summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/new-spaces.h
blob: 7f6f46c78b18439053acbb94916375951e7a8f1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_HEAP_NEW_SPACES_H_
#define V8_HEAP_NEW_SPACES_H_

#include <atomic>
#include <map>
#include <memory>

#include "src/base/macros.h"
#include "src/base/platform/mutex.h"
#include "src/common/globals.h"
#include "src/heap/heap.h"
#include "src/heap/spaces.h"
#include "src/logging/log.h"
#include "src/objects/heap-object.h"

namespace v8 {
namespace internal {

class Heap;
class MemoryChunk;

enum SemiSpaceId { kFromSpace = 0, kToSpace = 1 };

using ParkedAllocationBuffer = std::pair<int, Address>;
using ParkedAllocationBuffersVector = std::vector<ParkedAllocationBuffer>;

// -----------------------------------------------------------------------------
// SemiSpace in young generation
//
// A SemiSpace is a contiguous chunk of memory holding page-like memory chunks.
// The mark-compact collector  uses the memory of the first page in the from
// space as a marking stack when tracing live objects.
class SemiSpace : public Space {
 public:
  using iterator = PageIterator;
  using const_iterator = ConstPageIterator;

  static void Swap(SemiSpace* from, SemiSpace* to);

  SemiSpace(Heap* heap, SemiSpaceId semispace)
      : Space(heap, NEW_SPACE, new NoFreeList()),
        current_capacity_(0),
        target_capacity_(0),
        maximum_capacity_(0),
        minimum_capacity_(0),
        age_mark_(kNullAddress),
        id_(semispace),
        current_page_(nullptr) {}

  inline bool Contains(HeapObject o) const;
  inline bool Contains(Object o) const;
  inline bool ContainsSlow(Address a) const;

  void SetUp(size_t initial_capacity, size_t maximum_capacity);
  void TearDown();

  bool Commit();
  bool Uncommit();
  bool IsCommitted() { return !memory_chunk_list_.Empty(); }

  // Grow the semispace to the new capacity.  The new capacity requested must
  // be larger than the current capacity and less than the maximum capacity.
  bool GrowTo(size_t new_capacity);

  // Shrinks the semispace to the new capacity.  The new capacity requested
  // must be more than the amount of used memory in the semispace and less
  // than the current capacity.
  void ShrinkTo(size_t new_capacity);

  bool EnsureCurrentCapacity();

  // Returns the start address of the first page of the space.
  Address space_start() {
    DCHECK_NE(memory_chunk_list_.front(), nullptr);
    return memory_chunk_list_.front()->area_start();
  }

  Page* current_page() { return current_page_; }

  // Returns the start address of the current page of the space.
  Address page_low() { return current_page_->area_start(); }

  // Returns one past the end address of the current page of the space.
  Address page_high() { return current_page_->area_end(); }

  bool AdvancePage() {
    Page* next_page = current_page_->next_page();
    // We cannot expand if we reached the target capcity. Note
    // that we need to account for the next page already for this check as we
    // could potentially fill the whole page after advancing.
    if (next_page == nullptr || (current_capacity_ == target_capacity_)) {
      return false;
    }
    current_page_ = next_page;
    current_capacity_ += Page::kPageSize;
    return true;
  }

  // Resets the space to using the first page.
  void Reset();

  void RemovePage(Page* page);
  void PrependPage(Page* page);
  void MovePageToTheEnd(Page* page);

  Page* InitializePage(MemoryChunk* chunk);

  // Age mark accessors.
  Address age_mark() { return age_mark_; }
  void set_age_mark(Address mark);

  // Returns the current capacity of the semispace.
  size_t current_capacity() { return current_capacity_; }

  // Returns the target capacity of the semispace.
  size_t target_capacity() { return target_capacity_; }

  // Returns the maximum capacity of the semispace.
  size_t maximum_capacity() { return maximum_capacity_; }

  // Returns the initial capacity of the semispace.
  size_t minimum_capacity() { return minimum_capacity_; }

  SemiSpaceId id() { return id_; }

  // Approximate amount of physical memory committed for this space.
  size_t CommittedPhysicalMemory() override;

  // If we don't have these here then SemiSpace will be abstract.  However
  // they should never be called:

  size_t Size() override { UNREACHABLE(); }

  size_t SizeOfObjects() override { return Size(); }

  size_t Available() override { UNREACHABLE(); }

  Page* first_page() { return reinterpret_cast<Page*>(Space::first_page()); }
  Page* last_page() { return reinterpret_cast<Page*>(Space::last_page()); }

  const Page* first_page() const {
    return reinterpret_cast<const Page*>(Space::first_page());
  }

  iterator begin() { return iterator(first_page()); }
  iterator end() { return iterator(nullptr); }

  const_iterator begin() const { return const_iterator(first_page()); }
  const_iterator end() const { return const_iterator(nullptr); }

  std::unique_ptr<ObjectIterator> GetObjectIterator(Heap* heap) override;

#ifdef DEBUG
  V8_EXPORT_PRIVATE void Print() override;
  // Validate a range of of addresses in a SemiSpace.
  // The "from" address must be on a page prior to the "to" address,
  // in the linked page order, or it must be earlier on the same page.
  static void AssertValidRange(Address from, Address to);
#else
  // Do nothing.
  inline static void AssertValidRange(Address from, Address to) {}
#endif

#ifdef VERIFY_HEAP
  virtual void Verify();
#endif

 private:
  void RewindPages(int num_pages);

  // Copies the flags into the masked positions on all pages in the space.
  void FixPagesFlags(intptr_t flags, intptr_t flag_mask);

  // The currently committed space capacity.
  size_t current_capacity_;

  // The targetted committed space capacity.
  size_t target_capacity_;

  // The maximum capacity that can be used by this space. A space cannot grow
  // beyond that size.
  size_t maximum_capacity_;

  // The minimum capacity for the space. A space cannot shrink below this size.
  size_t minimum_capacity_;

  // Used to govern object promotion during mark-compact collection.
  Address age_mark_;

  SemiSpaceId id_;

  Page* current_page_;

  friend class NewSpace;
  friend class SemiSpaceObjectIterator;
};

// A SemiSpaceObjectIterator is an ObjectIterator that iterates over the active
// semispace of the heap's new space.  It iterates over the objects in the
// semispace from a given start address (defaulting to the bottom of the
// semispace) to the top of the semispace.  New objects allocated after the
// iterator is created are not iterated.
class SemiSpaceObjectIterator : public ObjectIterator {
 public:
  // Create an iterator over the allocated objects in the given to-space.
  explicit SemiSpaceObjectIterator(NewSpace* space);

  inline HeapObject Next() override;

 private:
  void Initialize(Address start, Address end);

  // The current iteration point.
  Address current_;
  // The end of iteration.
  Address limit_;
};

// -----------------------------------------------------------------------------
// The young generation space.
//
// The new space consists of a contiguous pair of semispaces.  It simply
// forwards most functions to the appropriate semispace.

class V8_EXPORT_PRIVATE NewSpace
    : NON_EXPORTED_BASE(public SpaceWithLinearArea) {
 public:
  using iterator = PageIterator;
  using const_iterator = ConstPageIterator;

  NewSpace(Heap* heap, v8::PageAllocator* page_allocator,
           size_t initial_semispace_capacity, size_t max_semispace_capacity);

  ~NewSpace() override { TearDown(); }

  inline bool ContainsSlow(Address a) const;
  inline bool Contains(Object o) const;
  inline bool Contains(HeapObject o) const;

  // Tears down the space.  Heap memory was not allocated by the space, so it
  // is not deallocated here.
  void TearDown();

  void ResetParkedAllocationBuffers();

  // Flip the pair of spaces.
  void Flip();

  // Grow the capacity of the semispaces.  Assumes that they are not at
  // their maximum capacity.
  void Grow();

  // Shrink the capacity of the semispaces.
  void Shrink();

  // Return the allocated bytes in the active semispace.
  size_t Size() final {
    DCHECK_GE(top(), to_space_.page_low());
    return (to_space_.current_capacity() - Page::kPageSize) / Page::kPageSize *
               MemoryChunkLayout::AllocatableMemoryInDataPage() +
           static_cast<size_t>(top() - to_space_.page_low());
  }

  size_t SizeOfObjects() final { return Size(); }

  // Return the allocatable capacity of a semispace.
  size_t Capacity() {
    SLOW_DCHECK(to_space_.target_capacity() == from_space_.target_capacity());
    return (to_space_.target_capacity() / Page::kPageSize) *
           MemoryChunkLayout::AllocatableMemoryInDataPage();
  }

  // Return the current size of a semispace, allocatable and non-allocatable
  // memory.
  size_t TotalCapacity() {
    DCHECK(to_space_.target_capacity() == from_space_.target_capacity());
    return to_space_.target_capacity();
  }

  // Committed memory for NewSpace is the committed memory of both semi-spaces
  // combined.
  size_t CommittedMemory() final {
    return from_space_.CommittedMemory() + to_space_.CommittedMemory();
  }

  size_t MaximumCommittedMemory() final {
    return from_space_.MaximumCommittedMemory() +
           to_space_.MaximumCommittedMemory();
  }

  // Approximate amount of physical memory committed for this space.
  size_t CommittedPhysicalMemory() final;

  // Return the available bytes without growing.
  size_t Available() final {
    DCHECK_GE(Capacity(), Size());
    return Capacity() - Size();
  }

  size_t ExternalBackingStoreBytes(ExternalBackingStoreType type) const final {
    if (type == ExternalBackingStoreType::kArrayBuffer)
      return heap()->YoungArrayBufferBytes();
    DCHECK_EQ(0, from_space_.ExternalBackingStoreBytes(type));
    return to_space_.ExternalBackingStoreBytes(type);
  }

  size_t ExternalBackingStoreBytes() {
    size_t result = 0;
    for (int i = 0; i < ExternalBackingStoreType::kNumTypes; i++) {
      result +=
          ExternalBackingStoreBytes(static_cast<ExternalBackingStoreType>(i));
    }
    return result;
  }

  size_t AllocatedSinceLastGC() {
    const Address age_mark = to_space_.age_mark();
    DCHECK_NE(age_mark, kNullAddress);
    DCHECK_NE(top(), kNullAddress);
    Page* const age_mark_page = Page::FromAllocationAreaAddress(age_mark);
    Page* const last_page = Page::FromAllocationAreaAddress(top());
    Page* current_page = age_mark_page;
    size_t allocated = 0;
    if (current_page != last_page) {
      DCHECK_EQ(current_page, age_mark_page);
      DCHECK_GE(age_mark_page->area_end(), age_mark);
      allocated += age_mark_page->area_end() - age_mark;
      current_page = current_page->next_page();
    } else {
      DCHECK_GE(top(), age_mark);
      return top() - age_mark;
    }
    while (current_page != last_page) {
      DCHECK_NE(current_page, age_mark_page);
      allocated += MemoryChunkLayout::AllocatableMemoryInDataPage();
      current_page = current_page->next_page();
    }
    DCHECK_GE(top(), current_page->area_start());
    allocated += top() - current_page->area_start();
    DCHECK_LE(allocated, Size());
    return allocated;
  }

  void MovePageFromSpaceToSpace(Page* page) {
    DCHECK(page->IsFromPage());
    from_space_.RemovePage(page);
    to_space_.PrependPage(page);
  }

  bool Rebalance();

  // Return the maximum capacity of a semispace.
  size_t MaximumCapacity() {
    DCHECK(to_space_.maximum_capacity() == from_space_.maximum_capacity());
    return to_space_.maximum_capacity();
  }

  bool IsAtMaximumCapacity() { return TotalCapacity() == MaximumCapacity(); }

  // Returns the initial capacity of a semispace.
  size_t InitialTotalCapacity() {
    DCHECK(to_space_.minimum_capacity() == from_space_.minimum_capacity());
    return to_space_.minimum_capacity();
  }

  void VerifyTop();

  Address original_top_acquire() {
    return original_top_.load(std::memory_order_acquire);
  }
  Address original_limit_relaxed() {
    return original_limit_.load(std::memory_order_relaxed);
  }

  // Return the address of the first allocatable address in the active
  // semispace. This may be the address where the first object resides.
  Address first_allocatable_address() { return to_space_.space_start(); }

  // Get the age mark of the inactive semispace.
  Address age_mark() { return from_space_.age_mark(); }
  // Set the age mark in the active semispace.
  void set_age_mark(Address mark) { to_space_.set_age_mark(mark); }

  V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult
  AllocateRaw(int size_in_bytes, AllocationAlignment alignment,
              AllocationOrigin origin = AllocationOrigin::kRuntime);

  V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawSynchronized(
      int size_in_bytes, AllocationAlignment alignment,
      AllocationOrigin origin = AllocationOrigin::kRuntime);

  // Reset the allocation pointer to the beginning of the active semispace.
  void ResetLinearAllocationArea();

  // When inline allocation stepping is active, either because of incremental
  // marking, idle scavenge, or allocation statistics gathering, we 'interrupt'
  // inline allocation every once in a while. This is done by setting
  // allocation_info_.limit to be lower than the actual limit and and increasing
  // it in steps to guarantee that the observers are notified periodically.
  void UpdateInlineAllocationLimit(size_t size_in_bytes) override;

  inline bool ToSpaceContainsSlow(Address a) const;
  inline bool ToSpaceContains(Object o) const;
  inline bool FromSpaceContains(Object o) const;

  // Try to switch the active semispace to a new, empty, page.
  // Returns false if this isn't possible or reasonable (i.e., there
  // are no pages, or the current page is already empty), or true
  // if successful.
  bool AddFreshPage();
  bool AddFreshPageSynchronized();

  bool AddParkedAllocationBuffer(int size_in_bytes,
                                 AllocationAlignment alignment);

#ifdef VERIFY_HEAP
  // Verify the active semispace.
  virtual void Verify(Isolate* isolate);
#endif

#ifdef DEBUG
  // Print the active semispace.
  void Print() override { to_space_.Print(); }
#endif

  // Return whether the operation succeeded.
  bool CommitFromSpaceIfNeeded() {
    if (from_space_.IsCommitted()) return true;
    return from_space_.Commit();
  }

  bool UncommitFromSpace() {
    if (!from_space_.IsCommitted()) return true;
    return from_space_.Uncommit();
  }

  bool IsFromSpaceCommitted() { return from_space_.IsCommitted(); }

  SemiSpace* active_space() { return &to_space_; }

  Page* first_page() { return to_space_.first_page(); }
  Page* last_page() { return to_space_.last_page(); }

  iterator begin() { return to_space_.begin(); }
  iterator end() { return to_space_.end(); }

  const_iterator begin() const { return to_space_.begin(); }
  const_iterator end() const { return to_space_.end(); }

  std::unique_ptr<ObjectIterator> GetObjectIterator(Heap* heap) override;

  SemiSpace& from_space() { return from_space_; }
  SemiSpace& to_space() { return to_space_; }

  void MoveOriginalTopForward() {
    base::SharedMutexGuard<base::kExclusive> guard(&pending_allocation_mutex_);
    DCHECK_GE(top(), original_top_);
    DCHECK_LE(top(), original_limit_);
    original_top_.store(top(), std::memory_order_release);
  }

  void MaybeFreeUnusedLab(LinearAllocationArea info);

  base::SharedMutex* pending_allocation_mutex() {
    return &pending_allocation_mutex_;
  }

 private:
  static const int kAllocationBufferParkingThreshold = 4 * KB;

  // Update linear allocation area to match the current to-space page.
  void UpdateLinearAllocationArea(Address known_top = 0);

  base::Mutex mutex_;

  // The top and the limit at the time of setting the linear allocation area.
  // These values can be accessed by background tasks. Protected by
  // pending_allocation_mutex_.
  std::atomic<Address> original_top_;
  std::atomic<Address> original_limit_;

  // Protects original_top_ and original_limit_.
  base::SharedMutex pending_allocation_mutex_;

  // The semispaces.
  SemiSpace to_space_;
  SemiSpace from_space_;
  VirtualMemory reservation_;

  ParkedAllocationBuffersVector parked_allocation_buffers_;

  // Internal allocation methods.
  V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult
  AllocateFastAligned(int size_in_bytes, int* aligned_size_in_bytes,
                      AllocationAlignment alignment, AllocationOrigin origin);

  V8_WARN_UNUSED_RESULT V8_INLINE AllocationResult
  AllocateFastUnaligned(int size_in_bytes, AllocationOrigin origin);

  V8_WARN_UNUSED_RESULT AllocationResult
  AllocateRawSlow(int size_in_bytes, AllocationAlignment alignment,
                  AllocationOrigin origin);

  V8_WARN_UNUSED_RESULT AllocationResult
  AllocateRawAligned(int size_in_bytes, AllocationAlignment alignment,
                     AllocationOrigin origin = AllocationOrigin::kRuntime);

  V8_WARN_UNUSED_RESULT AllocationResult AllocateRawUnaligned(
      int size_in_bytes, AllocationOrigin origin = AllocationOrigin::kRuntime);

  bool EnsureAllocation(int size_in_bytes, AllocationAlignment alignment);
  bool SupportsAllocationObserver() override { return true; }

  friend class SemiSpaceObjectIterator;
};

// For contiguous spaces, top should be in the space (or at the end) and limit
// should be the end of the space.
#define DCHECK_SEMISPACE_ALLOCATION_INFO(info, space) \
  SLOW_DCHECK((space).page_low() <= (info).top() &&   \
              (info).top() <= (space).page_high() &&  \
              (info).limit() <= (space).page_high())

}  // namespace internal
}  // namespace v8

#endif  // V8_HEAP_NEW_SPACES_H_