1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
// Copyright 2018 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include "include/v8.h"
#include "src/common/globals.h"
#include "src/execution/frame-constants.h"
#include "src/execution/pointer-authentication.h"
namespace v8 {
namespace {
const i::byte* CalculateEnd(const void* start, size_t length_in_bytes) {
// Given that the length of the memory range is in bytes and it is not
// necessarily aligned, we need to do the pointer arithmetic in byte* here.
const i::byte* start_as_byte = reinterpret_cast<const i::byte*>(start);
return start_as_byte + length_in_bytes;
}
bool PCIsInCodeRange(const v8::MemoryRange& code_range, void* pc) {
return pc >= code_range.start &&
pc < CalculateEnd(code_range.start, code_range.length_in_bytes);
}
// This relies on the fact that the code pages are ordered, and that they don't
// overlap.
bool PCIsInCodePages(size_t code_pages_length, const MemoryRange* code_pages,
void* pc) {
DCHECK(std::is_sorted(code_pages, code_pages + code_pages_length,
[](const MemoryRange& a, const MemoryRange& b) {
return a.start < b.start;
}));
MemoryRange fake_range{pc, 1};
auto it =
std::upper_bound(code_pages, code_pages + code_pages_length, fake_range,
[](const MemoryRange& a, const MemoryRange& b) {
return a.start < b.start;
});
DCHECK_IMPLIES(it != code_pages + code_pages_length, pc < it->start);
if (it == code_pages) return false;
--it;
return it->start <= pc && pc < CalculateEnd(it->start, it->length_in_bytes);
}
bool IsInJSEntryRange(const UnwindState& unwind_state, void* pc) {
return PCIsInCodeRange(unwind_state.js_entry_stub.code, pc) ||
PCIsInCodeRange(unwind_state.js_construct_entry_stub.code, pc) ||
PCIsInCodeRange(unwind_state.js_run_microtasks_entry_stub.code, pc);
}
bool IsInUnsafeJSEntryRange(const UnwindState& unwind_state, void* pc) {
return IsInJSEntryRange(unwind_state, pc);
// TODO(petermarshall): We can be more precise by checking whether we are
// in JSEntry but after frame setup and before frame teardown, in which case
// we are safe to unwind the stack. For now, we bail out if the PC is anywhere
// within JSEntry.
}
bool IsInJSEntryRange(const JSEntryStubs& entry_stubs, void* pc) {
return PCIsInCodeRange(entry_stubs.js_entry_stub.code, pc) ||
PCIsInCodeRange(entry_stubs.js_construct_entry_stub.code, pc) ||
PCIsInCodeRange(entry_stubs.js_run_microtasks_entry_stub.code, pc);
}
bool IsInUnsafeJSEntryRange(const JSEntryStubs& entry_stubs, void* pc) {
return IsInJSEntryRange(entry_stubs, pc);
// TODO(petermarshall): We can be more precise by checking whether we are
// in JSEntry but after frame setup and before frame teardown, in which case
// we are safe to unwind the stack. For now, we bail out if the PC is anywhere
// within JSEntry.
}
i::Address Load(i::Address address) {
return *reinterpret_cast<i::Address*>(address);
}
void* GetReturnAddressFromFP(void* fp, void* pc,
const v8::UnwindState& unwind_state) {
int caller_pc_offset = i::CommonFrameConstants::kCallerPCOffset;
#ifdef V8_TARGET_ARCH_ARM64
if (IsInJSEntryRange(unwind_state, pc)) {
caller_pc_offset = i::EntryFrameConstants::kDirectCallerPCOffset;
}
#endif
i::Address ret_addr =
Load(reinterpret_cast<i::Address>(fp) + caller_pc_offset);
return reinterpret_cast<void*>(i::PointerAuthentication::StripPAC(ret_addr));
}
void* GetReturnAddressFromFP(void* fp, void* pc,
const JSEntryStubs& entry_stubs) {
int caller_pc_offset = i::CommonFrameConstants::kCallerPCOffset;
#ifdef V8_TARGET_ARCH_ARM64
if (IsInJSEntryRange(entry_stubs, pc)) {
caller_pc_offset = i::EntryFrameConstants::kDirectCallerPCOffset;
}
#endif
i::Address ret_addr =
Load(reinterpret_cast<i::Address>(fp) + caller_pc_offset);
return reinterpret_cast<void*>(i::PointerAuthentication::StripPAC(ret_addr));
}
void* GetCallerFPFromFP(void* fp, void* pc,
const v8::UnwindState& unwind_state) {
int caller_fp_offset = i::CommonFrameConstants::kCallerFPOffset;
#ifdef V8_TARGET_ARCH_ARM64
if (IsInJSEntryRange(unwind_state, pc)) {
caller_fp_offset = i::EntryFrameConstants::kDirectCallerFPOffset;
}
#endif
return reinterpret_cast<void*>(
Load(reinterpret_cast<i::Address>(fp) + caller_fp_offset));
}
void* GetCallerFPFromFP(void* fp, void* pc, const JSEntryStubs& entry_stubs) {
int caller_fp_offset = i::CommonFrameConstants::kCallerFPOffset;
#ifdef V8_TARGET_ARCH_ARM64
if (IsInJSEntryRange(entry_stubs, pc)) {
caller_fp_offset = i::EntryFrameConstants::kDirectCallerFPOffset;
}
#endif
return reinterpret_cast<void*>(
Load(reinterpret_cast<i::Address>(fp) + caller_fp_offset));
}
void* GetCallerSPFromFP(void* fp, void* pc,
const v8::UnwindState& unwind_state) {
int caller_sp_offset = i::CommonFrameConstants::kCallerSPOffset;
#ifdef V8_TARGET_ARCH_ARM64
if (IsInJSEntryRange(unwind_state, pc)) {
caller_sp_offset = i::EntryFrameConstants::kDirectCallerSPOffset;
}
#endif
return reinterpret_cast<void*>(reinterpret_cast<i::Address>(fp) +
caller_sp_offset);
}
void* GetCallerSPFromFP(void* fp, void* pc, const JSEntryStubs& entry_stubs) {
int caller_sp_offset = i::CommonFrameConstants::kCallerSPOffset;
#ifdef V8_TARGET_ARCH_ARM64
if (IsInJSEntryRange(entry_stubs, pc)) {
caller_sp_offset = i::EntryFrameConstants::kDirectCallerSPOffset;
}
#endif
return reinterpret_cast<void*>(reinterpret_cast<i::Address>(fp) +
caller_sp_offset);
}
bool AddressIsInStack(const void* address, const void* stack_base,
const void* stack_top) {
return address <= stack_base && address >= stack_top;
}
} // namespace
bool Unwinder::TryUnwindV8Frames(const UnwindState& unwind_state,
RegisterState* register_state,
const void* stack_base) {
const void* stack_top = register_state->sp;
void* pc = register_state->pc;
if (PCIsInV8(unwind_state, pc) && !IsInUnsafeJSEntryRange(unwind_state, pc)) {
void* current_fp = register_state->fp;
if (!AddressIsInStack(current_fp, stack_base, stack_top)) return false;
// Peek at the return address that the caller pushed. If it's in V8, then we
// assume the caller frame is a JS frame and continue to unwind.
void* next_pc = GetReturnAddressFromFP(current_fp, pc, unwind_state);
while (PCIsInV8(unwind_state, next_pc)) {
current_fp = GetCallerFPFromFP(current_fp, pc, unwind_state);
if (!AddressIsInStack(current_fp, stack_base, stack_top)) return false;
pc = next_pc;
next_pc = GetReturnAddressFromFP(current_fp, pc, unwind_state);
}
void* final_sp = GetCallerSPFromFP(current_fp, pc, unwind_state);
if (!AddressIsInStack(final_sp, stack_base, stack_top)) return false;
register_state->sp = final_sp;
// We don't check that the final FP value is within the stack bounds because
// this is just the rbp value that JSEntryStub pushed. On platforms like
// Win64 this is not used as a dedicated FP register, and could contain
// anything.
void* final_fp = GetCallerFPFromFP(current_fp, pc, unwind_state);
register_state->fp = final_fp;
register_state->pc = next_pc;
// Link register no longer valid after unwinding.
register_state->lr = nullptr;
return true;
}
return false;
}
bool Unwinder::TryUnwindV8Frames(const JSEntryStubs& entry_stubs,
size_t code_pages_length,
const MemoryRange* code_pages,
RegisterState* register_state,
const void* stack_base) {
const void* stack_top = register_state->sp;
void* pc = register_state->pc;
if (PCIsInV8(code_pages_length, code_pages, pc) &&
!IsInUnsafeJSEntryRange(entry_stubs, pc)) {
void* current_fp = register_state->fp;
if (!AddressIsInStack(current_fp, stack_base, stack_top)) return false;
// Peek at the return address that the caller pushed. If it's in V8, then we
// assume the caller frame is a JS frame and continue to unwind.
void* next_pc = GetReturnAddressFromFP(current_fp, pc, entry_stubs);
while (PCIsInV8(code_pages_length, code_pages, next_pc)) {
current_fp = GetCallerFPFromFP(current_fp, pc, entry_stubs);
if (!AddressIsInStack(current_fp, stack_base, stack_top)) return false;
pc = next_pc;
next_pc = GetReturnAddressFromFP(current_fp, pc, entry_stubs);
}
void* final_sp = GetCallerSPFromFP(current_fp, pc, entry_stubs);
if (!AddressIsInStack(final_sp, stack_base, stack_top)) return false;
register_state->sp = final_sp;
// We don't check that the final FP value is within the stack bounds because
// this is just the rbp value that JSEntryStub pushed. On platforms like
// Win64 this is not used as a dedicated FP register, and could contain
// anything.
void* final_fp = GetCallerFPFromFP(current_fp, pc, entry_stubs);
register_state->fp = final_fp;
register_state->pc = next_pc;
// Link register no longer valid after unwinding.
register_state->lr = nullptr;
return true;
}
return false;
}
bool Unwinder::PCIsInV8(const UnwindState& unwind_state, void* pc) {
return pc && (PCIsInCodeRange(unwind_state.code_range, pc) ||
PCIsInCodeRange(unwind_state.embedded_code_range, pc));
}
bool Unwinder::PCIsInV8(size_t code_pages_length, const MemoryRange* code_pages,
void* pc) {
return pc && PCIsInCodePages(code_pages_length, code_pages, pc);
}
} // namespace v8
|