summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/code-range.cc
blob: ae240d0f1c1188edd2ba1a770bd26aa59a41b075 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/heap/code-range.h"

#include "src/base/bits.h"
#include "src/base/lazy-instance.h"
#include "src/codegen/constants-arch.h"
#include "src/common/globals.h"
#include "src/flags/flags.h"
#include "src/heap/heap-inl.h"
#include "src/utils/allocation.h"

namespace v8 {
namespace internal {

namespace {

// Mutex for creating process_wide_code_range_.
base::LazyMutex process_wide_code_range_creation_mutex_ =
    LAZY_MUTEX_INITIALIZER;

// Weak pointer holding the process-wide CodeRange, if one has been created. All
// Heaps hold a std::shared_ptr to this, so this is destroyed when no Heaps
// remain.
base::LazyInstance<std::weak_ptr<CodeRange>>::type process_wide_code_range_ =
    LAZY_INSTANCE_INITIALIZER;

DEFINE_LAZY_LEAKY_OBJECT_GETTER(CodeRangeAddressHint, GetCodeRangeAddressHint)

void FunctionInStaticBinaryForAddressHint() {}
}  // anonymous namespace

Address CodeRangeAddressHint::GetAddressHint(size_t code_range_size,
                                             size_t alignment) {
  base::MutexGuard guard(&mutex_);

  // Try to allocate code range in the preferred region where we can use
  // short instructions for calling/jumping to embedded builtins.
  base::AddressRegion preferred_region = Isolate::GetShortBuiltinsCallRegion();

  Address result = 0;
  auto it = recently_freed_.find(code_range_size);
  // No recently freed region has been found, try to provide a hint for placing
  // a code region.
  if (it == recently_freed_.end() || it->second.empty()) {
    if (V8_ENABLE_NEAR_CODE_RANGE_BOOL && !preferred_region.is_empty()) {
      auto memory_ranges = base::OS::GetFreeMemoryRangesWithin(
          preferred_region.begin(), preferred_region.end(), code_range_size,
          alignment);
      if (!memory_ranges.empty()) {
        result = memory_ranges.front().start;
        CHECK(IsAligned(result, alignment));
        return result;
      }
      // The empty memory_ranges means that GetFreeMemoryRangesWithin() API
      // is not supported, so use the lowest address from the preferred region
      // as a hint because it'll be at least as good as the fallback hint but
      // with a higher chances to point to the free address space range.
      return RoundUp(preferred_region.begin(), alignment);
    }
    return RoundUp(FUNCTION_ADDR(&FunctionInStaticBinaryForAddressHint),
                   alignment);
  }

  // Try to reuse near code range first.
  if (V8_ENABLE_NEAR_CODE_RANGE_BOOL && !preferred_region.is_empty()) {
    auto freed_regions_for_size = it->second;
    for (auto it_freed = freed_regions_for_size.rbegin();
         it_freed != freed_regions_for_size.rend(); ++it_freed) {
      Address code_range_start = *it_freed;
      if (preferred_region.contains(code_range_start, code_range_size)) {
        CHECK(IsAligned(code_range_start, alignment));
        freed_regions_for_size.erase((it_freed + 1).base());
        return code_range_start;
      }
    }
  }

  result = it->second.back();
  CHECK(IsAligned(result, alignment));
  it->second.pop_back();
  return result;
}

void CodeRangeAddressHint::NotifyFreedCodeRange(Address code_range_start,
                                                size_t code_range_size) {
  base::MutexGuard guard(&mutex_);
  recently_freed_[code_range_size].push_back(code_range_start);
}

CodeRange::~CodeRange() { Free(); }

// static
size_t CodeRange::GetWritableReservedAreaSize() {
  return kReservedCodeRangePages * MemoryAllocator::GetCommitPageSize();
}

bool CodeRange::InitReservation(v8::PageAllocator* page_allocator,
                                size_t requested) {
  DCHECK_NE(requested, 0);
  if (V8_EXTERNAL_CODE_SPACE_BOOL) {
    page_allocator = GetPlatformPageAllocator();
  }

  if (requested <= kMinimumCodeRangeSize) {
    requested = kMinimumCodeRangeSize;
  }

  // When V8_EXTERNAL_CODE_SPACE_BOOL is enabled the allocatable region must
  // not cross the 4Gb boundary and thus the default compression scheme of
  // truncating the Code pointers to 32-bits still works. It's achieved by
  // specifying base_alignment parameter.
  // Note that the alignment is calculated before adjusting the requested size
  // for GetWritableReservedAreaSize(). The reasons are:
  //  - this extra page is used by breakpad on Windows and it's allowed to cross
  //    the 4Gb boundary,
  //  - rounding up the adjusted size would result in requresting unnecessarily
  //    big aligment.
  const size_t base_alignment =
      V8_EXTERNAL_CODE_SPACE_BOOL
          ? base::bits::RoundUpToPowerOfTwo(requested)
          : VirtualMemoryCage::ReservationParams::kAnyBaseAlignment;

  const size_t reserved_area = GetWritableReservedAreaSize();
  if (requested < (kMaximalCodeRangeSize - reserved_area)) {
    requested += RoundUp(reserved_area, MemoryChunk::kPageSize);
    // Fulfilling both reserved pages requirement and huge code area
    // alignments is not supported (requires re-implementation).
    DCHECK_LE(kMinExpectedOSPageSize, page_allocator->AllocatePageSize());
  }
  DCHECK_IMPLIES(kPlatformRequiresCodeRange,
                 requested <= kMaximalCodeRangeSize);

  VirtualMemoryCage::ReservationParams params;
  params.page_allocator = page_allocator;
  params.reservation_size = requested;
  const size_t allocate_page_size = page_allocator->AllocatePageSize();
  params.base_alignment = base_alignment;
  params.base_bias_size = RoundUp(reserved_area, allocate_page_size);
  params.page_size = MemoryChunk::kPageSize;
  params.requested_start_hint =
      GetCodeRangeAddressHint()->GetAddressHint(requested, allocate_page_size);
  params.jit =
      v8_flags.jitless ? JitPermission::kNoJit : JitPermission::kMapAsJittable;

  if (!VirtualMemoryCage::InitReservation(params)) return false;

#ifdef V8_EXTERNAL_CODE_SPACE
  // Ensure that ExternalCodeCompressionScheme is applicable to all objects
  // stored in the code range.
  Address base = page_allocator_->begin();
  Address last = base + page_allocator_->size() - 1;
  CHECK_EQ(ExternalCodeCompressionScheme::GetPtrComprCageBaseAddress(base),
           ExternalCodeCompressionScheme::GetPtrComprCageBaseAddress(last));
#endif  // V8_EXTERNAL_CODE_SPACE

  // On some platforms, specifically Win64, we need to reserve some pages at
  // the beginning of an executable space. See
  //   https://cs.chromium.org/chromium/src/components/crash/content/
  //     app/crashpad_win.cc?rcl=fd680447881449fba2edcf0589320e7253719212&l=204
  // for details.
  if (reserved_area > 0) {
    if (!reservation()->SetPermissions(reservation()->address(), reserved_area,
                                       PageAllocator::kReadWrite)) {
      return false;
    }
  }
  if (V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT &&
      params.jit == JitPermission::kMapAsJittable) {
    void* base = reinterpret_cast<void*>(page_allocator_->begin());
    size_t size = page_allocator_->size();
    CHECK(params.page_allocator->SetPermissions(
        base, size, PageAllocator::kReadWriteExecute));
    CHECK(params.page_allocator->DiscardSystemPages(base, size));
  }
  return true;
}

void CodeRange::Free() {
  if (IsReserved()) {
    GetCodeRangeAddressHint()->NotifyFreedCodeRange(
        reservation()->region().begin(), reservation()->region().size());
    VirtualMemoryCage::Free();
  }
}

uint8_t* CodeRange::RemapEmbeddedBuiltins(Isolate* isolate,
                                          const uint8_t* embedded_blob_code,
                                          size_t embedded_blob_code_size) {
  base::MutexGuard guard(&remap_embedded_builtins_mutex_);

  // Remap embedded builtins into the end of the address range controlled by
  // the BoundedPageAllocator.
  const base::AddressRegion code_region(page_allocator()->begin(),
                                        page_allocator()->size());
  CHECK_NE(code_region.begin(), kNullAddress);
  CHECK(!code_region.is_empty());

  uint8_t* embedded_blob_code_copy =
      embedded_blob_code_copy_.load(std::memory_order_acquire);
  if (embedded_blob_code_copy) {
    DCHECK(
        code_region.contains(reinterpret_cast<Address>(embedded_blob_code_copy),
                             embedded_blob_code_size));
    SLOW_DCHECK(memcmp(embedded_blob_code, embedded_blob_code_copy,
                       embedded_blob_code_size) == 0);
    return embedded_blob_code_copy;
  }

  const size_t kAllocatePageSize = page_allocator()->AllocatePageSize();
  const size_t kCommitPageSize = page_allocator()->CommitPageSize();
  size_t allocate_code_size =
      RoundUp(embedded_blob_code_size, kAllocatePageSize);

  // Allocate the re-embedded code blob in such a way that it will be reachable
  // by PC-relative addressing from biggest possible region.
  const size_t max_pc_relative_code_range = kMaxPCRelativeCodeRangeInMB * MB;
  size_t hint_offset =
      std::min(max_pc_relative_code_range, code_region.size()) -
      allocate_code_size;
  void* hint = reinterpret_cast<void*>(code_region.begin() + hint_offset);

  embedded_blob_code_copy =
      reinterpret_cast<uint8_t*>(page_allocator()->AllocatePages(
          hint, allocate_code_size, kAllocatePageSize,
          PageAllocator::kNoAccess));

  if (!embedded_blob_code_copy) {
    V8::FatalProcessOutOfMemory(
        isolate, "Can't allocate space for re-embedded builtins");
  }
  CHECK_EQ(embedded_blob_code_copy, hint);

  if (code_region.size() > max_pc_relative_code_range) {
    // The re-embedded code blob might not be reachable from the end part of
    // the code range, so ensure that code pages will never be allocated in
    // the "unreachable" area.
    Address unreachable_start =
        reinterpret_cast<Address>(embedded_blob_code_copy) +
        max_pc_relative_code_range;

    if (code_region.contains(unreachable_start)) {
      size_t unreachable_size = code_region.end() - unreachable_start;

      void* result = page_allocator()->AllocatePages(
          reinterpret_cast<void*>(unreachable_start), unreachable_size,
          kAllocatePageSize, PageAllocator::kNoAccess);
      CHECK_EQ(reinterpret_cast<Address>(result), unreachable_start);
    }
  }

  size_t code_size = RoundUp(embedded_blob_code_size, kCommitPageSize);
  if constexpr (base::OS::IsRemapPageSupported()) {
    // By default, the embedded builtins are not remapped, but copied. This
    // costs memory, since builtins become private dirty anonymous memory,
    // rather than shared, clean, file-backed memory for the embedded version.
    // If the OS supports it, we can remap the builtins *on top* of the space
    // allocated in the code range, making the "copy" shared, clean, file-backed
    // memory, and thus saving sizeof(builtins).
    //
    // Builtins should start at a page boundary, see
    // platform-embedded-file-writer-mac.cc. If it's not the case (e.g. if the
    // embedded builtins are not coming from the binary), fall back to copying.
    if (IsAligned(reinterpret_cast<uintptr_t>(embedded_blob_code),
                  kCommitPageSize)) {
      bool ok = base::OS::RemapPages(embedded_blob_code, code_size,
                                     embedded_blob_code_copy,
                                     base::OS::MemoryPermission::kReadExecute);

      if (ok) {
        embedded_blob_code_copy_.store(embedded_blob_code_copy,
                                       std::memory_order_release);
        return embedded_blob_code_copy;
      }
    }
  }

  if (V8_HEAP_USE_PTHREAD_JIT_WRITE_PROTECT) {
    if (!page_allocator()->RecommitPages(embedded_blob_code_copy, code_size,
                                         PageAllocator::kReadWriteExecute)) {
      V8::FatalProcessOutOfMemory(isolate,
                                  "Re-embedded builtins: recommit pages");
    }
    RwxMemoryWriteScope rwx_write_scope(
        "Enable write access to copy the blob code into the code range");
    memcpy(embedded_blob_code_copy, embedded_blob_code,
           embedded_blob_code_size);
  } else {
    if (!page_allocator()->SetPermissions(embedded_blob_code_copy, code_size,
                                          PageAllocator::kReadWrite)) {
      V8::FatalProcessOutOfMemory(isolate,
                                  "Re-embedded builtins: set permissions");
    }
    memcpy(embedded_blob_code_copy, embedded_blob_code,
           embedded_blob_code_size);

    if (!page_allocator()->SetPermissions(embedded_blob_code_copy, code_size,
                                          PageAllocator::kReadExecute)) {
      V8::FatalProcessOutOfMemory(isolate,
                                  "Re-embedded builtins: set permissions");
    }
  }
  embedded_blob_code_copy_.store(embedded_blob_code_copy,
                                 std::memory_order_release);
  return embedded_blob_code_copy;
}

// static
std::shared_ptr<CodeRange> CodeRange::EnsureProcessWideCodeRange(
    v8::PageAllocator* page_allocator, size_t requested_size) {
  base::MutexGuard guard(process_wide_code_range_creation_mutex_.Pointer());
  std::shared_ptr<CodeRange> code_range = process_wide_code_range_.Get().lock();
  if (!code_range) {
    code_range = std::make_shared<CodeRange>();
    if (!code_range->InitReservation(page_allocator, requested_size)) {
      V8::FatalProcessOutOfMemory(
          nullptr, "Failed to reserve virtual memory for CodeRange");
    }
    *process_wide_code_range_.Pointer() = code_range;
  }
  return code_range;
}

// static
std::shared_ptr<CodeRange> CodeRange::GetProcessWideCodeRange() {
  return process_wide_code_range_.Get().lock();
}

}  // namespace internal
}  // namespace v8