summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/scavenger-inl.h
blob: a6bce6eef11a590cdcc45dba2114d9b97d08d324 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_HEAP_SCAVENGER_INL_H_
#define V8_HEAP_SCAVENGER_INL_H_

#include "src/codegen/assembler-inl.h"
#include "src/heap/evacuation-allocator-inl.h"
#include "src/heap/incremental-marking-inl.h"
#include "src/heap/marking-state-inl.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/new-spaces.h"
#include "src/heap/objects-visiting-inl.h"
#include "src/heap/pretenuring-handler-inl.h"
#include "src/heap/scavenger.h"
#include "src/objects/map.h"
#include "src/objects/objects-body-descriptors-inl.h"
#include "src/objects/objects-inl.h"
#include "src/objects/slots-inl.h"

namespace v8 {
namespace internal {

void Scavenger::PromotionList::Local::PushRegularObject(HeapObject object,
                                                        int size) {
  regular_object_promotion_list_local_.Push({object, size});
}

void Scavenger::PromotionList::Local::PushLargeObject(HeapObject object,
                                                      Map map, int size) {
  large_object_promotion_list_local_.Push({object, map, size});
}

size_t Scavenger::PromotionList::Local::LocalPushSegmentSize() const {
  return regular_object_promotion_list_local_.PushSegmentSize() +
         large_object_promotion_list_local_.PushSegmentSize();
}

bool Scavenger::PromotionList::Local::Pop(struct PromotionListEntry* entry) {
  ObjectAndSize regular_object;
  if (regular_object_promotion_list_local_.Pop(&regular_object)) {
    entry->heap_object = regular_object.first;
    entry->size = regular_object.second;
    entry->map = entry->heap_object.map();
    return true;
  }
  return large_object_promotion_list_local_.Pop(entry);
}

void Scavenger::PromotionList::Local::Publish() {
  regular_object_promotion_list_local_.Publish();
  large_object_promotion_list_local_.Publish();
}

bool Scavenger::PromotionList::Local::IsGlobalPoolEmpty() const {
  return regular_object_promotion_list_local_.IsGlobalEmpty() &&
         large_object_promotion_list_local_.IsGlobalEmpty();
}

bool Scavenger::PromotionList::Local::ShouldEagerlyProcessPromotionList()
    const {
  // Threshold when to prioritize processing of the promotion list. Right
  // now we only look into the regular object list.
  const int kProcessPromotionListThreshold =
      kRegularObjectPromotionListSegmentSize / 2;
  return LocalPushSegmentSize() < kProcessPromotionListThreshold;
}

bool Scavenger::PromotionList::IsEmpty() const {
  return regular_object_promotion_list_.IsEmpty() &&
         large_object_promotion_list_.IsEmpty();
}

size_t Scavenger::PromotionList::Size() const {
  return regular_object_promotion_list_.Size() +
         large_object_promotion_list_.Size();
}

void Scavenger::PageMemoryFence(MaybeObject object) {
#ifdef THREAD_SANITIZER
  // Perform a dummy acquire load to tell TSAN that there is no data race
  // with  page initialization.
  HeapObject heap_object;
  if (object->GetHeapObject(&heap_object)) {
    BasicMemoryChunk::FromHeapObject(heap_object)->SynchronizedHeapLoad();
  }
#endif
}

bool Scavenger::MigrateObject(Map map, HeapObject source, HeapObject target,
                              int size,
                              PromotionHeapChoice promotion_heap_choice) {
  // Copy the content of source to target.
  target.set_map_word(map, kRelaxedStore);
  heap()->CopyBlock(target.address() + kTaggedSize,
                    source.address() + kTaggedSize, size - kTaggedSize);

  // This release CAS is paired with the load acquire in ScavengeObject.
  if (!source.release_compare_and_swap_map_word_forwarded(MapWord::FromMap(map),
                                                          target)) {
    // Other task migrated the object.
    return false;
  }

  if (V8_UNLIKELY(is_logging_)) {
    heap()->OnMoveEvent(source, target, size);
  }

  if (is_incremental_marking_ &&
      (promotion_heap_choice != kPromoteIntoSharedHeap || mark_shared_heap_)) {
    heap()->incremental_marking()->TransferColor(source, target);
  }
  pretenuring_handler_->UpdateAllocationSite(map, source,
                                             &local_pretenuring_feedback_);

  return true;
}

template <typename THeapObjectSlot>
CopyAndForwardResult Scavenger::SemiSpaceCopyObject(
    Map map, THeapObjectSlot slot, HeapObject object, int object_size,
    ObjectFields object_fields) {
  static_assert(std::is_same<THeapObjectSlot, FullHeapObjectSlot>::value ||
                    std::is_same<THeapObjectSlot, HeapObjectSlot>::value,
                "Only FullHeapObjectSlot and HeapObjectSlot are expected here");
  DCHECK(heap()->AllowedToBeMigrated(map, object, NEW_SPACE));
  AllocationAlignment alignment = HeapObject::RequiredAlignment(map);
  AllocationResult allocation = allocator_.Allocate(
      NEW_SPACE, object_size, AllocationOrigin::kGC, alignment);

  HeapObject target;
  if (allocation.To(&target)) {
    DCHECK(heap()->marking_state()->IsUnmarked(target));
    const bool self_success =
        MigrateObject(map, object, target, object_size, kPromoteIntoLocalHeap);
    if (!self_success) {
      allocator_.FreeLast(NEW_SPACE, target, object_size);
      MapWord map_word = object.map_word(kAcquireLoad);
      HeapObjectReference::Update(slot, map_word.ToForwardingAddress(object));
      DCHECK(!Heap::InFromPage(*slot));
      return Heap::InToPage(*slot)
                 ? CopyAndForwardResult::SUCCESS_YOUNG_GENERATION
                 : CopyAndForwardResult::SUCCESS_OLD_GENERATION;
    }
    HeapObjectReference::Update(slot, target);
    if (object_fields == ObjectFields::kMaybePointers) {
      copied_list_local_.Push(ObjectAndSize(target, object_size));
    }
    copied_size_ += object_size;
    return CopyAndForwardResult::SUCCESS_YOUNG_GENERATION;
  }
  return CopyAndForwardResult::FAILURE;
}

template <typename THeapObjectSlot,
          Scavenger::PromotionHeapChoice promotion_heap_choice>
CopyAndForwardResult Scavenger::PromoteObject(Map map, THeapObjectSlot slot,
                                              HeapObject object,
                                              int object_size,
                                              ObjectFields object_fields) {
  static_assert(std::is_same<THeapObjectSlot, FullHeapObjectSlot>::value ||
                    std::is_same<THeapObjectSlot, HeapObjectSlot>::value,
                "Only FullHeapObjectSlot and HeapObjectSlot are expected here");
  DCHECK_GE(object_size, Heap::kMinObjectSizeInTaggedWords * kTaggedSize);
  AllocationAlignment alignment = HeapObject::RequiredAlignment(map);
  AllocationResult allocation;
  switch (promotion_heap_choice) {
    case kPromoteIntoLocalHeap:
      allocation = allocator_.Allocate(OLD_SPACE, object_size,
                                       AllocationOrigin::kGC, alignment);
      break;
    case kPromoteIntoSharedHeap:
      DCHECK_NOT_NULL(shared_old_allocator_);
      allocation = shared_old_allocator_->AllocateRaw(object_size, alignment,
                                                      AllocationOrigin::kGC);
      break;
  }

  HeapObject target;
  if (allocation.To(&target)) {
    DCHECK(heap()->non_atomic_marking_state()->IsUnmarked(target));
    const bool self_success =
        MigrateObject(map, object, target, object_size, promotion_heap_choice);
    if (!self_success) {
      switch (promotion_heap_choice) {
        case kPromoteIntoLocalHeap:
          allocator_.FreeLast(OLD_SPACE, target, object_size);
          break;
        case kPromoteIntoSharedHeap:
          heap()->CreateFillerObjectAt(target.address(), object_size);
          break;
      }

      MapWord map_word = object.map_word(kAcquireLoad);
      HeapObjectReference::Update(slot, map_word.ToForwardingAddress(object));
      DCHECK(!Heap::InFromPage(*slot));
      return Heap::InToPage(*slot)
                 ? CopyAndForwardResult::SUCCESS_YOUNG_GENERATION
                 : CopyAndForwardResult::SUCCESS_OLD_GENERATION;
    }
    HeapObjectReference::Update(slot, target);

    // During incremental marking we want to push every object in order to
    // record slots for map words. Necessary for map space compaction.
    if (object_fields == ObjectFields::kMaybePointers || is_compacting_) {
      promotion_list_local_.PushRegularObject(target, object_size);
    }
    promoted_size_ += object_size;
    return CopyAndForwardResult::SUCCESS_OLD_GENERATION;
  }
  return CopyAndForwardResult::FAILURE;
}

SlotCallbackResult Scavenger::RememberedSetEntryNeeded(
    CopyAndForwardResult result) {
  DCHECK_NE(CopyAndForwardResult::FAILURE, result);
  return result == CopyAndForwardResult::SUCCESS_YOUNG_GENERATION ? KEEP_SLOT
                                                                  : REMOVE_SLOT;
}

bool Scavenger::HandleLargeObject(Map map, HeapObject object, int object_size,
                                  ObjectFields object_fields) {
  // TODO(hpayer): Make this check size based, i.e.
  // object_size > kMaxRegularHeapObjectSize
  if (V8_UNLIKELY(
          BasicMemoryChunk::FromHeapObject(object)->InNewLargeObjectSpace())) {
    DCHECK_EQ(NEW_LO_SPACE,
              MemoryChunk::FromHeapObject(object)->owner_identity());
    if (object.release_compare_and_swap_map_word_forwarded(
            MapWord::FromMap(map), object)) {
      surviving_new_large_objects_.insert({object, map});
      promoted_size_ += object_size;
      if (object_fields == ObjectFields::kMaybePointers) {
        promotion_list_local_.PushLargeObject(object, map, object_size);
      }
    }
    return true;
  }
  return false;
}

template <typename THeapObjectSlot,
          Scavenger::PromotionHeapChoice promotion_heap_choice>
SlotCallbackResult Scavenger::EvacuateObjectDefault(
    Map map, THeapObjectSlot slot, HeapObject object, int object_size,
    ObjectFields object_fields) {
  static_assert(std::is_same<THeapObjectSlot, FullHeapObjectSlot>::value ||
                    std::is_same<THeapObjectSlot, HeapObjectSlot>::value,
                "Only FullHeapObjectSlot and HeapObjectSlot are expected here");
  SLOW_DCHECK(object.SizeFromMap(map) == object_size);
  CopyAndForwardResult result;

  if (HandleLargeObject(map, object, object_size, object_fields)) {
    return KEEP_SLOT;
  }

  SLOW_DCHECK(static_cast<size_t>(object_size) <=
              MemoryChunkLayout::AllocatableMemoryInDataPage());

  if (!SemiSpaceNewSpace::From(heap()->new_space())
           ->ShouldBePromoted(object.address())) {
    // A semi-space copy may fail due to fragmentation. In that case, we
    // try to promote the object.
    result = SemiSpaceCopyObject(map, slot, object, object_size, object_fields);
    if (result != CopyAndForwardResult::FAILURE) {
      return RememberedSetEntryNeeded(result);
    }
  }

  // We may want to promote this object if the object was already semi-space
  // copied in a previous young generation GC or if the semi-space copy above
  // failed.
  result = PromoteObject<THeapObjectSlot, promotion_heap_choice>(
      map, slot, object, object_size, object_fields);
  if (result != CopyAndForwardResult::FAILURE) {
    return RememberedSetEntryNeeded(result);
  }

  // If promotion failed, we try to copy the object to the other semi-space.
  result = SemiSpaceCopyObject(map, slot, object, object_size, object_fields);
  if (result != CopyAndForwardResult::FAILURE) {
    return RememberedSetEntryNeeded(result);
  }

  heap()->FatalProcessOutOfMemory("Scavenger: semi-space copy");
  UNREACHABLE();
}

template <typename THeapObjectSlot>
SlotCallbackResult Scavenger::EvacuateThinString(Map map, THeapObjectSlot slot,
                                                 ThinString object,
                                                 int object_size) {
  static_assert(std::is_same<THeapObjectSlot, FullHeapObjectSlot>::value ||
                    std::is_same<THeapObjectSlot, HeapObjectSlot>::value,
                "Only FullHeapObjectSlot and HeapObjectSlot are expected here");
  if (shortcut_strings_) {
    // The ThinString should die after Scavenge, so avoid writing the proper
    // forwarding pointer and instead just signal the actual object as forwarded
    // reference.
    String actual = object.actual();
    // ThinStrings always refer to internalized strings, which are always in old
    // space.
    DCHECK(!Heap::InYoungGeneration(actual));
    HeapObjectReference::Update(slot, actual);
    return REMOVE_SLOT;
  }

  DCHECK_EQ(ObjectFields::kMaybePointers,
            Map::ObjectFieldsFrom(map.visitor_id()));
  return EvacuateObjectDefault(map, slot, object, object_size,
                               ObjectFields::kMaybePointers);
}

template <typename THeapObjectSlot>
SlotCallbackResult Scavenger::EvacuateShortcutCandidate(Map map,
                                                        THeapObjectSlot slot,
                                                        ConsString object,
                                                        int object_size) {
  static_assert(std::is_same<THeapObjectSlot, FullHeapObjectSlot>::value ||
                    std::is_same<THeapObjectSlot, HeapObjectSlot>::value,
                "Only FullHeapObjectSlot and HeapObjectSlot are expected here");
  DCHECK(IsShortcutCandidate(map.instance_type()));

  if (shortcut_strings_ &&
      object.unchecked_second() == ReadOnlyRoots(heap()).empty_string()) {
    HeapObject first = HeapObject::cast(object.unchecked_first());

    HeapObjectReference::Update(slot, first);

    if (!Heap::InYoungGeneration(first)) {
      object.set_map_word_forwarded(first, kReleaseStore);
      return REMOVE_SLOT;
    }

    MapWord first_word = first.map_word(kAcquireLoad);
    if (first_word.IsForwardingAddress()) {
      HeapObject target = first_word.ToForwardingAddress(first);

      HeapObjectReference::Update(slot, target);
      object.set_map_word_forwarded(target, kReleaseStore);
      return Heap::InYoungGeneration(target) ? KEEP_SLOT : REMOVE_SLOT;
    }
    Map first_map = first_word.ToMap();
    SlotCallbackResult result = EvacuateObjectDefault(
        first_map, slot, first, first.SizeFromMap(first_map),
        Map::ObjectFieldsFrom(first_map.visitor_id()));
    object.set_map_word_forwarded(slot.ToHeapObject(), kReleaseStore);
    return result;
  }
  DCHECK_EQ(ObjectFields::kMaybePointers,
            Map::ObjectFieldsFrom(map.visitor_id()));
  return EvacuateObjectDefault(map, slot, object, object_size,
                               ObjectFields::kMaybePointers);
}

template <typename THeapObjectSlot>
SlotCallbackResult Scavenger::EvacuateInPlaceInternalizableString(
    Map map, THeapObjectSlot slot, String object, int object_size,
    ObjectFields object_fields) {
  DCHECK(String::IsInPlaceInternalizable(map.instance_type()));
  DCHECK_EQ(object_fields, Map::ObjectFieldsFrom(map.visitor_id()));
  if (shared_string_table_) {
    return EvacuateObjectDefault<THeapObjectSlot, kPromoteIntoSharedHeap>(
        map, slot, object, object_size, object_fields);
  }
  return EvacuateObjectDefault(map, slot, object, object_size, object_fields);
}

template <typename THeapObjectSlot>
SlotCallbackResult Scavenger::EvacuateObject(THeapObjectSlot slot, Map map,
                                             HeapObject source) {
  static_assert(std::is_same<THeapObjectSlot, FullHeapObjectSlot>::value ||
                    std::is_same<THeapObjectSlot, HeapObjectSlot>::value,
                "Only FullHeapObjectSlot and HeapObjectSlot are expected here");
  SLOW_DCHECK(Heap::InFromPage(source));
  SLOW_DCHECK(!MapWord::FromMap(map).IsForwardingAddress());
  int size = source.SizeFromMap(map);
  // Cannot use ::cast() below because that would add checks in debug mode
  // that require re-reading the map.
  VisitorId visitor_id = map.visitor_id();
  switch (visitor_id) {
    case kVisitThinString:
      // At the moment we don't allow weak pointers to thin strings.
      DCHECK(!(*slot)->IsWeak());
      return EvacuateThinString(map, slot, ThinString::unchecked_cast(source),
                                size);
    case kVisitShortcutCandidate:
      DCHECK(!(*slot)->IsWeak());
      // At the moment we don't allow weak pointers to cons strings.
      return EvacuateShortcutCandidate(
          map, slot, ConsString::unchecked_cast(source), size);
    case kVisitSeqOneByteString:
    case kVisitSeqTwoByteString:
      DCHECK(String::IsInPlaceInternalizable(map.instance_type()));
      return EvacuateInPlaceInternalizableString(
          map, slot, String::unchecked_cast(source), size,
          ObjectFields::kMaybePointers);
    case kVisitDataObject:  // External strings have kVisitDataObject.
      if (String::IsInPlaceInternalizableExcludingExternal(
              map.instance_type())) {
        return EvacuateInPlaceInternalizableString(
            map, slot, String::unchecked_cast(source), size,
            ObjectFields::kDataOnly);
      }
      V8_FALLTHROUGH;
    default:
      return EvacuateObjectDefault(map, slot, source, size,
                                   Map::ObjectFieldsFrom(visitor_id));
  }
}

template <typename THeapObjectSlot>
SlotCallbackResult Scavenger::ScavengeObject(THeapObjectSlot p,
                                             HeapObject object) {
  static_assert(std::is_same<THeapObjectSlot, FullHeapObjectSlot>::value ||
                    std::is_same<THeapObjectSlot, HeapObjectSlot>::value,
                "Only FullHeapObjectSlot and HeapObjectSlot are expected here");
  DCHECK(Heap::InFromPage(object));

  // Synchronized load that consumes the publishing CAS of MigrateObject. We
  // need memory ordering in order to read the page header of the forwarded
  // object (using Heap::InYoungGeneration).
  MapWord first_word = object.map_word(kAcquireLoad);

  // If the first word is a forwarding address, the object has already been
  // copied.
  if (first_word.IsForwardingAddress()) {
    HeapObject dest = first_word.ToForwardingAddress(object);
    HeapObjectReference::Update(p, dest);
    DCHECK_IMPLIES(Heap::InYoungGeneration(dest),
                   Heap::InToPage(dest) || Heap::IsLargeObject(dest));

    // This load forces us to have memory ordering for the map load above. We
    // need to have the page header properly initialized.
    return Heap::InYoungGeneration(dest) ? KEEP_SLOT : REMOVE_SLOT;
  }

  Map map = first_word.ToMap();
  // AllocationMementos are unrooted and shouldn't survive a scavenge
  DCHECK_NE(ReadOnlyRoots(heap()).allocation_memento_map(), map);
  // Call the slow part of scavenge object.
  return EvacuateObject(p, map, object);
}

template <typename TSlot>
SlotCallbackResult Scavenger::CheckAndScavengeObject(Heap* heap, TSlot slot) {
  static_assert(
      std::is_same<TSlot, FullMaybeObjectSlot>::value ||
          std::is_same<TSlot, MaybeObjectSlot>::value,
      "Only FullMaybeObjectSlot and MaybeObjectSlot are expected here");
  using THeapObjectSlot = typename TSlot::THeapObjectSlot;
  MaybeObject object = *slot;
  if (Heap::InFromPage(object)) {
    HeapObject heap_object = object->GetHeapObject();

    SlotCallbackResult result =
        ScavengeObject(THeapObjectSlot(slot), heap_object);
    DCHECK_IMPLIES(result == REMOVE_SLOT,
                   !heap->InYoungGeneration((*slot)->GetHeapObject()));
    return result;
  } else if (Heap::InToPage(object)) {
    // Already updated slot. This can happen when processing of the work list
    // is interleaved with processing roots.
    return KEEP_SLOT;
  }
  // Slots can point to "to" space if the slot has been recorded multiple
  // times in the remembered set. We remove the redundant slot now.
  return REMOVE_SLOT;
}

class ScavengeVisitor final : public NewSpaceVisitor<ScavengeVisitor> {
 public:
  explicit ScavengeVisitor(Scavenger* scavenger);

  V8_INLINE void VisitPointers(HeapObject host, ObjectSlot start,
                               ObjectSlot end) final;

  V8_INLINE void VisitPointers(HeapObject host, MaybeObjectSlot start,
                               MaybeObjectSlot end) final;
  V8_INLINE void VisitCodePointer(Code host, CodeObjectSlot slot) final;

  V8_INLINE void VisitCodeTarget(RelocInfo* rinfo) final;
  V8_INLINE void VisitEmbeddedPointer(RelocInfo* rinfo) final;
  V8_INLINE int VisitEphemeronHashTable(Map map, EphemeronHashTable object);
  V8_INLINE int VisitJSArrayBuffer(Map map, JSArrayBuffer object);
  V8_INLINE int VisitJSApiObject(Map map, JSObject object);

 private:
  template <typename TSlot>
  V8_INLINE void VisitHeapObjectImpl(TSlot slot, HeapObject heap_object);

  template <typename TSlot>
  V8_INLINE void VisitPointersImpl(HeapObject host, TSlot start, TSlot end);

  Scavenger* const scavenger_;
};

void ScavengeVisitor::VisitPointers(HeapObject host, ObjectSlot start,
                                    ObjectSlot end) {
  return VisitPointersImpl(host, start, end);
}

void ScavengeVisitor::VisitPointers(HeapObject host, MaybeObjectSlot start,
                                    MaybeObjectSlot end) {
  return VisitPointersImpl(host, start, end);
}

void ScavengeVisitor::VisitCodePointer(Code host, CodeObjectSlot slot) {
  CHECK(V8_EXTERNAL_CODE_SPACE_BOOL);
  // InstructionStream slots never appear in new space because
  // Code objects, the only object that can contain code pointers, are
  // always allocated in the old space.
  UNREACHABLE();
}

void ScavengeVisitor::VisitCodeTarget(RelocInfo* rinfo) {
  InstructionStream target =
      InstructionStream::FromTargetAddress(rinfo->target_address());
#ifdef DEBUG
  InstructionStream old_target = target;
#endif
  FullObjectSlot slot(&target);
  VisitHeapObjectImpl(slot, target);
  // InstructionStream objects are never in new-space, so the slot contents must
  // not change.
  DCHECK_EQ(old_target, target);
}

void ScavengeVisitor::VisitEmbeddedPointer(RelocInfo* rinfo) {
  HeapObject heap_object = rinfo->target_object(cage_base());
#ifdef DEBUG
  HeapObject old_heap_object = heap_object;
#endif
  FullObjectSlot slot(&heap_object);
  VisitHeapObjectImpl(slot, heap_object);
  // We don't embed new-space objects into code, so the slot contents must not
  // change.
  DCHECK_EQ(old_heap_object, heap_object);
}

template <typename TSlot>
void ScavengeVisitor::VisitHeapObjectImpl(TSlot slot, HeapObject heap_object) {
  if (Heap::InYoungGeneration(heap_object)) {
    using THeapObjectSlot = typename TSlot::THeapObjectSlot;
    scavenger_->ScavengeObject(THeapObjectSlot(slot), heap_object);
  }
}

template <typename TSlot>
void ScavengeVisitor::VisitPointersImpl(HeapObject host, TSlot start,
                                        TSlot end) {
  for (TSlot slot = start; slot < end; ++slot) {
    typename TSlot::TObject object = *slot;
    HeapObject heap_object;
    // Treat weak references as strong.
    if (object.GetHeapObject(&heap_object)) {
      VisitHeapObjectImpl(slot, heap_object);
    }
  }
}

int ScavengeVisitor::VisitJSArrayBuffer(Map map, JSArrayBuffer object) {
  object.YoungMarkExtension();
  int size = JSArrayBuffer::BodyDescriptor::SizeOf(map, object);
  JSArrayBuffer::BodyDescriptor::IterateBody(map, object, size, this);
  return size;
}

int ScavengeVisitor::VisitJSApiObject(Map map, JSObject object) {
  return VisitJSObject(map, object);
}

int ScavengeVisitor::VisitEphemeronHashTable(Map map,
                                             EphemeronHashTable table) {
  // Register table with the scavenger, so it can take care of the weak keys
  // later. This allows to only iterate the tables' values, which are treated
  // as strong independently of whether the key is live.
  scavenger_->AddEphemeronHashTable(table);
  for (InternalIndex i : table.IterateEntries()) {
    ObjectSlot value_slot =
        table.RawFieldOfElementAt(EphemeronHashTable::EntryToValueIndex(i));
    VisitPointer(table, value_slot);
  }

  return table.SizeFromMap(map);
}

}  // namespace internal
}  // namespace v8

#endif  // V8_HEAP_SCAVENGER_INL_H_