summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/concurrent-marking.cc
blob: b0c3e50951cd3c265f6f5772b344b0cfac12abc6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/heap/concurrent-marking.h"

#include <stack>
#include <unordered_map>

#include "include/v8config.h"
#include "src/execution/isolate.h"
#include "src/heap/gc-tracer.h"
#include "src/heap/heap-inl.h"
#include "src/heap/heap.h"
#include "src/heap/mark-compact-inl.h"
#include "src/heap/mark-compact.h"
#include "src/heap/marking-visitor-inl.h"
#include "src/heap/marking-visitor.h"
#include "src/heap/marking.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/memory-measurement-inl.h"
#include "src/heap/memory-measurement.h"
#include "src/heap/objects-visiting-inl.h"
#include "src/heap/objects-visiting.h"
#include "src/heap/worklist.h"
#include "src/init/v8.h"
#include "src/objects/data-handler-inl.h"
#include "src/objects/embedder-data-array-inl.h"
#include "src/objects/hash-table-inl.h"
#include "src/objects/slots-inl.h"
#include "src/objects/transitions-inl.h"
#include "src/utils/utils-inl.h"
#include "src/utils/utils.h"

namespace v8 {
namespace internal {

class ConcurrentMarkingState final
    : public MarkingStateBase<ConcurrentMarkingState, AccessMode::ATOMIC> {
 public:
  explicit ConcurrentMarkingState(MemoryChunkDataMap* memory_chunk_data)
      : memory_chunk_data_(memory_chunk_data) {}

  ConcurrentBitmap<AccessMode::ATOMIC>* bitmap(const BasicMemoryChunk* chunk) {
    return chunk->marking_bitmap<AccessMode::ATOMIC>();
  }

  void IncrementLiveBytes(MemoryChunk* chunk, intptr_t by) {
    (*memory_chunk_data_)[chunk].live_bytes += by;
  }

  // The live_bytes and SetLiveBytes methods of the marking state are
  // not used by the concurrent marker.

 private:
  MemoryChunkDataMap* memory_chunk_data_;
};

// Helper class for storing in-object slot addresses and values.
class SlotSnapshot {
 public:
  SlotSnapshot() : number_of_slots_(0) {}
  int number_of_slots() const { return number_of_slots_; }
  ObjectSlot slot(int i) const { return snapshot_[i].first; }
  Object value(int i) const { return snapshot_[i].second; }
  void clear() { number_of_slots_ = 0; }
  void add(ObjectSlot slot, Object value) {
    snapshot_[number_of_slots_++] = {slot, value};
  }

 private:
  static const int kMaxSnapshotSize = JSObject::kMaxInstanceSize / kTaggedSize;
  int number_of_slots_;
  std::pair<ObjectSlot, Object> snapshot_[kMaxSnapshotSize];
  DISALLOW_COPY_AND_ASSIGN(SlotSnapshot);
};

class ConcurrentMarkingVisitor final
    : public MarkingVisitorBase<ConcurrentMarkingVisitor,
                                ConcurrentMarkingState> {
 public:
  ConcurrentMarkingVisitor(int task_id,
                           MarkingWorklists::Local* local_marking_worklists,
                           WeakObjects* weak_objects, Heap* heap,
                           unsigned mark_compact_epoch,
                           BytecodeFlushMode bytecode_flush_mode,
                           bool embedder_tracing_enabled, bool is_forced_gc,
                           MemoryChunkDataMap* memory_chunk_data)
      : MarkingVisitorBase(task_id, local_marking_worklists, weak_objects, heap,
                           mark_compact_epoch, bytecode_flush_mode,
                           embedder_tracing_enabled, is_forced_gc),
        marking_state_(memory_chunk_data),
        memory_chunk_data_(memory_chunk_data) {}

  template <typename T>
  static V8_INLINE T Cast(HeapObject object) {
    return T::cast(object);
  }

  // HeapVisitor overrides to implement the snapshotting protocol.

  bool AllowDefaultJSObjectVisit() { return false; }

  int VisitJSObject(Map map, JSObject object) {
    return VisitJSObjectSubclass(map, object);
  }

  int VisitJSObjectFast(Map map, JSObject object) {
    return VisitJSObjectSubclassFast(map, object);
  }

  int VisitWasmInstanceObject(Map map, WasmInstanceObject object) {
    return VisitJSObjectSubclass(map, object);
  }

  int VisitJSWeakCollection(Map map, JSWeakCollection object) {
    return VisitJSObjectSubclass(map, object);
  }

  int VisitConsString(Map map, ConsString object) {
    return VisitFullyWithSnapshot(map, object);
  }

  int VisitSlicedString(Map map, SlicedString object) {
    return VisitFullyWithSnapshot(map, object);
  }

  int VisitThinString(Map map, ThinString object) {
    return VisitFullyWithSnapshot(map, object);
  }

  int VisitSeqOneByteString(Map map, SeqOneByteString object) {
    if (!ShouldVisit(object)) return 0;
    VisitMapPointer(object);
    return SeqOneByteString::SizeFor(object.synchronized_length());
  }

  int VisitSeqTwoByteString(Map map, SeqTwoByteString object) {
    if (!ShouldVisit(object)) return 0;
    VisitMapPointer(object);
    return SeqTwoByteString::SizeFor(object.synchronized_length());
  }

  // Implements ephemeron semantics: Marks value if key is already reachable.
  // Returns true if value was actually marked.
  bool ProcessEphemeron(HeapObject key, HeapObject value) {
    if (marking_state_.IsBlackOrGrey(key)) {
      if (marking_state_.WhiteToGrey(value)) {
        local_marking_worklists_->Push(value);
        return true;
      }

    } else if (marking_state_.IsWhite(value)) {
      weak_objects_->next_ephemerons.Push(task_id_, Ephemeron{key, value});
    }
    return false;
  }

  // HeapVisitor override.
  bool ShouldVisit(HeapObject object) {
    return marking_state_.GreyToBlack(object);
  }

 private:
  // Helper class for collecting in-object slot addresses and values.
  class SlotSnapshottingVisitor final : public ObjectVisitor {
   public:
    explicit SlotSnapshottingVisitor(SlotSnapshot* slot_snapshot)
        : slot_snapshot_(slot_snapshot) {
      slot_snapshot_->clear();
    }

    void VisitPointers(HeapObject host, ObjectSlot start,
                       ObjectSlot end) override {
      for (ObjectSlot p = start; p < end; ++p) {
        Object object = p.Relaxed_Load();
        slot_snapshot_->add(p, object);
      }
    }

    void VisitPointers(HeapObject host, MaybeObjectSlot start,
                       MaybeObjectSlot end) override {
      // This should never happen, because we don't use snapshotting for objects
      // which contain weak references.
      UNREACHABLE();
    }

    void VisitCodeTarget(Code host, RelocInfo* rinfo) final {
      // This should never happen, because snapshotting is performed only on
      // JSObjects (and derived classes).
      UNREACHABLE();
    }

    void VisitEmbeddedPointer(Code host, RelocInfo* rinfo) final {
      // This should never happen, because snapshotting is performed only on
      // JSObjects (and derived classes).
      UNREACHABLE();
    }

    void VisitCustomWeakPointers(HeapObject host, ObjectSlot start,
                                 ObjectSlot end) override {
      DCHECK(host.IsWeakCell() || host.IsJSWeakRef());
    }

   private:
    SlotSnapshot* slot_snapshot_;
  };

  template <typename T>
  int VisitJSObjectSubclassFast(Map map, T object) {
    DCHECK_IMPLIES(FLAG_unbox_double_fields, map.HasFastPointerLayout());
    using TBodyDescriptor = typename T::FastBodyDescriptor;
    return VisitJSObjectSubclass<T, TBodyDescriptor>(map, object);
  }

  template <typename T, typename TBodyDescriptor = typename T::BodyDescriptor>
  int VisitJSObjectSubclass(Map map, T object) {
    int size = TBodyDescriptor::SizeOf(map, object);
    int used_size = map.UsedInstanceSize();
    DCHECK_LE(used_size, size);
    DCHECK_GE(used_size, JSObject::GetHeaderSize(map));
    return VisitPartiallyWithSnapshot<T, TBodyDescriptor>(map, object,
                                                          used_size, size);
  }

  template <typename T>
  int VisitLeftTrimmableArray(Map map, T object) {
    // The synchronized_length() function checks that the length is a Smi.
    // This is not necessarily the case if the array is being left-trimmed.
    Object length = object.unchecked_synchronized_length();
    if (!ShouldVisit(object)) return 0;
    // The cached length must be the actual length as the array is not black.
    // Left trimming marks the array black before over-writing the length.
    DCHECK(length.IsSmi());
    int size = T::SizeFor(Smi::ToInt(length));
    VisitMapPointer(object);
    T::BodyDescriptor::IterateBody(map, object, size, this);
    return size;
  }

  void VisitPointersInSnapshot(HeapObject host, const SlotSnapshot& snapshot) {
    for (int i = 0; i < snapshot.number_of_slots(); i++) {
      ObjectSlot slot = snapshot.slot(i);
      Object object = snapshot.value(i);
      DCHECK(!HasWeakHeapObjectTag(object));
      if (!object.IsHeapObject()) continue;
      HeapObject heap_object = HeapObject::cast(object);
      MarkObject(host, heap_object);
      RecordSlot(host, slot, heap_object);
    }
  }

  template <typename T>
  int VisitFullyWithSnapshot(Map map, T object) {
    using TBodyDescriptor = typename T::BodyDescriptor;
    int size = TBodyDescriptor::SizeOf(map, object);
    return VisitPartiallyWithSnapshot<T, TBodyDescriptor>(map, object, size,
                                                          size);
  }

  template <typename T, typename TBodyDescriptor = typename T::BodyDescriptor>
  int VisitPartiallyWithSnapshot(Map map, T object, int used_size, int size) {
    const SlotSnapshot& snapshot =
        MakeSlotSnapshot<T, TBodyDescriptor>(map, object, used_size);
    if (!ShouldVisit(object)) return 0;
    VisitPointersInSnapshot(object, snapshot);
    return size;
  }

  template <typename T, typename TBodyDescriptor>
  const SlotSnapshot& MakeSlotSnapshot(Map map, T object, int size) {
    SlotSnapshottingVisitor visitor(&slot_snapshot_);
    visitor.VisitPointer(object, object.map_slot());
    TBodyDescriptor::IterateBody(map, object, size, &visitor);
    return slot_snapshot_;
  }

  template <typename TSlot>
  void RecordSlot(HeapObject object, TSlot slot, HeapObject target) {
    MarkCompactCollector::RecordSlot(object, slot, target);
  }

  void RecordRelocSlot(Code host, RelocInfo* rinfo, HeapObject target) {
    MarkCompactCollector::RecordRelocSlotInfo info =
        MarkCompactCollector::PrepareRecordRelocSlot(host, rinfo, target);
    if (info.should_record) {
      MemoryChunkData& data = (*memory_chunk_data_)[info.memory_chunk];
      if (!data.typed_slots) {
        data.typed_slots.reset(new TypedSlots());
      }
      data.typed_slots->Insert(info.slot_type, info.offset);
    }
  }

  void SynchronizePageAccess(HeapObject heap_object) {
#ifdef THREAD_SANITIZER
    // This is needed because TSAN does not process the memory fence
    // emitted after page initialization.
    BasicMemoryChunk::FromHeapObject(heap_object)->SynchronizedHeapLoad();
#endif
  }

  ConcurrentMarkingState* marking_state() { return &marking_state_; }

  TraceRetainingPathMode retaining_path_mode() {
    return TraceRetainingPathMode::kDisabled;
  }

  ConcurrentMarkingState marking_state_;
  MemoryChunkDataMap* memory_chunk_data_;
  SlotSnapshot slot_snapshot_;

  friend class MarkingVisitorBase<ConcurrentMarkingVisitor,
                                  ConcurrentMarkingState>;
};

// Strings can change maps due to conversion to thin string or external strings.
// Use unchecked cast to avoid data race in slow dchecks.
template <>
ConsString ConcurrentMarkingVisitor::Cast(HeapObject object) {
  return ConsString::unchecked_cast(object);
}

template <>
SlicedString ConcurrentMarkingVisitor::Cast(HeapObject object) {
  return SlicedString::unchecked_cast(object);
}

template <>
ThinString ConcurrentMarkingVisitor::Cast(HeapObject object) {
  return ThinString::unchecked_cast(object);
}

template <>
SeqOneByteString ConcurrentMarkingVisitor::Cast(HeapObject object) {
  return SeqOneByteString::unchecked_cast(object);
}

template <>
SeqTwoByteString ConcurrentMarkingVisitor::Cast(HeapObject object) {
  return SeqTwoByteString::unchecked_cast(object);
}

// Fixed array can become a free space during left trimming.
template <>
FixedArray ConcurrentMarkingVisitor::Cast(HeapObject object) {
  return FixedArray::unchecked_cast(object);
}

class ConcurrentMarking::Task : public CancelableTask {
 public:
  Task(Isolate* isolate, ConcurrentMarking* concurrent_marking,
       TaskState* task_state, int task_id)
      : CancelableTask(isolate),
        concurrent_marking_(concurrent_marking),
        task_state_(task_state),
        task_id_(task_id) {}

  ~Task() override = default;

 private:
  // v8::internal::CancelableTask overrides.
  void RunInternal() override {
    concurrent_marking_->Run(task_id_, task_state_);
  }

  ConcurrentMarking* concurrent_marking_;
  TaskState* task_state_;
  int task_id_;
  DISALLOW_COPY_AND_ASSIGN(Task);
};

ConcurrentMarking::ConcurrentMarking(Heap* heap,
                                     MarkingWorklists* marking_worklists,
                                     WeakObjects* weak_objects)
    : heap_(heap),
      marking_worklists_(marking_worklists),
      weak_objects_(weak_objects) {
// The runtime flag should be set only if the compile time flag was set.
#ifndef V8_CONCURRENT_MARKING
  CHECK(!FLAG_concurrent_marking && !FLAG_parallel_marking);
#endif
}

void ConcurrentMarking::Run(int task_id, TaskState* task_state) {
  TRACE_BACKGROUND_GC(heap_->tracer(),
                      GCTracer::BackgroundScope::MC_BACKGROUND_MARKING);
  size_t kBytesUntilInterruptCheck = 64 * KB;
  int kObjectsUntilInterrupCheck = 1000;
  MarkingWorklists::Local local_marking_worklists(marking_worklists_);
  ConcurrentMarkingVisitor visitor(
      task_id, &local_marking_worklists, weak_objects_, heap_,
      task_state->mark_compact_epoch, Heap::GetBytecodeFlushMode(),
      heap_->local_embedder_heap_tracer()->InUse(), task_state->is_forced_gc,
      &task_state->memory_chunk_data);
  NativeContextInferrer& native_context_inferrer =
      task_state->native_context_inferrer;
  NativeContextStats& native_context_stats = task_state->native_context_stats;
  double time_ms;
  size_t marked_bytes = 0;
  Isolate* isolate = heap_->isolate();
  if (FLAG_trace_concurrent_marking) {
    isolate->PrintWithTimestamp("Starting concurrent marking task %d\n",
                                task_id);
  }
  bool ephemeron_marked = false;

  {
    TimedScope scope(&time_ms);

    {
      Ephemeron ephemeron;

      while (weak_objects_->current_ephemerons.Pop(task_id, &ephemeron)) {
        if (visitor.ProcessEphemeron(ephemeron.key, ephemeron.value)) {
          ephemeron_marked = true;
        }
      }
    }
    bool is_per_context_mode = local_marking_worklists.IsPerContextMode();
    bool done = false;
    while (!done) {
      size_t current_marked_bytes = 0;
      int objects_processed = 0;
      while (current_marked_bytes < kBytesUntilInterruptCheck &&
             objects_processed < kObjectsUntilInterrupCheck) {
        HeapObject object;
        if (!local_marking_worklists.Pop(&object)) {
          done = true;
          break;
        }
        objects_processed++;
        // The order of the two loads is important.
        Address new_space_top = heap_->new_space()->original_top_acquire();
        Address new_space_limit = heap_->new_space()->original_limit_relaxed();
        Address new_large_object = heap_->new_lo_space()->pending_object();
        Address addr = object.address();
        if ((new_space_top <= addr && addr < new_space_limit) ||
            addr == new_large_object) {
          local_marking_worklists.PushOnHold(object);
        } else {
          Map map = object.synchronized_map(isolate);
          if (is_per_context_mode) {
            Address context;
            if (native_context_inferrer.Infer(isolate, map, object, &context)) {
              local_marking_worklists.SwitchToContext(context);
            }
          }
          size_t visited_size = visitor.Visit(map, object);
          if (is_per_context_mode) {
            native_context_stats.IncrementSize(
                local_marking_worklists.Context(), map, object, visited_size);
          }
          current_marked_bytes += visited_size;
        }
      }
      marked_bytes += current_marked_bytes;
      base::AsAtomicWord::Relaxed_Store<size_t>(&task_state->marked_bytes,
                                                marked_bytes);
      if (task_state->preemption_request) {
        TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.gc"),
                     "ConcurrentMarking::Run Preempted");
        break;
      }
    }

    if (done) {
      Ephemeron ephemeron;

      while (weak_objects_->discovered_ephemerons.Pop(task_id, &ephemeron)) {
        if (visitor.ProcessEphemeron(ephemeron.key, ephemeron.value)) {
          ephemeron_marked = true;
        }
      }
    }

    local_marking_worklists.Publish();
    weak_objects_->transition_arrays.FlushToGlobal(task_id);
    weak_objects_->ephemeron_hash_tables.FlushToGlobal(task_id);
    weak_objects_->current_ephemerons.FlushToGlobal(task_id);
    weak_objects_->next_ephemerons.FlushToGlobal(task_id);
    weak_objects_->discovered_ephemerons.FlushToGlobal(task_id);
    weak_objects_->weak_references.FlushToGlobal(task_id);
    weak_objects_->js_weak_refs.FlushToGlobal(task_id);
    weak_objects_->weak_cells.FlushToGlobal(task_id);
    weak_objects_->weak_objects_in_code.FlushToGlobal(task_id);
    weak_objects_->bytecode_flushing_candidates.FlushToGlobal(task_id);
    weak_objects_->flushed_js_functions.FlushToGlobal(task_id);
    base::AsAtomicWord::Relaxed_Store<size_t>(&task_state->marked_bytes, 0);
    total_marked_bytes_ += marked_bytes;

    if (ephemeron_marked) {
      set_ephemeron_marked(true);
    }

    {
      base::MutexGuard guard(&pending_lock_);
      is_pending_[task_id] = false;
      --pending_task_count_;
      pending_condition_.NotifyAll();
    }
  }
  if (FLAG_trace_concurrent_marking) {
    heap_->isolate()->PrintWithTimestamp(
        "Task %d concurrently marked %dKB in %.2fms\n", task_id,
        static_cast<int>(marked_bytes / KB), time_ms);
  }
}

void ConcurrentMarking::ScheduleTasks() {
  DCHECK(FLAG_parallel_marking || FLAG_concurrent_marking);
  DCHECK(!heap_->IsTearingDown());
  base::MutexGuard guard(&pending_lock_);
  if (total_task_count_ == 0) {
    static const int num_cores =
        V8::GetCurrentPlatform()->NumberOfWorkerThreads() + 1;
#if defined(V8_OS_MACOSX)
    // Mac OSX 10.11 and prior seems to have trouble when doing concurrent
    // marking on competing hyper-threads (regresses Octane/Splay). As such,
    // only use num_cores/2, leaving one of those for the main thread.
    // TODO(ulan): Use all cores on Mac 10.12+.
    total_task_count_ = Max(1, Min(kMaxTasks, (num_cores / 2) - 1));
#else   // defined(V8_OS_MACOSX)
    // On other platforms use all logical cores, leaving one for the main
    // thread.
    total_task_count_ = Max(1, Min(kMaxTasks, num_cores - 2));
#endif  // defined(V8_OS_MACOSX)
    if (FLAG_gc_experiment_reduce_concurrent_marking_tasks) {
      // Use at most half of the cores in the experiment.
      total_task_count_ = Max(1, Min(kMaxTasks, (num_cores / 2) - 1));
    }
    DCHECK_LE(total_task_count_, kMaxTasks);
  }
  // Task id 0 is for the main thread.
  for (int i = 1; i <= total_task_count_; i++) {
    if (!is_pending_[i]) {
      if (FLAG_trace_concurrent_marking) {
        heap_->isolate()->PrintWithTimestamp(
            "Scheduling concurrent marking task %d\n", i);
      }
      task_state_[i].preemption_request = false;
      task_state_[i].mark_compact_epoch =
          heap_->mark_compact_collector()->epoch();
      task_state_[i].is_forced_gc = heap_->is_current_gc_forced();
      is_pending_[i] = true;
      ++pending_task_count_;
      auto task =
          std::make_unique<Task>(heap_->isolate(), this, &task_state_[i], i);
      cancelable_id_[i] = task->id();
      V8::GetCurrentPlatform()->CallOnWorkerThread(std::move(task));
    }
  }
  DCHECK_EQ(total_task_count_, pending_task_count_);
}

void ConcurrentMarking::RescheduleTasksIfNeeded() {
  DCHECK(FLAG_parallel_marking || FLAG_concurrent_marking);
  if (heap_->IsTearingDown()) return;
  {
    base::MutexGuard guard(&pending_lock_);
    // The total task count is initialized in ScheduleTasks from
    // NumberOfWorkerThreads of the platform.
    if (total_task_count_ > 0 && pending_task_count_ == total_task_count_) {
      return;
    }
  }
  if (!marking_worklists_->shared()->IsEmpty() ||
      !weak_objects_->current_ephemerons.IsGlobalPoolEmpty() ||
      !weak_objects_->discovered_ephemerons.IsGlobalPoolEmpty()) {
    ScheduleTasks();
  }
}

bool ConcurrentMarking::Stop(StopRequest stop_request) {
  DCHECK(FLAG_parallel_marking || FLAG_concurrent_marking);
  base::MutexGuard guard(&pending_lock_);

  if (pending_task_count_ == 0) return false;

  if (stop_request != StopRequest::COMPLETE_TASKS_FOR_TESTING) {
    CancelableTaskManager* task_manager =
        heap_->isolate()->cancelable_task_manager();
    for (int i = 1; i <= total_task_count_; i++) {
      if (is_pending_[i]) {
        if (task_manager->TryAbort(cancelable_id_[i]) ==
            TryAbortResult::kTaskAborted) {
          is_pending_[i] = false;
          --pending_task_count_;
        } else if (stop_request == StopRequest::PREEMPT_TASKS) {
          task_state_[i].preemption_request = true;
        }
      }
    }
  }
  while (pending_task_count_ > 0) {
    pending_condition_.Wait(&pending_lock_);
  }
  for (int i = 1; i <= total_task_count_; i++) {
    DCHECK(!is_pending_[i]);
  }
  return true;
}

bool ConcurrentMarking::IsStopped() {
  if (!FLAG_concurrent_marking) return true;

  base::MutexGuard guard(&pending_lock_);
  return pending_task_count_ == 0;
}

void ConcurrentMarking::FlushNativeContexts(NativeContextStats* main_stats) {
  for (int i = 1; i <= total_task_count_; i++) {
    main_stats->Merge(task_state_[i].native_context_stats);
    task_state_[i].native_context_stats.Clear();
  }
}

void ConcurrentMarking::FlushMemoryChunkData(
    MajorNonAtomicMarkingState* marking_state) {
  DCHECK_EQ(pending_task_count_, 0);
  for (int i = 1; i <= total_task_count_; i++) {
    MemoryChunkDataMap& memory_chunk_data = task_state_[i].memory_chunk_data;
    for (auto& pair : memory_chunk_data) {
      // ClearLiveness sets the live bytes to zero.
      // Pages with zero live bytes might be already unmapped.
      MemoryChunk* memory_chunk = pair.first;
      MemoryChunkData& data = pair.second;
      if (data.live_bytes) {
        marking_state->IncrementLiveBytes(memory_chunk, data.live_bytes);
      }
      if (data.typed_slots) {
        RememberedSet<OLD_TO_OLD>::MergeTyped(memory_chunk,
                                              std::move(data.typed_slots));
      }
    }
    memory_chunk_data.clear();
    task_state_[i].marked_bytes = 0;
  }
  total_marked_bytes_ = 0;
}

void ConcurrentMarking::ClearMemoryChunkData(MemoryChunk* chunk) {
  for (int i = 1; i <= total_task_count_; i++) {
    auto it = task_state_[i].memory_chunk_data.find(chunk);
    if (it != task_state_[i].memory_chunk_data.end()) {
      it->second.live_bytes = 0;
      it->second.typed_slots.reset();
    }
  }
}

size_t ConcurrentMarking::TotalMarkedBytes() {
  size_t result = 0;
  for (int i = 1; i <= total_task_count_; i++) {
    result +=
        base::AsAtomicWord::Relaxed_Load<size_t>(&task_state_[i].marked_bytes);
  }
  result += total_marked_bytes_;
  return result;
}

ConcurrentMarking::PauseScope::PauseScope(ConcurrentMarking* concurrent_marking)
    : concurrent_marking_(concurrent_marking),
      resume_on_exit_(FLAG_concurrent_marking &&
                      concurrent_marking_->Stop(
                          ConcurrentMarking::StopRequest::PREEMPT_TASKS)) {
  DCHECK_IMPLIES(resume_on_exit_, FLAG_concurrent_marking);
}

ConcurrentMarking::PauseScope::~PauseScope() {
  if (resume_on_exit_) concurrent_marking_->RescheduleTasksIfNeeded();
}

}  // namespace internal
}  // namespace v8