summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/factory-base.cc
blob: a87611e068fef25b67c42b0bf576c23add4612a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/heap/factory-base.h"

#include "src/ast/ast-source-ranges.h"
#include "src/ast/ast.h"
#include "src/execution/local-isolate.h"
#include "src/handles/handles-inl.h"
#include "src/heap/factory.h"
#include "src/heap/heap-inl.h"
#include "src/heap/local-factory-inl.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/read-only-heap.h"
#include "src/logging/local-logger.h"
#include "src/logging/log.h"
#include "src/objects/literal-objects-inl.h"
#include "src/objects/module-inl.h"
#include "src/objects/oddball.h"
#include "src/objects/shared-function-info-inl.h"
#include "src/objects/source-text-module.h"
#include "src/objects/string-inl.h"
#include "src/objects/string.h"
#include "src/objects/template-objects-inl.h"

namespace v8 {
namespace internal {

template <typename Impl>
template <AllocationType allocation>
Handle<HeapNumber> FactoryBase<Impl>::NewHeapNumber() {
  STATIC_ASSERT(HeapNumber::kSize <= kMaxRegularHeapObjectSize);
  Map map = read_only_roots().heap_number_map();
  HeapObject result = AllocateRawWithImmortalMap(HeapNumber::kSize, allocation,
                                                 map, kDoubleUnaligned);
  return handle(HeapNumber::cast(result), isolate());
}

template V8_EXPORT_PRIVATE Handle<HeapNumber>
FactoryBase<Factory>::NewHeapNumber<AllocationType::kYoung>();
template V8_EXPORT_PRIVATE Handle<HeapNumber>
FactoryBase<Factory>::NewHeapNumber<AllocationType::kOld>();
template V8_EXPORT_PRIVATE Handle<HeapNumber>
FactoryBase<Factory>::NewHeapNumber<AllocationType::kReadOnly>();

template V8_EXPORT_PRIVATE Handle<HeapNumber>
FactoryBase<LocalFactory>::NewHeapNumber<AllocationType::kOld>();

template <typename Impl>
Handle<Struct> FactoryBase<Impl>::NewStruct(InstanceType type,
                                            AllocationType allocation) {
  Map map = Map::GetInstanceTypeMap(read_only_roots(), type);
  int size = map.instance_size();
  HeapObject result = AllocateRawWithImmortalMap(size, allocation, map);
  Handle<Struct> str = handle(Struct::cast(result), isolate());
  str->InitializeBody(size);
  return str;
}

template <typename Impl>
Handle<AccessorPair> FactoryBase<Impl>::NewAccessorPair() {
  Handle<AccessorPair> accessors = Handle<AccessorPair>::cast(
      NewStruct(ACCESSOR_PAIR_TYPE, AllocationType::kOld));
  accessors->set_getter(read_only_roots().null_value(), SKIP_WRITE_BARRIER);
  accessors->set_setter(read_only_roots().null_value(), SKIP_WRITE_BARRIER);
  return accessors;
}

template <typename Impl>
Handle<FixedArray> FactoryBase<Impl>::NewFixedArray(int length,
                                                    AllocationType allocation) {
  DCHECK_LE(0, length);
  if (length == 0) return impl()->empty_fixed_array();
  return NewFixedArrayWithFiller(
      read_only_roots().fixed_array_map_handle(), length,
      read_only_roots().undefined_value_handle(), allocation);
}

template <typename Impl>
Handle<FixedArray> FactoryBase<Impl>::NewFixedArrayWithMap(
    Handle<Map> map, int length, AllocationType allocation) {
  // Zero-length case must be handled outside, where the knowledge about
  // the map is.
  DCHECK_LT(0, length);
  return NewFixedArrayWithFiller(
      map, length, read_only_roots().undefined_value_handle(), allocation);
}

template <typename Impl>
Handle<FixedArray> FactoryBase<Impl>::NewFixedArrayWithHoles(
    int length, AllocationType allocation) {
  DCHECK_LE(0, length);
  if (length == 0) return impl()->empty_fixed_array();
  return NewFixedArrayWithFiller(
      read_only_roots().fixed_array_map_handle(), length,
      read_only_roots().the_hole_value_handle(), allocation);
}

template <typename Impl>
Handle<FixedArray> FactoryBase<Impl>::NewFixedArrayWithFiller(
    Handle<Map> map, int length, Handle<Oddball> filler,
    AllocationType allocation) {
  HeapObject result = AllocateRawFixedArray(length, allocation);
  DCHECK(ReadOnlyHeap::Contains(*map));
  DCHECK(ReadOnlyHeap::Contains(*filler));
  result.set_map_after_allocation(*map, SKIP_WRITE_BARRIER);
  Handle<FixedArray> array = handle(FixedArray::cast(result), isolate());
  array->set_length(length);
  MemsetTagged(array->data_start(), *filler, length);
  return array;
}

template <typename Impl>
Handle<FixedArrayBase> FactoryBase<Impl>::NewFixedDoubleArray(
    int length, AllocationType allocation) {
  if (length == 0) return impl()->empty_fixed_array();
  if (length < 0 || length > FixedDoubleArray::kMaxLength) {
    isolate()->FatalProcessOutOfHeapMemory("invalid array length");
  }
  int size = FixedDoubleArray::SizeFor(length);
  Map map = read_only_roots().fixed_double_array_map();
  HeapObject result =
      AllocateRawWithImmortalMap(size, allocation, map, kDoubleAligned);
  Handle<FixedDoubleArray> array =
      handle(FixedDoubleArray::cast(result), isolate());
  array->set_length(length);
  return array;
}

template <typename Impl>
Handle<WeakFixedArray> FactoryBase<Impl>::NewWeakFixedArrayWithMap(
    Map map, int length, AllocationType allocation) {
  // Zero-length case must be handled outside.
  DCHECK_LT(0, length);
  DCHECK(ReadOnlyHeap::Contains(map));

  HeapObject result =
      AllocateRawArray(WeakFixedArray::SizeFor(length), allocation);
  result.set_map_after_allocation(map, SKIP_WRITE_BARRIER);

  Handle<WeakFixedArray> array =
      handle(WeakFixedArray::cast(result), isolate());
  array->set_length(length);
  MemsetTagged(ObjectSlot(array->data_start()),
               read_only_roots().undefined_value(), length);

  return array;
}

template <typename Impl>
Handle<WeakFixedArray> FactoryBase<Impl>::NewWeakFixedArray(
    int length, AllocationType allocation) {
  DCHECK_LE(0, length);
  if (length == 0) return impl()->empty_weak_fixed_array();
  return NewWeakFixedArrayWithMap(read_only_roots().weak_fixed_array_map(),
                                  length, allocation);
}

template <typename Impl>
Handle<ByteArray> FactoryBase<Impl>::NewByteArray(int length,
                                                  AllocationType allocation) {
  if (length < 0 || length > ByteArray::kMaxLength) {
    isolate()->FatalProcessOutOfHeapMemory("invalid array length");
  }
  int size = ByteArray::SizeFor(length);
  HeapObject result = AllocateRawWithImmortalMap(
      size, allocation, read_only_roots().byte_array_map());
  Handle<ByteArray> array(ByteArray::cast(result), isolate());
  array->set_length(length);
  array->clear_padding();
  return array;
}

template <typename Impl>
Handle<BytecodeArray> FactoryBase<Impl>::NewBytecodeArray(
    int length, const byte* raw_bytecodes, int frame_size, int parameter_count,
    Handle<FixedArray> constant_pool) {
  if (length < 0 || length > BytecodeArray::kMaxLength) {
    isolate()->FatalProcessOutOfHeapMemory("invalid array length");
  }
  // Bytecode array is AllocationType::kOld, so constant pool array should be
  // too.
  DCHECK(!Heap::InYoungGeneration(*constant_pool));

  int size = BytecodeArray::SizeFor(length);
  HeapObject result = AllocateRawWithImmortalMap(
      size, AllocationType::kOld, read_only_roots().bytecode_array_map());
  Handle<BytecodeArray> instance(BytecodeArray::cast(result), isolate());
  instance->set_length(length);
  instance->set_frame_size(frame_size);
  instance->set_parameter_count(parameter_count);
  instance->set_incoming_new_target_or_generator_register(
      interpreter::Register::invalid_value());
  instance->set_osr_loop_nesting_level(0);
  instance->set_bytecode_age(BytecodeArray::kNoAgeBytecodeAge);
  instance->set_constant_pool(*constant_pool);
  instance->set_handler_table(read_only_roots().empty_byte_array());
  instance->set_source_position_table(read_only_roots().undefined_value(),
                                      kReleaseStore);
  CopyBytes(reinterpret_cast<byte*>(instance->GetFirstBytecodeAddress()),
            raw_bytecodes, length);
  instance->clear_padding();

  return instance;
}

template <typename Impl>
Handle<Script> FactoryBase<Impl>::NewScript(Handle<String> source) {
  return NewScriptWithId(source, isolate()->GetNextScriptId());
}

template <typename Impl>
Handle<Script> FactoryBase<Impl>::NewScriptWithId(Handle<String> source,
                                                  int script_id) {
  // Create and initialize script object.
  ReadOnlyRoots roots = read_only_roots();
  Handle<Script> script =
      Handle<Script>::cast(NewStruct(SCRIPT_TYPE, AllocationType::kOld));
  script->set_source(*source);
  script->set_name(roots.undefined_value());
  script->set_id(script_id);
  script->set_line_offset(0);
  script->set_column_offset(0);
  script->set_context_data(roots.undefined_value());
  script->set_type(Script::TYPE_NORMAL);
  script->set_line_ends(roots.undefined_value());
  script->set_eval_from_shared_or_wrapped_arguments(roots.undefined_value());
  script->set_eval_from_position(0);
  script->set_shared_function_infos(roots.empty_weak_fixed_array(),
                                    SKIP_WRITE_BARRIER);
  script->set_flags(0);
  script->set_host_defined_options(roots.empty_fixed_array());

  if (script_id != Script::kTemporaryScriptId) {
    impl()->AddToScriptList(script);
  }

  LOG(isolate(), ScriptEvent(Logger::ScriptEventType::kCreate, script_id));
  return script;
}

template <typename Impl>
Handle<SharedFunctionInfo> FactoryBase<Impl>::NewSharedFunctionInfoForLiteral(
    FunctionLiteral* literal, Handle<Script> script, bool is_toplevel) {
  FunctionKind kind = literal->kind();
  Handle<SharedFunctionInfo> shared =
      NewSharedFunctionInfo(literal->GetName(isolate()), MaybeHandle<Code>(),
                            Builtins::kCompileLazy, kind);
  SharedFunctionInfo::InitFromFunctionLiteral(isolate(), shared, literal,
                                              is_toplevel);
  shared->SetScript(read_only_roots(), *script, literal->function_literal_id(),
                    false);
  return shared;
}

template <typename Impl>
Handle<PreparseData> FactoryBase<Impl>::NewPreparseData(int data_length,
                                                        int children_length) {
  int size = PreparseData::SizeFor(data_length, children_length);
  Handle<PreparseData> result = handle(
      PreparseData::cast(AllocateRawWithImmortalMap(
          size, AllocationType::kOld, read_only_roots().preparse_data_map())),
      isolate());
  result->set_data_length(data_length);
  result->set_children_length(children_length);
  MemsetTagged(result->inner_data_start(), read_only_roots().null_value(),
               children_length);
  result->clear_padding();
  return result;
}

template <typename Impl>
Handle<UncompiledDataWithoutPreparseData>
FactoryBase<Impl>::NewUncompiledDataWithoutPreparseData(
    Handle<String> inferred_name, int32_t start_position,
    int32_t end_position) {
  Handle<UncompiledDataWithoutPreparseData> result = handle(
      UncompiledDataWithoutPreparseData::cast(NewWithImmortalMap(
          impl()->read_only_roots().uncompiled_data_without_preparse_data_map(),
          AllocationType::kOld)),
      isolate());

  result->Init(impl(), *inferred_name, start_position, end_position);
  return result;
}

template <typename Impl>
Handle<UncompiledDataWithPreparseData>
FactoryBase<Impl>::NewUncompiledDataWithPreparseData(
    Handle<String> inferred_name, int32_t start_position, int32_t end_position,
    Handle<PreparseData> preparse_data) {
  Handle<UncompiledDataWithPreparseData> result = handle(
      UncompiledDataWithPreparseData::cast(NewWithImmortalMap(
          impl()->read_only_roots().uncompiled_data_with_preparse_data_map(),
          AllocationType::kOld)),
      isolate());

  result->Init(impl(), *inferred_name, start_position, end_position,
               *preparse_data);

  return result;
}

template <typename Impl>
Handle<SharedFunctionInfo> FactoryBase<Impl>::NewSharedFunctionInfo(
    MaybeHandle<String> maybe_name, MaybeHandle<HeapObject> maybe_function_data,
    int maybe_builtin_index, FunctionKind kind) {
  Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo();

  // Function names are assumed to be flat elsewhere.
  Handle<String> shared_name;
  bool has_shared_name = maybe_name.ToHandle(&shared_name);
  if (has_shared_name) {
    DCHECK(shared_name->IsFlat());
    shared->set_name_or_scope_info(*shared_name, kReleaseStore);
  } else {
    DCHECK_EQ(shared->name_or_scope_info(kAcquireLoad),
              SharedFunctionInfo::kNoSharedNameSentinel);
  }

  Handle<HeapObject> function_data;
  if (maybe_function_data.ToHandle(&function_data)) {
    // If we pass function_data then we shouldn't pass a builtin index, and
    // the function_data should not be code with a builtin.
    DCHECK(!Builtins::IsBuiltinId(maybe_builtin_index));
    DCHECK_IMPLIES(function_data->IsCode(),
                   !Code::cast(*function_data).is_builtin());
    shared->set_function_data(*function_data, kReleaseStore);
  } else if (Builtins::IsBuiltinId(maybe_builtin_index)) {
    shared->set_builtin_id(maybe_builtin_index);
  } else {
    DCHECK(shared->HasBuiltinId());
    DCHECK_EQ(Builtins::kIllegal, shared->builtin_id());
  }

  shared->CalculateConstructAsBuiltin();
  shared->set_kind(kind);

#ifdef VERIFY_HEAP
  if (FLAG_verify_heap) shared->SharedFunctionInfoVerify(isolate());
#endif  // VERIFY_HEAP
  return shared;
}

template <typename Impl>
Handle<ObjectBoilerplateDescription>
FactoryBase<Impl>::NewObjectBoilerplateDescription(int boilerplate,
                                                   int all_properties,
                                                   int index_keys,
                                                   bool has_seen_proto) {
  DCHECK_GE(boilerplate, 0);
  DCHECK_GE(all_properties, index_keys);
  DCHECK_GE(index_keys, 0);

  int backing_store_size =
      all_properties - index_keys - (has_seen_proto ? 1 : 0);
  DCHECK_GE(backing_store_size, 0);
  bool has_different_size_backing_store = boilerplate != backing_store_size;

  // Space for name and value for every boilerplate property + LiteralType flag.
  int size =
      2 * boilerplate + ObjectBoilerplateDescription::kDescriptionStartIndex;

  if (has_different_size_backing_store) {
    // An extra entry for the backing store size.
    size++;
  }

  Handle<ObjectBoilerplateDescription> description =
      Handle<ObjectBoilerplateDescription>::cast(NewFixedArrayWithMap(
          read_only_roots().object_boilerplate_description_map_handle(), size,
          AllocationType::kOld));

  if (has_different_size_backing_store) {
    DCHECK_IMPLIES((boilerplate == (all_properties - index_keys)),
                   has_seen_proto);
    description->set_backing_store_size(backing_store_size);
  }

  description->set_flags(0);

  return description;
}

template <typename Impl>
Handle<ArrayBoilerplateDescription>
FactoryBase<Impl>::NewArrayBoilerplateDescription(
    ElementsKind elements_kind, Handle<FixedArrayBase> constant_values) {
  Handle<ArrayBoilerplateDescription> result =
      Handle<ArrayBoilerplateDescription>::cast(
          NewStruct(ARRAY_BOILERPLATE_DESCRIPTION_TYPE, AllocationType::kOld));
  result->set_elements_kind(elements_kind);
  result->set_constant_elements(*constant_values);
  return result;
}

template <typename Impl>
Handle<TemplateObjectDescription>
FactoryBase<Impl>::NewTemplateObjectDescription(
    Handle<FixedArray> raw_strings, Handle<FixedArray> cooked_strings) {
  DCHECK_EQ(raw_strings->length(), cooked_strings->length());
  DCHECK_LT(0, raw_strings->length());
  Handle<TemplateObjectDescription> result =
      Handle<TemplateObjectDescription>::cast(
          NewStruct(TEMPLATE_OBJECT_DESCRIPTION_TYPE, AllocationType::kOld));
  result->set_raw_strings(*raw_strings);
  result->set_cooked_strings(*cooked_strings);
  return result;
}

template <typename Impl>
Handle<FeedbackMetadata> FactoryBase<Impl>::NewFeedbackMetadata(
    int slot_count, int create_closure_slot_count, AllocationType allocation) {
  DCHECK_LE(0, slot_count);
  int size = FeedbackMetadata::SizeFor(slot_count);
  HeapObject result = AllocateRawWithImmortalMap(
      size, allocation, read_only_roots().feedback_metadata_map());
  Handle<FeedbackMetadata> data(FeedbackMetadata::cast(result), isolate());
  data->set_slot_count(slot_count);
  data->set_create_closure_slot_count(create_closure_slot_count);

  // Initialize the data section to 0.
  int data_size = size - FeedbackMetadata::kHeaderSize;
  Address data_start = data->address() + FeedbackMetadata::kHeaderSize;
  memset(reinterpret_cast<byte*>(data_start), 0, data_size);
  // Fields have been zeroed out but not initialized, so this object will not
  // pass object verification at this point.
  return data;
}

template <typename Impl>
Handle<CoverageInfo> FactoryBase<Impl>::NewCoverageInfo(
    const ZoneVector<SourceRange>& slots) {
  const int slot_count = static_cast<int>(slots.size());

  int size = CoverageInfo::SizeFor(slot_count);
  Map map = read_only_roots().coverage_info_map();
  HeapObject result =
      AllocateRawWithImmortalMap(size, AllocationType::kOld, map);
  Handle<CoverageInfo> info(CoverageInfo::cast(result), isolate());

  info->set_slot_count(slot_count);
  for (int i = 0; i < slot_count; i++) {
    SourceRange range = slots[i];
    info->InitializeSlot(i, range.start, range.end);
  }

  return info;
}

template <typename Impl>
Handle<String> FactoryBase<Impl>::MakeOrFindTwoCharacterString(uint16_t c1,
                                                               uint16_t c2) {
  if ((c1 | c2) <= unibrow::Latin1::kMaxChar) {
    uint8_t buffer[] = {static_cast<uint8_t>(c1), static_cast<uint8_t>(c2)};
    return InternalizeString(Vector<const uint8_t>(buffer, 2));
  }
  uint16_t buffer[] = {c1, c2};
  return InternalizeString(Vector<const uint16_t>(buffer, 2));
}

template <typename Impl>
template <class StringTableKey>
Handle<String> FactoryBase<Impl>::InternalizeStringWithKey(
    StringTableKey* key) {
  return isolate()->string_table()->LookupKey(isolate(), key);
}

template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
    Handle<String> FactoryBase<Factory>::InternalizeStringWithKey(
        OneByteStringKey* key);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
    Handle<String> FactoryBase<Factory>::InternalizeStringWithKey(
        TwoByteStringKey* key);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
    Handle<String> FactoryBase<Factory>::InternalizeStringWithKey(
        SeqOneByteSubStringKey* key);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
    Handle<String> FactoryBase<Factory>::InternalizeStringWithKey(
        SeqTwoByteSubStringKey* key);

template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
    Handle<String> FactoryBase<LocalFactory>::InternalizeStringWithKey(
        OneByteStringKey* key);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
    Handle<String> FactoryBase<LocalFactory>::InternalizeStringWithKey(
        TwoByteStringKey* key);

template <typename Impl>
Handle<String> FactoryBase<Impl>::InternalizeString(
    const Vector<const uint8_t>& string, bool convert_encoding) {
  SequentialStringKey<uint8_t> key(string, HashSeed(read_only_roots()),
                                   convert_encoding);
  return InternalizeStringWithKey(&key);
}

template <typename Impl>
Handle<String> FactoryBase<Impl>::InternalizeString(
    const Vector<const uint16_t>& string, bool convert_encoding) {
  SequentialStringKey<uint16_t> key(string, HashSeed(read_only_roots()),
                                    convert_encoding);
  return InternalizeStringWithKey(&key);
}

template <typename Impl>
Handle<SeqOneByteString> FactoryBase<Impl>::NewOneByteInternalizedString(
    const Vector<const uint8_t>& str, uint32_t hash_field) {
  Handle<SeqOneByteString> result =
      AllocateRawOneByteInternalizedString(str.length(), hash_field);
  DisallowHeapAllocation no_gc;
  MemCopy(result->GetChars(no_gc, SharedStringAccessGuardIfNeeded::NotNeeded()),
          str.begin(), str.length());
  return result;
}

template <typename Impl>
Handle<SeqTwoByteString> FactoryBase<Impl>::NewTwoByteInternalizedString(
    const Vector<const uc16>& str, uint32_t hash_field) {
  Handle<SeqTwoByteString> result =
      AllocateRawTwoByteInternalizedString(str.length(), hash_field);
  DisallowHeapAllocation no_gc;
  MemCopy(result->GetChars(no_gc, SharedStringAccessGuardIfNeeded::NotNeeded()),
          str.begin(), str.length() * kUC16Size);
  return result;
}

template <typename Impl>
MaybeHandle<SeqOneByteString> FactoryBase<Impl>::NewRawOneByteString(
    int length, AllocationType allocation) {
  if (length > String::kMaxLength || length < 0) {
    THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString);
  }
  DCHECK_GT(length, 0);  // Use Factory::empty_string() instead.
  int size = SeqOneByteString::SizeFor(length);
  DCHECK_GE(SeqOneByteString::kMaxSize, size);

  HeapObject result = AllocateRawWithImmortalMap(
      size, allocation, read_only_roots().one_byte_string_map());
  Handle<SeqOneByteString> string =
      handle(SeqOneByteString::cast(result), isolate());
  string->set_length(length);
  string->set_hash_field(String::kEmptyHashField);
  DCHECK_EQ(size, string->Size());
  return string;
}

template <typename Impl>
MaybeHandle<SeqTwoByteString> FactoryBase<Impl>::NewRawTwoByteString(
    int length, AllocationType allocation) {
  if (length > String::kMaxLength || length < 0) {
    THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString);
  }
  DCHECK_GT(length, 0);  // Use Factory::empty_string() instead.
  int size = SeqTwoByteString::SizeFor(length);
  DCHECK_GE(SeqTwoByteString::kMaxSize, size);

  HeapObject result = AllocateRawWithImmortalMap(
      size, allocation, read_only_roots().string_map());
  Handle<SeqTwoByteString> string =
      handle(SeqTwoByteString::cast(result), isolate());
  string->set_length(length);
  string->set_hash_field(String::kEmptyHashField);
  DCHECK_EQ(size, string->Size());
  return string;
}

template <typename Impl>
MaybeHandle<String> FactoryBase<Impl>::NewConsString(
    Handle<String> left, Handle<String> right, AllocationType allocation) {
  if (left->IsThinString()) {
    left = handle(ThinString::cast(*left).actual(), isolate());
  }
  if (right->IsThinString()) {
    right = handle(ThinString::cast(*right).actual(), isolate());
  }
  int left_length = left->length();
  if (left_length == 0) return right;
  int right_length = right->length();
  if (right_length == 0) return left;

  int length = left_length + right_length;

  if (length == 2) {
    uint16_t c1 = left->Get(0);
    uint16_t c2 = right->Get(0);
    return MakeOrFindTwoCharacterString(c1, c2);
  }

  // Make sure that an out of memory exception is thrown if the length
  // of the new cons string is too large.
  if (length > String::kMaxLength || length < 0) {
    THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
  }

  bool left_is_one_byte = left->IsOneByteRepresentation();
  bool right_is_one_byte = right->IsOneByteRepresentation();
  bool is_one_byte = left_is_one_byte && right_is_one_byte;

  // If the resulting string is small make a flat string.
  if (length < ConsString::kMinLength) {
    // Note that neither of the two inputs can be a slice because:
    STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
    DCHECK(left->IsFlat());
    DCHECK(right->IsFlat());

    STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
    if (is_one_byte) {
      Handle<SeqOneByteString> result =
          NewRawOneByteString(length, allocation).ToHandleChecked();
      DisallowHeapAllocation no_gc;
      uint8_t* dest =
          result->GetChars(no_gc, SharedStringAccessGuardIfNeeded::NotNeeded());
      // Copy left part.
      {
        SharedStringAccessGuardIfNeeded access_guard(*left);
        const uint8_t* src =
            left->template GetChars<uint8_t>(no_gc, access_guard);
        CopyChars(dest, src, left_length);
      }
      // Copy right part.
      {
        SharedStringAccessGuardIfNeeded access_guard(*right);
        const uint8_t* src =
            right->template GetChars<uint8_t>(no_gc, access_guard);
        CopyChars(dest + left_length, src, right_length);
      }
      return result;
    }

    Handle<SeqTwoByteString> result =
        NewRawTwoByteString(length, allocation).ToHandleChecked();

    DisallowHeapAllocation no_gc;
    uc16* sink =
        result->GetChars(no_gc, SharedStringAccessGuardIfNeeded::NotNeeded());
    String::WriteToFlat(*left, sink, 0, left->length());
    String::WriteToFlat(*right, sink + left->length(), 0, right->length());
    return result;
  }

  return NewConsString(left, right, length, is_one_byte, allocation);
}

template <typename Impl>
Handle<String> FactoryBase<Impl>::NewConsString(Handle<String> left,
                                                Handle<String> right,
                                                int length, bool one_byte,
                                                AllocationType allocation) {
  DCHECK(!left->IsThinString());
  DCHECK(!right->IsThinString());
  DCHECK_GE(length, ConsString::kMinLength);
  DCHECK_LE(length, String::kMaxLength);

  Handle<ConsString> result = handle(
      ConsString::cast(
          one_byte
              ? NewWithImmortalMap(read_only_roots().cons_one_byte_string_map(),
                                   allocation)
              : NewWithImmortalMap(read_only_roots().cons_string_map(),
                                   allocation)),
      isolate());

  DisallowHeapAllocation no_gc;
  WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);

  result->set_hash_field(String::kEmptyHashField);
  result->set_length(length);
  result->set_first(*left, mode);
  result->set_second(*right, mode);
  return result;
}

template <typename Impl>
Handle<FreshlyAllocatedBigInt> FactoryBase<Impl>::NewBigInt(
    int length, AllocationType allocation) {
  if (length < 0 || length > BigInt::kMaxLength) {
    isolate()->FatalProcessOutOfHeapMemory("invalid BigInt length");
  }
  HeapObject result = AllocateRawWithImmortalMap(
      BigInt::SizeFor(length), allocation, read_only_roots().bigint_map());
  FreshlyAllocatedBigInt bigint = FreshlyAllocatedBigInt::cast(result);
  bigint.clear_padding();
  return handle(bigint, isolate());
}

template <typename Impl>
Handle<ScopeInfo> FactoryBase<Impl>::NewScopeInfo(int length,
                                                  AllocationType type) {
  DCHECK(type == AllocationType::kOld || type == AllocationType::kReadOnly);
  return Handle<ScopeInfo>::cast(NewFixedArrayWithMap(
      read_only_roots().scope_info_map_handle(), length, type));
}

template <typename Impl>
Handle<SourceTextModuleInfo> FactoryBase<Impl>::NewSourceTextModuleInfo() {
  return Handle<SourceTextModuleInfo>::cast(NewFixedArrayWithMap(
      read_only_roots().module_info_map_handle(), SourceTextModuleInfo::kLength,
      AllocationType::kOld));
}

template <typename Impl>
Handle<SharedFunctionInfo> FactoryBase<Impl>::NewSharedFunctionInfo() {
  Map map = read_only_roots().shared_function_info_map();

  Handle<SharedFunctionInfo> shared = handle(
      SharedFunctionInfo::cast(NewWithImmortalMap(map, AllocationType::kOld)),
      isolate());
  int unique_id = -1;
#if V8_SFI_HAS_UNIQUE_ID
  unique_id = isolate()->GetNextUniqueSharedFunctionInfoId();
#endif  // V8_SFI_HAS_UNIQUE_ID

  shared->Init(read_only_roots(), unique_id);

#ifdef VERIFY_HEAP
  if (FLAG_verify_heap) shared->SharedFunctionInfoVerify(isolate());
#endif  // VERIFY_HEAP
  return shared;
}

template <typename Impl>
Handle<DescriptorArray> FactoryBase<Impl>::NewDescriptorArray(
    int number_of_descriptors, int slack, AllocationType allocation) {
  int number_of_all_descriptors = number_of_descriptors + slack;
  // Zero-length case must be handled outside.
  DCHECK_LT(0, number_of_all_descriptors);
  int size = DescriptorArray::SizeFor(number_of_all_descriptors);
  HeapObject obj = AllocateRawWithImmortalMap(
      size, allocation, read_only_roots().descriptor_array_map());
  DescriptorArray array = DescriptorArray::cast(obj);
  array.Initialize(read_only_roots().empty_enum_cache(),
                   read_only_roots().undefined_value(), number_of_descriptors,
                   slack);
  return handle(array, isolate());
}

template <typename Impl>
Handle<ClassPositions> FactoryBase<Impl>::NewClassPositions(int start,
                                                            int end) {
  Handle<ClassPositions> class_positions = Handle<ClassPositions>::cast(
      NewStruct(CLASS_POSITIONS_TYPE, AllocationType::kOld));
  class_positions->set_start(start);
  class_positions->set_end(end);
  return class_positions;
}

template <typename Impl>
Handle<SeqOneByteString>
FactoryBase<Impl>::AllocateRawOneByteInternalizedString(int length,
                                                        uint32_t hash_field) {
  CHECK_GE(String::kMaxLength, length);
  // The canonical empty_string is the only zero-length string we allow.
  DCHECK_IMPLIES(length == 0, !impl()->EmptyStringRootIsInitialized());

  Map map = read_only_roots().one_byte_internalized_string_map();
  int size = SeqOneByteString::SizeFor(length);
  HeapObject result = AllocateRawWithImmortalMap(
      size,
      impl()->CanAllocateInReadOnlySpace() ? AllocationType::kReadOnly
                                           : AllocationType::kOld,
      map);
  Handle<SeqOneByteString> answer =
      handle(SeqOneByteString::cast(result), isolate());
  answer->set_length(length);
  answer->set_hash_field(hash_field);
  DCHECK_EQ(size, answer->Size());
  return answer;
}

template <typename Impl>
Handle<SeqTwoByteString>
FactoryBase<Impl>::AllocateRawTwoByteInternalizedString(int length,
                                                        uint32_t hash_field) {
  CHECK_GE(String::kMaxLength, length);
  DCHECK_NE(0, length);  // Use Heap::empty_string() instead.

  Map map = read_only_roots().internalized_string_map();
  int size = SeqTwoByteString::SizeFor(length);
  HeapObject result =
      AllocateRawWithImmortalMap(size, AllocationType::kOld, map);
  Handle<SeqTwoByteString> answer =
      handle(SeqTwoByteString::cast(result), isolate());
  answer->set_length(length);
  answer->set_hash_field(hash_field);
  DCHECK_EQ(size, result.Size());
  return answer;
}

template <typename Impl>
HeapObject FactoryBase<Impl>::AllocateRawArray(int size,
                                               AllocationType allocation) {
  HeapObject result = AllocateRaw(size, allocation);
  if (!V8_ENABLE_THIRD_PARTY_HEAP_BOOL &&
      (size > Heap::MaxRegularHeapObjectSize(allocation)) &&
      FLAG_use_marking_progress_bar) {
    BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(result);
    chunk->SetFlag<AccessMode::ATOMIC>(MemoryChunk::HAS_PROGRESS_BAR);
  }
  return result;
}

template <typename Impl>
HeapObject FactoryBase<Impl>::AllocateRawFixedArray(int length,
                                                    AllocationType allocation) {
  if (length < 0 || length > FixedArray::kMaxLength) {
    isolate()->FatalProcessOutOfHeapMemory("invalid array length");
  }
  return AllocateRawArray(FixedArray::SizeFor(length), allocation);
}

template <typename Impl>
HeapObject FactoryBase<Impl>::AllocateRawWeakArrayList(
    int capacity, AllocationType allocation) {
  if (capacity < 0 || capacity > WeakArrayList::kMaxCapacity) {
    isolate()->FatalProcessOutOfHeapMemory("invalid array length");
  }
  return AllocateRawArray(WeakArrayList::SizeForCapacity(capacity), allocation);
}

template <typename Impl>
HeapObject FactoryBase<Impl>::NewWithImmortalMap(Map map,
                                                 AllocationType allocation) {
  return AllocateRawWithImmortalMap(map.instance_size(), allocation, map);
}

template <typename Impl>
HeapObject FactoryBase<Impl>::AllocateRawWithImmortalMap(
    int size, AllocationType allocation, Map map,
    AllocationAlignment alignment) {
  // TODO(delphick): Potentially you could also pass a immortal immovable Map
  // from MAP_SPACE here, like external_map or message_object_map, but currently
  // noone does so this check is sufficient.
  DCHECK(ReadOnlyHeap::Contains(map));
  HeapObject result = AllocateRaw(size, allocation, alignment);
  result.set_map_after_allocation(map, SKIP_WRITE_BARRIER);
  return result;
}

template <typename Impl>
HeapObject FactoryBase<Impl>::AllocateRaw(int size, AllocationType allocation,
                                          AllocationAlignment alignment) {
  return impl()->AllocateRaw(size, allocation, alignment);
}

// Instantiate FactoryBase for the two variants we want.
template class EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) FactoryBase<Factory>;
template class EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
    FactoryBase<LocalFactory>;

}  // namespace internal
}  // namespace v8