
range->lower(),
range->upper());
}
}
void HRangeAnalysisPhase::RollBackTo(int index) {
DCHECK(index <= changed_ranges_.length());
for (int i = index; i < changed_ranges_.length(); ++i) {
changed_ranges_[i]->RemoveLastAddedRange();
}
changed_ranges_.Rewind(index);
}
void HRangeAnalysisPhase::AddRange(HValue* value, Range* range) {
Range* original_range = value->range();
value->AddNewRange(range, graph()->zone());
changed_ranges_.Add(value, zone());
Range* new_range = value->range();
TraceRange("Updated range of %d set to [%d,%d]\n",
value->id(),
new_range->lower(),
new_range->upper());
if (original_range != NULL) {
TraceRange("Original range was [%d,%d]\n",
original_range->lower(),
original_range->upper());
}
TraceRange("New information was [%d,%d]\n",
range->lower(),
range->upper());
}
void HRangeAnalysisPhase::PropagateMinusZeroChecks(HValue* value) {
DCHECK(worklist_.is_empty());
DCHECK(in_worklist_.IsEmpty());
AddToWorklist(value);
while (!worklist_.is_empty()) {
value = worklist_.RemoveLast();
if (value->IsPhi()) {
// For phis, we must propagate the check to all of its inputs.
HPhi* phi = HPhi::cast(value);
for (int i = 0; i < phi->OperandCount(); ++i) {
AddToWorklist(phi->OperandAt(i));
}
} else if (value->IsUnaryMathOperation()) {
HUnaryMathOperation* instr = HUnaryMathOperation::cast(value);
if (instr->representation().IsSmiOrInteger32() &&
!instr->value()->representation().Equals(instr->representation())) {
if (instr->value()->range() == NULL ||
instr->value()->range()->CanBeMinusZero()) {
instr->SetFlag(HValue::kBailoutOnMinusZero);
}
}
if (instr->RequiredInputRepresentation(0).IsSmiOrInteger32() &&
instr->representation().Equals(
instr->RequiredInputRepresentation(0))) {
AddToWorklist(instr->value());
}
} else if (value->IsChange()) {
HChange* instr = HChange::cast(value);
if (!instr->from().IsSmiOrInteger32() &&
!instr->CanTruncateToInt32() &&
(instr->value()->range() == NULL ||
instr->value()->range()->CanBeMinusZero())) {
instr->SetFlag(HValue::kBailoutOnMinusZero);
}
} else if (value->IsForceRepresentation()) {
HForceRepresentation* instr = HForceRepresentation::cast(value);
AddToWorklist(instr->value());
} else if (value->IsMod()) {
HMod* instr = HMod::cast(value);
if (instr->range() == NULL || instr->range()->CanBeMinusZero()) {
instr->SetFlag(HValue::kBailoutOnMinusZero);
AddToWorklist(instr->left());
}
} else if (value->IsDiv() || value->IsMul()) {
HBinaryOperation* instr = HBinaryOperation::cast(value);
if (instr->range() == NULL || instr->range()->CanBeMinusZero()) {
instr->SetFlag(HValue::kBailoutOnMinusZero);
}
AddToWorklist(instr->right());
AddToWorklist(instr->left());
} else if (value->IsMathFloorOfDiv()) {
HMathFloorOfDiv* instr = HMathFloorOfDiv::cast(value);
instr->SetFlag(HValue::kBailoutOnMinusZero);
} else if (value->IsAdd() || value->IsSub()) {
HBinaryOperation* instr = HBinaryOperation::cast(value);
if (instr->range() == NULL || instr->range()->CanBeMinusZero()) {
// Propagate to the left argument. If the left argument cannot be -0,
// then the result of the add/sub operation cannot be either.
AddToWorklist(instr->left());
}
} else if (value->IsMathMinMax()) {
HMathMinMax* instr = HMathMinMax::cast(value);
AddToWorklist(instr->right());
AddToWorklist(instr->left());
}
}
in_worklist_.Clear();
DCHECK(in_worklist_.IsEmpty());
DCHECK(worklist_.is_empty());
}
} // namespace internal
} // namespace v8
|