summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/cppgc/object-allocator.cc
blob: 0f85d43c1cb7d98ff4edb2fc9f2ac39257ccd53f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/heap/cppgc/object-allocator.h"

#include "src/base/logging.h"
#include "src/base/macros.h"
#include "src/heap/cppgc/free-list.h"
#include "src/heap/cppgc/globals.h"
#include "src/heap/cppgc/heap-object-header.h"
#include "src/heap/cppgc/heap-page.h"
#include "src/heap/cppgc/heap-space.h"
#include "src/heap/cppgc/heap-visitor.h"
#include "src/heap/cppgc/heap.h"
#include "src/heap/cppgc/memory.h"
#include "src/heap/cppgc/object-start-bitmap.h"
#include "src/heap/cppgc/page-memory.h"
#include "src/heap/cppgc/prefinalizer-handler.h"
#include "src/heap/cppgc/stats-collector.h"
#include "src/heap/cppgc/sweeper.h"

namespace cppgc {
namespace internal {
namespace {

void MarkRangeAsYoung(BasePage* page, Address begin, Address end) {
#if defined(CPPGC_YOUNG_GENERATION)
  DCHECK_LT(begin, end);

  static constexpr auto kEntrySize = AgeTable::kEntrySizeInBytes;

  const uintptr_t offset_begin = CagedHeap::OffsetFromAddress(begin);
  const uintptr_t offset_end = CagedHeap::OffsetFromAddress(end);

  const uintptr_t young_offset_begin = (begin == page->PayloadStart())
                                           ? RoundDown(offset_begin, kEntrySize)
                                           : RoundUp(offset_begin, kEntrySize);
  const uintptr_t young_offset_end = (end == page->PayloadEnd())
                                         ? RoundUp(offset_end, kEntrySize)
                                         : RoundDown(offset_end, kEntrySize);

  auto& age_table = page->heap().caged_heap().local_data().age_table;
  for (auto offset = young_offset_begin; offset < young_offset_end;
       offset += AgeTable::kEntrySizeInBytes) {
    age_table[offset] = AgeTable::Age::kYoung;
  }

  // Set to kUnknown the first and the last regions of the newly allocated
  // linear buffer.
  if (begin != page->PayloadStart() && !IsAligned(offset_begin, kEntrySize))
    age_table[offset_begin] = AgeTable::Age::kUnknown;
  if (end != page->PayloadEnd() && !IsAligned(offset_end, kEntrySize))
    age_table[offset_end] = AgeTable::Age::kUnknown;
#endif
}

void AddToFreeList(NormalPageSpace& space, Address start, size_t size) {
  // No need for SetMemoryInaccessible() as LAB memory is retrieved as free
  // inaccessible memory.
  space.free_list().Add({start, size});
  NormalPage::From(BasePage::FromPayload(start))
      ->object_start_bitmap()
      .SetBit(start);
}

void ReplaceLinearAllocationBuffer(NormalPageSpace& space,
                                   StatsCollector& stats_collector,
                                   Address new_buffer, size_t new_size) {
  auto& lab = space.linear_allocation_buffer();
  if (lab.size()) {
    AddToFreeList(space, lab.start(), lab.size());
    stats_collector.NotifyExplicitFree(lab.size());
  }

  lab.Set(new_buffer, new_size);
  if (new_size) {
    DCHECK_NOT_NULL(new_buffer);
    stats_collector.NotifyAllocation(new_size);
    auto* page = NormalPage::From(BasePage::FromPayload(new_buffer));
    page->object_start_bitmap().ClearBit(new_buffer);
    MarkRangeAsYoung(page, new_buffer, new_buffer + new_size);
  }
}

void* AllocateLargeObject(PageBackend& page_backend, LargePageSpace& space,
                          StatsCollector& stats_collector, size_t size,
                          GCInfoIndex gcinfo) {
  LargePage* page = LargePage::Create(page_backend, space, size);
  space.AddPage(page);

  auto* header = new (page->ObjectHeader())
      HeapObjectHeader(HeapObjectHeader::kLargeObjectSizeInHeader, gcinfo);

  stats_collector.NotifyAllocation(size);
  MarkRangeAsYoung(page, page->PayloadStart(), page->PayloadEnd());

  return header->ObjectStart();
}

}  // namespace

constexpr size_t ObjectAllocator::kSmallestSpaceSize;

ObjectAllocator::ObjectAllocator(RawHeap& heap, PageBackend& page_backend,
                                 StatsCollector& stats_collector,
                                 PreFinalizerHandler& prefinalizer_handler)
    : raw_heap_(heap),
      page_backend_(page_backend),
      stats_collector_(stats_collector),
      prefinalizer_handler_(prefinalizer_handler) {}

void* ObjectAllocator::OutOfLineAllocate(NormalPageSpace& space, size_t size,
                                         GCInfoIndex gcinfo) {
  void* memory = OutOfLineAllocateImpl(space, size, gcinfo);
  stats_collector_.NotifySafePointForConservativeCollection();
  raw_heap_.heap()->AdvanceIncrementalGarbageCollectionOnAllocationIfNeeded();
  if (prefinalizer_handler_.IsInvokingPreFinalizers()) {
    // Objects allocated during pre finalizers should be allocated as black
    // since marking is already done. Atomics are not needed because there is
    // no concurrent marking in the background.
    HeapObjectHeader::FromObject(memory).MarkNonAtomic();
    // Resetting the allocation buffer forces all further allocations in pre
    // finalizers to go through this slow path.
    ReplaceLinearAllocationBuffer(space, stats_collector_, nullptr, 0);
    prefinalizer_handler_.NotifyAllocationInPrefinalizer(size);
  }
  return memory;
}

void* ObjectAllocator::OutOfLineAllocateImpl(NormalPageSpace& space,
                                             size_t size, GCInfoIndex gcinfo) {
  DCHECK_EQ(0, size & kAllocationMask);
  DCHECK_LE(kFreeListEntrySize, size);
  // Out-of-line allocation allows for checking this is all situations.
  CHECK(!in_disallow_gc_scope());

  // 1. If this allocation is big enough, allocate a large object.
  if (size >= kLargeObjectSizeThreshold) {
    auto& large_space = LargePageSpace::From(
        *raw_heap_.Space(RawHeap::RegularSpaceType::kLarge));
    return AllocateLargeObject(page_backend_, large_space, stats_collector_,
                               size, gcinfo);
  }

  // 2. Try to allocate from the freelist.
  if (void* result = AllocateFromFreeList(space, size, gcinfo)) {
    return result;
  }

  // 3. Lazily sweep pages of this heap until we find a freed area for
  // this allocation or we finish sweeping all pages of this heap.
  Sweeper& sweeper = raw_heap_.heap()->sweeper();
  // TODO(chromium:1056170): Investigate whether this should be a loop which
  // would result in more agressive re-use of memory at the expense of
  // potentially larger allocation time.
  if (sweeper.SweepForAllocationIfRunning(&space, size)) {
    // Sweeper found a block of at least `size` bytes. Allocation from the free
    // list may still fail as actual  buckets are not exhaustively searched for
    // a suitable block. Instead, buckets are tested from larger sizes that are
    // guaranteed to fit the block to smaller bucket sizes that may only
    // potentially fit the block. For the bucket that may exactly fit the
    // allocation of `size` bytes (no overallocation), only the first entry is
    // checked.
    if (void* result = AllocateFromFreeList(space, size, gcinfo)) {
      return result;
    }
  }

  // 4. Complete sweeping.
  sweeper.FinishIfRunning();
  // TODO(chromium:1056170): Make use of the synchronously freed memory.

  // 5. Add a new page to this heap.
  auto* new_page = NormalPage::Create(page_backend_, space);
  space.AddPage(new_page);

  // 6. Set linear allocation buffer to new page.
  ReplaceLinearAllocationBuffer(space, stats_collector_,
                                new_page->PayloadStart(),
                                new_page->PayloadSize());

  // 7. Allocate from it. The allocation must succeed.
  void* result = AllocateObjectOnSpace(space, size, gcinfo);
  CHECK(result);

  return result;
}

void* ObjectAllocator::AllocateFromFreeList(NormalPageSpace& space, size_t size,
                                            GCInfoIndex gcinfo) {
  const FreeList::Block entry = space.free_list().Allocate(size);
  if (!entry.address) return nullptr;

  // Assume discarded memory on that page is now zero.
  auto& page = *NormalPage::From(BasePage::FromPayload(entry.address));
  if (page.discarded_memory()) {
    stats_collector_.DecrementDiscardedMemory(page.discarded_memory());
    page.ResetDiscardedMemory();
  }

  ReplaceLinearAllocationBuffer(
      space, stats_collector_, static_cast<Address>(entry.address), entry.size);

  return AllocateObjectOnSpace(space, size, gcinfo);
}

void ObjectAllocator::ResetLinearAllocationBuffers() {
  class Resetter : public HeapVisitor<Resetter> {
   public:
    explicit Resetter(StatsCollector& stats) : stats_collector_(stats) {}

    bool VisitLargePageSpace(LargePageSpace&) { return true; }

    bool VisitNormalPageSpace(NormalPageSpace& space) {
      ReplaceLinearAllocationBuffer(space, stats_collector_, nullptr, 0);
      return true;
    }

   private:
    StatsCollector& stats_collector_;
  } visitor(stats_collector_);

  visitor.Traverse(raw_heap_);
}

void ObjectAllocator::Terminate() {
  ResetLinearAllocationBuffers();
}

bool ObjectAllocator::in_disallow_gc_scope() const {
  return raw_heap_.heap()->in_disallow_gc_scope();
}

}  // namespace internal
}  // namespace cppgc