summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/new-spaces-inl.h
blob: 0f1a3a361aa13eb933b507bd1a67e9364231abcc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_HEAP_NEW_SPACES_INL_H_
#define V8_HEAP_NEW_SPACES_INL_H_

#include "src/base/sanitizer/msan.h"
#include "src/common/globals.h"
#include "src/heap/heap.h"
#include "src/heap/new-spaces.h"
#include "src/heap/spaces-inl.h"
#include "src/objects/objects-inl.h"
#include "src/objects/tagged-impl.h"

namespace v8 {
namespace internal {

// -----------------------------------------------------------------------------
// SemiSpace

bool SemiSpace::Contains(HeapObject o) const {
  BasicMemoryChunk* memory_chunk = BasicMemoryChunk::FromHeapObject(o);
  if (memory_chunk->IsLargePage()) return false;
  return id_ == kToSpace ? memory_chunk->IsToPage()
                         : memory_chunk->IsFromPage();
}

bool SemiSpace::Contains(Object o) const {
  return o.IsHeapObject() && Contains(HeapObject::cast(o));
}

bool SemiSpace::ContainsSlow(Address a) const {
  for (const Page* p : *this) {
    if (p == BasicMemoryChunk::FromAddress(a)) return true;
  }
  return false;
}

// --------------------------------------------------------------------------
// NewSpace

bool NewSpace::Contains(Object o) const {
  return o.IsHeapObject() && Contains(HeapObject::cast(o));
}

bool NewSpace::Contains(HeapObject o) const {
  return BasicMemoryChunk::FromHeapObject(o)->InNewSpace();
}

bool NewSpace::ContainsSlow(Address a) const {
  return from_space_.ContainsSlow(a) || to_space_.ContainsSlow(a);
}

bool NewSpace::ToSpaceContainsSlow(Address a) const {
  return to_space_.ContainsSlow(a);
}

bool NewSpace::ToSpaceContains(Object o) const { return to_space_.Contains(o); }
bool NewSpace::FromSpaceContains(Object o) const {
  return from_space_.Contains(o);
}

// -----------------------------------------------------------------------------
// SemiSpaceObjectIterator

HeapObject SemiSpaceObjectIterator::Next() {
  while (current_ != limit_) {
    if (Page::IsAlignedToPageSize(current_)) {
      Page* page = Page::FromAllocationAreaAddress(current_);
      page = page->next_page();
      DCHECK(page);
      current_ = page->area_start();
      if (current_ == limit_) return HeapObject();
    }
    HeapObject object = HeapObject::FromAddress(current_);
    current_ += object.Size();
    if (!object.IsFreeSpaceOrFiller()) {
      return object;
    }
  }
  return HeapObject();
}

// -----------------------------------------------------------------------------
// NewSpace

AllocationResult NewSpace::AllocateRaw(int size_in_bytes,
                                       AllocationAlignment alignment,
                                       AllocationOrigin origin) {
  DCHECK(!FLAG_single_generation);
  DCHECK(!FLAG_enable_third_party_heap);
#if DEBUG
  VerifyTop();
#endif

  AllocationResult result;

  if (USE_ALLOCATION_ALIGNMENT_BOOL && alignment != kTaggedAligned) {
    result = AllocateFastAligned(size_in_bytes, nullptr, alignment, origin);
  } else {
    result = AllocateFastUnaligned(size_in_bytes, origin);
  }

  return result.IsFailure() ? AllocateRawSlow(size_in_bytes, alignment, origin)
                            : result;
}

AllocationResult NewSpace::AllocateFastUnaligned(int size_in_bytes,
                                                 AllocationOrigin origin) {
  if (!allocation_info_->CanIncrementTop(size_in_bytes)) {
    return AllocationResult::Failure();
  }
  HeapObject obj =
      HeapObject::FromAddress(allocation_info_->IncrementTop(size_in_bytes));
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);

  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(obj.address(), size_in_bytes);

  if (FLAG_trace_allocations_origins) {
    UpdateAllocationOrigins(origin);
  }

  return AllocationResult::FromObject(obj);
}

AllocationResult NewSpace::AllocateFastAligned(
    int size_in_bytes, int* result_aligned_size_in_bytes,
    AllocationAlignment alignment, AllocationOrigin origin) {
  Address top = allocation_info_->top();
  int filler_size = Heap::GetFillToAlign(top, alignment);
  int aligned_size_in_bytes = size_in_bytes + filler_size;

  if (!allocation_info_->CanIncrementTop(aligned_size_in_bytes)) {
    return AllocationResult::Failure();
  }
  HeapObject obj = HeapObject::FromAddress(
      allocation_info_->IncrementTop(aligned_size_in_bytes));
  if (result_aligned_size_in_bytes)
    *result_aligned_size_in_bytes = aligned_size_in_bytes;
  DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);

  if (filler_size > 0) {
    obj = heap()->PrecedeWithFiller(obj, filler_size);
  }

  MSAN_ALLOCATED_UNINITIALIZED_MEMORY(obj.address(), size_in_bytes);

  if (FLAG_trace_allocations_origins) {
    UpdateAllocationOrigins(origin);
  }

  return AllocationResult::FromObject(obj);
}

V8_WARN_UNUSED_RESULT inline AllocationResult NewSpace::AllocateRawSynchronized(
    int size_in_bytes, AllocationAlignment alignment, AllocationOrigin origin) {
  base::MutexGuard guard(&mutex_);
  return AllocateRaw(size_in_bytes, alignment, origin);
}

}  // namespace internal
}  // namespace v8

#endif  // V8_HEAP_NEW_SPACES_INL_H_