summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/paged-spaces.h
blob: 198f12e103cba4d4db4ff2b635b3e2428a090fd8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_HEAP_PAGED_SPACES_H_
#define V8_HEAP_PAGED_SPACES_H_

#include <memory>
#include <utility>

#include "src/base/bounds.h"
#include "src/base/macros.h"
#include "src/base/optional.h"
#include "src/base/platform/mutex.h"
#include "src/common/globals.h"
#include "src/flags/flags.h"
#include "src/heap/allocation-stats.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/spaces.h"

namespace v8 {
namespace internal {

class Heap;
class HeapObject;
class Isolate;
class LocalSpace;
class ObjectVisitor;

// -----------------------------------------------------------------------------
// Heap object iterator in old/map spaces.
//
// A PagedSpaceObjectIterator iterates objects from the bottom of the given
// space to its top or from the bottom of the given page to its top.
//
// If objects are allocated in the page during iteration the iterator may
// or may not iterate over those objects.  The caller must create a new
// iterator in order to be sure to visit these new objects.
class V8_EXPORT_PRIVATE PagedSpaceObjectIterator : public ObjectIterator {
 public:
  // Creates a new object iterator in a given space.
  PagedSpaceObjectIterator(Heap* heap, PagedSpace* space);
  PagedSpaceObjectIterator(Heap* heap, PagedSpace* space, Page* page);

  // Advance to the next object, skipping free spaces and other fillers and
  // skipping the special garbage section of which there is one per space.
  // Returns nullptr when the iteration has ended.
  inline HeapObject Next() override;

 private:
  // Fast (inlined) path of next().
  inline HeapObject FromCurrentPage();

  // Slow path of next(), goes into the next page.  Returns false if the
  // iteration has ended.
  bool AdvanceToNextPage();

  Address cur_addr_;  // Current iteration point.
  Address cur_end_;   // End iteration point.
  PagedSpace* space_;
  PageRange page_range_;
  PageRange::iterator current_page_;
};

class V8_EXPORT_PRIVATE PagedSpace
    : NON_EXPORTED_BASE(public SpaceWithLinearArea) {
 public:
  using iterator = PageIterator;
  using const_iterator = ConstPageIterator;

  static const size_t kCompactionMemoryWanted = 500 * KB;

  // Creates a space with an id.
  PagedSpace(Heap* heap, AllocationSpace id, Executability executable,
             FreeList* free_list,
             LocalSpaceKind local_space_kind = LocalSpaceKind::kNone);

  ~PagedSpace() override { TearDown(); }

  // Checks whether an object/address is in this space.
  inline bool Contains(Address a) const;
  inline bool Contains(Object o) const;
  bool ContainsSlow(Address addr) const;

  // Does the space need executable memory?
  Executability executable() { return executable_; }

  // Prepares for a mark-compact GC.
  void PrepareForMarkCompact();

  // Current capacity without growing (Size() + Available()).
  size_t Capacity() { return accounting_stats_.Capacity(); }

  // Approximate amount of physical memory committed for this space.
  size_t CommittedPhysicalMemory() override;

  // Sets the capacity, the available space and the wasted space to zero.
  // The stats are rebuilt during sweeping by adding each page to the
  // capacity and the size when it is encountered.  As free spaces are
  // discovered during the sweeping they are subtracted from the size and added
  // to the available and wasted totals. The free list is cleared as well.
  void ClearAllocatorState() {
    accounting_stats_.ClearSize();
    free_list_->Reset();
  }

  // Available bytes without growing.  These are the bytes on the free list.
  // The bytes in the linear allocation area are not included in this total
  // because updating the stats would slow down allocation.  New pages are
  // immediately added to the free list so they show up here.
  size_t Available() override;

  // Allocated bytes in this space.  Garbage bytes that were not found due to
  // concurrent sweeping are counted as being allocated!  The bytes in the
  // current linear allocation area (between top and limit) are also counted
  // here.
  size_t Size() override { return accounting_stats_.Size(); }

  // Wasted bytes in this space.  These are just the bytes that were thrown away
  // due to being too small to use for allocation.
  virtual size_t Waste() { return free_list_->wasted_bytes(); }

  // Allocate the requested number of bytes in the space if possible, return a
  // failure object if not.
  V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawUnaligned(
      int size_in_bytes, AllocationOrigin origin = AllocationOrigin::kRuntime);

  // Allocate the requested number of bytes in the space double aligned if
  // possible, return a failure object if not.
  V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRawAligned(
      int size_in_bytes, AllocationAlignment alignment,
      AllocationOrigin origin = AllocationOrigin::kRuntime);

  // Allocate the requested number of bytes in the space and consider allocation
  // alignment if needed.
  V8_WARN_UNUSED_RESULT inline AllocationResult AllocateRaw(
      int size_in_bytes, AllocationAlignment alignment,
      AllocationOrigin origin = AllocationOrigin::kRuntime);

  // Allocate the requested number of bytes in the space from a background
  // thread.
  V8_WARN_UNUSED_RESULT base::Optional<std::pair<Address, size_t>>
  RawRefillLabBackground(LocalHeap* local_heap, size_t min_size_in_bytes,
                         size_t max_size_in_bytes,
                         AllocationAlignment alignment,
                         AllocationOrigin origin);

  size_t Free(Address start, size_t size_in_bytes, SpaceAccountingMode mode) {
    if (size_in_bytes == 0) return 0;
    heap()->CreateFillerObjectAtBackground(
        start, static_cast<int>(size_in_bytes),
        ClearFreedMemoryMode::kDontClearFreedMemory);
    if (mode == SpaceAccountingMode::kSpaceAccounted) {
      return AccountedFree(start, size_in_bytes);
    } else {
      return UnaccountedFree(start, size_in_bytes);
    }
  }

  // Give a block of memory to the space's free list.  It might be added to
  // the free list or accounted as waste.
  // If add_to_freelist is false then just accounting stats are updated and
  // no attempt to add area to free list is made.
  size_t AccountedFree(Address start, size_t size_in_bytes) {
    size_t wasted = free_list_->Free(start, size_in_bytes, kLinkCategory);
    Page* page = Page::FromAddress(start);
    accounting_stats_.DecreaseAllocatedBytes(size_in_bytes, page);
    DCHECK_GE(size_in_bytes, wasted);
    return size_in_bytes - wasted;
  }

  size_t UnaccountedFree(Address start, size_t size_in_bytes) {
    size_t wasted = free_list_->Free(start, size_in_bytes, kDoNotLinkCategory);
    DCHECK_GE(size_in_bytes, wasted);
    return size_in_bytes - wasted;
  }

  inline bool TryFreeLast(HeapObject object, int object_size);

  void ResetFreeList();

  // Empty space linear allocation area, returning unused area to free list.
  void FreeLinearAllocationArea();

  void MakeLinearAllocationAreaIterable();

  void MarkLinearAllocationAreaBlack();
  void UnmarkLinearAllocationArea();

  void DecreaseAllocatedBytes(size_t bytes, Page* page) {
    accounting_stats_.DecreaseAllocatedBytes(bytes, page);
  }
  void IncreaseAllocatedBytes(size_t bytes, Page* page) {
    accounting_stats_.IncreaseAllocatedBytes(bytes, page);
  }
  void DecreaseCapacity(size_t bytes) {
    accounting_stats_.DecreaseCapacity(bytes);
  }
  void IncreaseCapacity(size_t bytes) {
    accounting_stats_.IncreaseCapacity(bytes);
  }

  void RefineAllocatedBytesAfterSweeping(Page* page);

  Page* InitializePage(MemoryChunk* chunk);

  void ReleasePage(Page* page);

  // Adds the page to this space and returns the number of bytes added to the
  // free list of the space.
  size_t AddPage(Page* page);
  void RemovePage(Page* page);
  // Remove a page if it has at least |size_in_bytes| bytes available that can
  // be used for allocation.
  Page* RemovePageSafe(int size_in_bytes);

  void SetReadable();
  void SetReadAndExecutable();
  void SetReadAndWritable();

  void SetDefaultCodePermissions() {
    if (FLAG_jitless) {
      SetReadable();
    } else {
      SetReadAndExecutable();
    }
  }

#ifdef VERIFY_HEAP
  // Verify integrity of this space.
  virtual void Verify(Isolate* isolate, ObjectVisitor* visitor);

  void VerifyLiveBytes();

  // Overridden by subclasses to verify space-specific object
  // properties (e.g., only maps or free-list nodes are in map space).
  virtual void VerifyObject(HeapObject obj) {}
#endif

#ifdef DEBUG
  void VerifyCountersAfterSweeping(Heap* heap);
  void VerifyCountersBeforeConcurrentSweeping();
  // Print meta info and objects in this space.
  void Print() override;

  // Report code object related statistics
  static void ReportCodeStatistics(Isolate* isolate);
  static void ResetCodeStatistics(Isolate* isolate);
#endif

  bool CanExpand(size_t size);

  // Returns the number of total pages in this space.
  int CountTotalPages();

  // Return size of allocatable area on a page in this space.
  inline int AreaSize() { return static_cast<int>(area_size_); }

  bool is_local_space() { return local_space_kind_ != LocalSpaceKind::kNone; }

  bool is_compaction_space() {
    return base::IsInRange(local_space_kind_,
                           LocalSpaceKind::kFirstCompactionSpace,
                           LocalSpaceKind::kLastCompactionSpace);
  }

  LocalSpaceKind local_space_kind() { return local_space_kind_; }

  // Merges {other} into the current space. Note that this modifies {other},
  // e.g., removes its bump pointer area and resets statistics.
  void MergeLocalSpace(LocalSpace* other);

  // Refills the free list from the corresponding free list filled by the
  // sweeper.
  virtual void RefillFreeList();

  base::Mutex* mutex() { return &space_mutex_; }

  inline void UnlinkFreeListCategories(Page* page);
  inline size_t RelinkFreeListCategories(Page* page);

  Page* first_page() { return reinterpret_cast<Page*>(Space::first_page()); }
  const Page* first_page() const {
    return reinterpret_cast<const Page*>(Space::first_page());
  }

  iterator begin() { return iterator(first_page()); }
  iterator end() { return iterator(nullptr); }

  const_iterator begin() const { return const_iterator(first_page()); }
  const_iterator end() const { return const_iterator(nullptr); }

  // Shrink immortal immovable pages of the space to be exactly the size needed
  // using the high water mark.
  void ShrinkImmortalImmovablePages();

  size_t ShrinkPageToHighWaterMark(Page* page);

  std::unique_ptr<ObjectIterator> GetObjectIterator(Heap* heap) override;

  void SetLinearAllocationArea(Address top, Address limit);

 private:
  class ConcurrentAllocationMutex {
   public:
    explicit ConcurrentAllocationMutex(PagedSpace* space) {
      if (space->SupportsConcurrentAllocation()) {
        guard_.emplace(&space->space_mutex_);
      }
    }

    base::Optional<base::MutexGuard> guard_;
  };

  bool SupportsConcurrentAllocation() {
    return FLAG_concurrent_allocation && !is_local_space();
  }

  // Set space linear allocation area.
  void SetTopAndLimit(Address top, Address limit);
  void DecreaseLimit(Address new_limit);
  void UpdateInlineAllocationLimit(size_t min_size) override;
  bool SupportsAllocationObserver() override { return !is_local_space(); }

  // Slow path of allocation function
  V8_WARN_UNUSED_RESULT AllocationResult
  AllocateRawSlow(int size_in_bytes, AllocationAlignment alignment,
                  AllocationOrigin origin);

 protected:
  // PagedSpaces that should be included in snapshots have different, i.e.,
  // smaller, initial pages.
  virtual bool snapshotable() { return true; }

  bool HasPages() { return first_page() != nullptr; }

  // Cleans up the space, frees all pages in this space except those belonging
  // to the initial chunk, uncommits addresses in the initial chunk.
  void TearDown();

  // Expands the space by allocating a fixed number of pages. Returns false if
  // it cannot allocate requested number of pages from OS, or if the hard heap
  // size limit has been hit.
  virtual Page* Expand();
  Page* ExpandBackground(LocalHeap* local_heap);
  Page* AllocatePage();

  // Sets up a linear allocation area that fits the given number of bytes.
  // Returns false if there is not enough space and the caller has to retry
  // after collecting garbage.
  inline bool EnsureLabMain(int size_in_bytes, AllocationOrigin origin);
  // Allocates an object from the linear allocation area. Assumes that the
  // linear allocation area is large enought to fit the object.
  inline AllocationResult AllocateFastUnaligned(int size_in_bytes);
  // Tries to allocate an aligned object from the linear allocation area.
  // Returns nullptr if the linear allocation area does not fit the object.
  // Otherwise, returns the object pointer and writes the allocation size
  // (object size + alignment filler size) to the size_in_bytes.
  inline AllocationResult AllocateFastAligned(int size_in_bytes,
                                              int* aligned_size_in_bytes,
                                              AllocationAlignment alignment);

  V8_WARN_UNUSED_RESULT bool TryAllocationFromFreeListMain(
      size_t size_in_bytes, AllocationOrigin origin);

  V8_WARN_UNUSED_RESULT bool ContributeToSweepingMain(int required_freed_bytes,
                                                      int max_pages,
                                                      int size_in_bytes,
                                                      AllocationOrigin origin);

  // Refills LAB for EnsureLabMain. This function is space-dependent. Returns
  // false if there is not enough space and the caller has to retry after
  // collecting garbage.
  V8_WARN_UNUSED_RESULT virtual bool RefillLabMain(int size_in_bytes,
                                                   AllocationOrigin origin);

  // Actual implementation of refilling LAB. Returns false if there is not
  // enough space and the caller has to retry after collecting garbage.
  V8_WARN_UNUSED_RESULT bool RawRefillLabMain(int size_in_bytes,
                                              AllocationOrigin origin);

  V8_WARN_UNUSED_RESULT base::Optional<std::pair<Address, size_t>>
  TryAllocationFromFreeListBackground(LocalHeap* local_heap,
                                      size_t min_size_in_bytes,
                                      size_t max_size_in_bytes,
                                      AllocationAlignment alignment,
                                      AllocationOrigin origin);

  Executability executable_;

  LocalSpaceKind local_space_kind_;

  size_t area_size_;

  // Accounting information for this space.
  AllocationStats accounting_stats_;

  // Mutex guarding any concurrent access to the space.
  base::Mutex space_mutex_;

  friend class IncrementalMarking;
  friend class MarkCompactCollector;

  // Used in cctest.
  friend class heap::HeapTester;
};

// -----------------------------------------------------------------------------
// Base class for compaction space and off-thread space.

class V8_EXPORT_PRIVATE LocalSpace : public PagedSpace {
 public:
  LocalSpace(Heap* heap, AllocationSpace id, Executability executable,
             LocalSpaceKind local_space_kind)
      : PagedSpace(heap, id, executable, FreeList::CreateFreeList(),
                   local_space_kind) {
    DCHECK_NE(local_space_kind, LocalSpaceKind::kNone);
  }

  const std::vector<Page*>& GetNewPages() { return new_pages_; }

 protected:
  Page* Expand() override;
  // The space is temporary and not included in any snapshots.
  bool snapshotable() override { return false; }
  // Pages that were allocated in this local space and need to be merged
  // to the main space.
  std::vector<Page*> new_pages_;
};

// -----------------------------------------------------------------------------
// Compaction space that is used temporarily during compaction.

class V8_EXPORT_PRIVATE CompactionSpace : public LocalSpace {
 public:
  CompactionSpace(Heap* heap, AllocationSpace id, Executability executable,
                  LocalSpaceKind local_space_kind)
      : LocalSpace(heap, id, executable, local_space_kind) {
    DCHECK(is_compaction_space());
  }

 protected:
  V8_WARN_UNUSED_RESULT bool RefillLabMain(int size_in_bytes,
                                           AllocationOrigin origin) override;
};

// A collection of |CompactionSpace|s used by a single compaction task.
class CompactionSpaceCollection : public Malloced {
 public:
  explicit CompactionSpaceCollection(Heap* heap,
                                     LocalSpaceKind local_space_kind)
      : old_space_(heap, OLD_SPACE, Executability::NOT_EXECUTABLE,
                   local_space_kind),
        code_space_(heap, CODE_SPACE, Executability::EXECUTABLE,
                    local_space_kind) {}

  CompactionSpace* Get(AllocationSpace space) {
    switch (space) {
      case OLD_SPACE:
        return &old_space_;
      case CODE_SPACE:
        return &code_space_;
      default:
        UNREACHABLE();
    }
    UNREACHABLE();
  }

 private:
  CompactionSpace old_space_;
  CompactionSpace code_space_;
};

// -----------------------------------------------------------------------------
// Old generation regular object space.

class OldSpace : public PagedSpace {
 public:
  // Creates an old space object. The constructor does not allocate pages
  // from OS.
  explicit OldSpace(Heap* heap)
      : PagedSpace(heap, OLD_SPACE, NOT_EXECUTABLE,
                   FreeList::CreateFreeList()) {}

  static bool IsAtPageStart(Address addr) {
    return static_cast<intptr_t>(addr & kPageAlignmentMask) ==
           MemoryChunkLayout::ObjectStartOffsetInDataPage();
  }

  size_t ExternalBackingStoreBytes(ExternalBackingStoreType type) const final {
    if (type == ExternalBackingStoreType::kArrayBuffer)
      return heap()->OldArrayBufferBytes();
    return external_backing_store_bytes_[type];
  }
};

// -----------------------------------------------------------------------------
// Old generation code object space.

class CodeSpace : public PagedSpace {
 public:
  // Creates an old space object. The constructor does not allocate pages
  // from OS.
  explicit CodeSpace(Heap* heap)
      : PagedSpace(heap, CODE_SPACE, EXECUTABLE, FreeList::CreateFreeList()) {}
};

// -----------------------------------------------------------------------------
// Old space for all map objects

class MapSpace : public PagedSpace {
 public:
  // Creates a map space object.
  explicit MapSpace(Heap* heap)
      : PagedSpace(heap, MAP_SPACE, NOT_EXECUTABLE, new FreeListMap()) {}

  int RoundSizeDownToObjectAlignment(int size) override {
    if (base::bits::IsPowerOfTwo(Map::kSize)) {
      return RoundDown(size, Map::kSize);
    } else {
      return (size / Map::kSize) * Map::kSize;
    }
  }

  void SortFreeList();

#ifdef VERIFY_HEAP
  void VerifyObject(HeapObject obj) override;
#endif
};

// Iterates over the chunks (pages and large object pages) that can contain
// pointers to new space or to evacuation candidates.
class OldGenerationMemoryChunkIterator {
 public:
  inline explicit OldGenerationMemoryChunkIterator(Heap* heap);

  // Return nullptr when the iterator is done.
  inline MemoryChunk* next();

 private:
  enum State {
    kOldSpaceState,
    kMapState,
    kCodeState,
    kLargeObjectState,
    kCodeLargeObjectState,
    kFinishedState
  };
  Heap* heap_;
  State state_;
  PageIterator old_iterator_;
  PageIterator code_iterator_;
  PageIterator map_iterator_;
  LargePageIterator lo_iterator_;
  LargePageIterator code_lo_iterator_;
};

}  // namespace internal
}  // namespace v8

#endif  // V8_HEAP_PAGED_SPACES_H_