summaryrefslogtreecommitdiff
path: root/deps/v8/src/heap/slot-set.h
blob: 7612199c3ce09651515885d30bf8c7336d4850ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_SLOT_SET_H
#define V8_SLOT_SET_H

#include <map>
#include <stack>

#include "src/allocation.h"
#include "src/base/atomic-utils.h"
#include "src/base/bits.h"
#include "src/utils.h"

namespace v8 {
namespace internal {

enum SlotCallbackResult { KEEP_SLOT, REMOVE_SLOT };

// Data structure for maintaining a set of slots in a standard (non-large)
// page. The base address of the page must be set with SetPageStart before any
// operation.
// The data structure assumes that the slots are pointer size aligned and
// splits the valid slot offset range into kBuckets buckets.
// Each bucket is a bitmap with a bit corresponding to a single slot offset.
class SlotSet : public Malloced {
 public:
  enum EmptyBucketMode {
    FREE_EMPTY_BUCKETS,     // An empty bucket will be deallocated immediately.
    PREFREE_EMPTY_BUCKETS,  // An empty bucket will be unlinked from the slot
                            // set, but deallocated on demand by a sweeper
                            // thread.
    KEEP_EMPTY_BUCKETS      // An empty bucket will be kept.
  };

  SlotSet() {
    for (int i = 0; i < kBuckets; i++) {
      bucket[i].SetValue(nullptr);
    }
  }

  ~SlotSet() {
    for (int i = 0; i < kBuckets; i++) {
      ReleaseBucket(i);
    }
    FreeToBeFreedBuckets();
  }

  void SetPageStart(Address page_start) { page_start_ = page_start; }

  // The slot offset specifies a slot at address page_start_ + slot_offset.
  // This method should only be called on the main thread because concurrent
  // allocation of the bucket is not thread-safe.
  void Insert(int slot_offset) {
    int bucket_index, cell_index, bit_index;
    SlotToIndices(slot_offset, &bucket_index, &cell_index, &bit_index);
    base::AtomicValue<uint32_t>* current_bucket = bucket[bucket_index].Value();
    if (current_bucket == nullptr) {
      current_bucket = AllocateBucket();
      bucket[bucket_index].SetValue(current_bucket);
    }
    if (!(current_bucket[cell_index].Value() & (1u << bit_index))) {
      current_bucket[cell_index].SetBit(bit_index);
    }
  }

  // The slot offset specifies a slot at address page_start_ + slot_offset.
  // Returns true if the set contains the slot.
  bool Contains(int slot_offset) {
    int bucket_index, cell_index, bit_index;
    SlotToIndices(slot_offset, &bucket_index, &cell_index, &bit_index);
    base::AtomicValue<uint32_t>* current_bucket = bucket[bucket_index].Value();
    if (current_bucket == nullptr) {
      return false;
    }
    return (current_bucket[cell_index].Value() & (1u << bit_index)) != 0;
  }

  // The slot offset specifies a slot at address page_start_ + slot_offset.
  void Remove(int slot_offset) {
    int bucket_index, cell_index, bit_index;
    SlotToIndices(slot_offset, &bucket_index, &cell_index, &bit_index);
    base::AtomicValue<uint32_t>* current_bucket = bucket[bucket_index].Value();
    if (current_bucket != nullptr) {
      uint32_t cell = current_bucket[cell_index].Value();
      if (cell) {
        uint32_t bit_mask = 1u << bit_index;
        if (cell & bit_mask) {
          current_bucket[cell_index].ClearBit(bit_index);
        }
      }
    }
  }

  // The slot offsets specify a range of slots at addresses:
  // [page_start_ + start_offset ... page_start_ + end_offset).
  void RemoveRange(int start_offset, int end_offset, EmptyBucketMode mode) {
    CHECK_LE(end_offset, 1 << kPageSizeBits);
    DCHECK_LE(start_offset, end_offset);
    int start_bucket, start_cell, start_bit;
    SlotToIndices(start_offset, &start_bucket, &start_cell, &start_bit);
    int end_bucket, end_cell, end_bit;
    SlotToIndices(end_offset, &end_bucket, &end_cell, &end_bit);
    uint32_t start_mask = (1u << start_bit) - 1;
    uint32_t end_mask = ~((1u << end_bit) - 1);
    if (start_bucket == end_bucket && start_cell == end_cell) {
      ClearCell(start_bucket, start_cell, ~(start_mask | end_mask));
      return;
    }
    int current_bucket = start_bucket;
    int current_cell = start_cell;
    ClearCell(current_bucket, current_cell, ~start_mask);
    current_cell++;
    base::AtomicValue<uint32_t>* bucket_ptr = bucket[current_bucket].Value();
    if (current_bucket < end_bucket) {
      if (bucket_ptr != nullptr) {
        ClearBucket(bucket_ptr, current_cell, kCellsPerBucket);
      }
      // The rest of the current bucket is cleared.
      // Move on to the next bucket.
      current_bucket++;
      current_cell = 0;
    }
    DCHECK(current_bucket == end_bucket ||
           (current_bucket < end_bucket && current_cell == 0));
    while (current_bucket < end_bucket) {
      if (mode == PREFREE_EMPTY_BUCKETS) {
        PreFreeEmptyBucket(current_bucket);
      } else if (mode == FREE_EMPTY_BUCKETS) {
        ReleaseBucket(current_bucket);
      } else {
        DCHECK(mode == KEEP_EMPTY_BUCKETS);
        bucket_ptr = bucket[current_bucket].Value();
        if (bucket_ptr) {
          ClearBucket(bucket_ptr, 0, kCellsPerBucket);
        }
      }
      current_bucket++;
    }
    // All buckets between start_bucket and end_bucket are cleared.
    bucket_ptr = bucket[current_bucket].Value();
    DCHECK(current_bucket == end_bucket && current_cell <= end_cell);
    if (current_bucket == kBuckets || bucket_ptr == nullptr) {
      return;
    }
    while (current_cell < end_cell) {
      bucket_ptr[current_cell].SetValue(0);
      current_cell++;
    }
    // All cells between start_cell and end_cell are cleared.
    DCHECK(current_bucket == end_bucket && current_cell == end_cell);
    ClearCell(end_bucket, end_cell, ~end_mask);
  }

  // The slot offset specifies a slot at address page_start_ + slot_offset.
  bool Lookup(int slot_offset) {
    int bucket_index, cell_index, bit_index;
    SlotToIndices(slot_offset, &bucket_index, &cell_index, &bit_index);
    if (bucket[bucket_index].Value() != nullptr) {
      uint32_t cell = bucket[bucket_index].Value()[cell_index].Value();
      return (cell & (1u << bit_index)) != 0;
    }
    return false;
  }

  // Iterate over all slots in the set and for each slot invoke the callback.
  // If the callback returns REMOVE_SLOT then the slot is removed from the set.
  // Returns the new number of slots.
  // This method should only be called on the main thread.
  //
  // Sample usage:
  // Iterate([](Address slot_address) {
  //    if (good(slot_address)) return KEEP_SLOT;
  //    else return REMOVE_SLOT;
  // });
  template <typename Callback>
  int Iterate(Callback callback, EmptyBucketMode mode) {
    int new_count = 0;
    for (int bucket_index = 0; bucket_index < kBuckets; bucket_index++) {
      base::AtomicValue<uint32_t>* current_bucket =
          bucket[bucket_index].Value();
      if (current_bucket != nullptr) {
        int in_bucket_count = 0;
        int cell_offset = bucket_index * kBitsPerBucket;
        for (int i = 0; i < kCellsPerBucket; i++, cell_offset += kBitsPerCell) {
          if (current_bucket[i].Value()) {
            uint32_t cell = current_bucket[i].Value();
            uint32_t old_cell = cell;
            uint32_t mask = 0;
            while (cell) {
              int bit_offset = base::bits::CountTrailingZeros32(cell);
              uint32_t bit_mask = 1u << bit_offset;
              uint32_t slot = (cell_offset + bit_offset) << kPointerSizeLog2;
              if (callback(page_start_ + slot) == KEEP_SLOT) {
                ++in_bucket_count;
              } else {
                mask |= bit_mask;
              }
              cell ^= bit_mask;
            }
            uint32_t new_cell = old_cell & ~mask;
            if (old_cell != new_cell) {
              while (!current_bucket[i].TrySetValue(old_cell, new_cell)) {
                // If TrySetValue fails, the cell must have changed. We just
                // have to read the current value of the cell, & it with the
                // computed value, and retry. We can do this, because this
                // method will only be called on the main thread and filtering
                // threads will only remove slots.
                old_cell = current_bucket[i].Value();
                new_cell = old_cell & ~mask;
              }
            }
          }
        }
        if (mode == PREFREE_EMPTY_BUCKETS && in_bucket_count == 0) {
          PreFreeEmptyBucket(bucket_index);
        }
        new_count += in_bucket_count;
      }
    }
    return new_count;
  }

  void FreeToBeFreedBuckets() {
    base::LockGuard<base::Mutex> guard(&to_be_freed_buckets_mutex_);
    while (!to_be_freed_buckets_.empty()) {
      base::AtomicValue<uint32_t>* top = to_be_freed_buckets_.top();
      to_be_freed_buckets_.pop();
      DeleteArray<base::AtomicValue<uint32_t>>(top);
    }
  }

 private:
  static const int kMaxSlots = (1 << kPageSizeBits) / kPointerSize;
  static const int kCellsPerBucket = 32;
  static const int kCellsPerBucketLog2 = 5;
  static const int kBitsPerCell = 32;
  static const int kBitsPerCellLog2 = 5;
  static const int kBitsPerBucket = kCellsPerBucket * kBitsPerCell;
  static const int kBitsPerBucketLog2 = kCellsPerBucketLog2 + kBitsPerCellLog2;
  static const int kBuckets = kMaxSlots / kCellsPerBucket / kBitsPerCell;

  base::AtomicValue<uint32_t>* AllocateBucket() {
    base::AtomicValue<uint32_t>* result =
        NewArray<base::AtomicValue<uint32_t>>(kCellsPerBucket);
    for (int i = 0; i < kCellsPerBucket; i++) {
      result[i].SetValue(0);
    }
    return result;
  }

  void ClearBucket(base::AtomicValue<uint32_t>* bucket, int start_cell,
                   int end_cell) {
    DCHECK_GE(start_cell, 0);
    DCHECK_LE(end_cell, kCellsPerBucket);
    int current_cell = start_cell;
    while (current_cell < kCellsPerBucket) {
      bucket[current_cell].SetValue(0);
      current_cell++;
    }
  }

  void PreFreeEmptyBucket(int bucket_index) {
    base::AtomicValue<uint32_t>* bucket_ptr = bucket[bucket_index].Value();
    if (bucket_ptr != nullptr) {
      base::LockGuard<base::Mutex> guard(&to_be_freed_buckets_mutex_);
      to_be_freed_buckets_.push(bucket_ptr);
      bucket[bucket_index].SetValue(nullptr);
    }
  }

  void ReleaseBucket(int bucket_index) {
    DeleteArray<base::AtomicValue<uint32_t>>(bucket[bucket_index].Value());
    bucket[bucket_index].SetValue(nullptr);
  }

  void ClearCell(int bucket_index, int cell_index, uint32_t mask) {
    if (bucket_index < kBuckets) {
      base::AtomicValue<uint32_t>* cells = bucket[bucket_index].Value();
      if (cells != nullptr) {
        uint32_t cell = cells[cell_index].Value();
        if (cell) cells[cell_index].SetBits(0, mask);
      }
    } else {
      // GCC bug 59124: Emits wrong warnings
      // "array subscript is above array bounds"
      UNREACHABLE();
    }
  }

  // Converts the slot offset into bucket/cell/bit index.
  void SlotToIndices(int slot_offset, int* bucket_index, int* cell_index,
                     int* bit_index) {
    DCHECK_EQ(slot_offset % kPointerSize, 0);
    int slot = slot_offset >> kPointerSizeLog2;
    DCHECK(slot >= 0 && slot <= kMaxSlots);
    *bucket_index = slot >> kBitsPerBucketLog2;
    *cell_index = (slot >> kBitsPerCellLog2) & (kCellsPerBucket - 1);
    *bit_index = slot & (kBitsPerCell - 1);
  }

  base::AtomicValue<base::AtomicValue<uint32_t>*> bucket[kBuckets];
  Address page_start_;
  base::Mutex to_be_freed_buckets_mutex_;
  std::stack<base::AtomicValue<uint32_t>*> to_be_freed_buckets_;
};

enum SlotType {
  EMBEDDED_OBJECT_SLOT,
  OBJECT_SLOT,
  CELL_TARGET_SLOT,
  CODE_TARGET_SLOT,
  CODE_ENTRY_SLOT,
  DEBUG_TARGET_SLOT,
  CLEARED_SLOT
};

// Data structure for maintaining a multiset of typed slots in a page.
// Typed slots can only appear in Code and JSFunction objects, so
// the maximum possible offset is limited by the LargePage::kMaxCodePageSize.
// The implementation is a chain of chunks, where each chunks is an array of
// encoded (slot type, slot offset) pairs.
// There is no duplicate detection and we do not expect many duplicates because
// typed slots contain V8 internal pointers that are not directly exposed to JS.
class TypedSlotSet {
 public:
  enum IterationMode { PREFREE_EMPTY_CHUNKS, KEEP_EMPTY_CHUNKS };

  typedef std::pair<SlotType, uint32_t> TypeAndOffset;

  struct TypedSlot {
    TypedSlot() {
      type_and_offset_.SetValue(0);
      host_offset_.SetValue(0);
    }

    TypedSlot(SlotType type, uint32_t host_offset, uint32_t offset) {
      type_and_offset_.SetValue(TypeField::encode(type) |
                                OffsetField::encode(offset));
      host_offset_.SetValue(host_offset);
    }

    bool operator==(const TypedSlot other) {
      return type_and_offset_.Value() == other.type_and_offset_.Value() &&
             host_offset_.Value() == other.host_offset_.Value();
    }

    bool operator!=(const TypedSlot other) { return !(*this == other); }

    SlotType type() { return TypeField::decode(type_and_offset_.Value()); }

    uint32_t offset() { return OffsetField::decode(type_and_offset_.Value()); }

    TypeAndOffset GetTypeAndOffset() {
      uint32_t type_and_offset = type_and_offset_.Value();
      return std::make_pair(TypeField::decode(type_and_offset),
                            OffsetField::decode(type_and_offset));
    }

    uint32_t host_offset() { return host_offset_.Value(); }

    void Set(TypedSlot slot) {
      type_and_offset_.SetValue(slot.type_and_offset_.Value());
      host_offset_.SetValue(slot.host_offset_.Value());
    }

    void Clear() {
      type_and_offset_.SetValue(TypeField::encode(CLEARED_SLOT) |
                                OffsetField::encode(0));
      host_offset_.SetValue(0);
    }

    base::AtomicValue<uint32_t> type_and_offset_;
    base::AtomicValue<uint32_t> host_offset_;
  };
  static const int kMaxOffset = 1 << 29;

  explicit TypedSlotSet(Address page_start) : page_start_(page_start) {
    chunk_.SetValue(new Chunk(nullptr, kInitialBufferSize));
  }

  ~TypedSlotSet() {
    Chunk* chunk = chunk_.Value();
    while (chunk != nullptr) {
      Chunk* next = chunk->next.Value();
      delete chunk;
      chunk = next;
    }
    FreeToBeFreedChunks();
  }

  // The slot offset specifies a slot at address page_start_ + offset.
  // This method can only be called on the main thread.
  void Insert(SlotType type, uint32_t host_offset, uint32_t offset) {
    TypedSlot slot(type, host_offset, offset);
    Chunk* top_chunk = chunk_.Value();
    if (!top_chunk) {
      top_chunk = new Chunk(nullptr, kInitialBufferSize);
      chunk_.SetValue(top_chunk);
    }
    if (!top_chunk->AddSlot(slot)) {
      Chunk* new_top_chunk =
          new Chunk(top_chunk, NextCapacity(top_chunk->capacity.Value()));
      bool added = new_top_chunk->AddSlot(slot);
      chunk_.SetValue(new_top_chunk);
      DCHECK(added);
      USE(added);
    }
  }

  // Iterate over all slots in the set and for each slot invoke the callback.
  // If the callback returns REMOVE_SLOT then the slot is removed from the set.
  // Returns the new number of slots.
  //
  // Sample usage:
  // Iterate([](SlotType slot_type, Address slot_address) {
  //    if (good(slot_type, slot_address)) return KEEP_SLOT;
  //    else return REMOVE_SLOT;
  // });
  template <typename Callback>
  int Iterate(Callback callback, IterationMode mode) {
    STATIC_ASSERT(CLEARED_SLOT < 8);
    Chunk* chunk = chunk_.Value();
    Chunk* previous = nullptr;
    int new_count = 0;
    while (chunk != nullptr) {
      TypedSlot* buffer = chunk->buffer.Value();
      int count = chunk->count.Value();
      bool empty = true;
      for (int i = 0; i < count; i++) {
        // Order is important here. We have to read out the slot type last to
        // observe the concurrent removal case consistently.
        Address host_addr = page_start_ + buffer[i].host_offset();
        TypeAndOffset type_and_offset = buffer[i].GetTypeAndOffset();
        SlotType type = type_and_offset.first;
        if (type != CLEARED_SLOT) {
          Address addr = page_start_ + type_and_offset.second;
          if (callback(type, host_addr, addr) == KEEP_SLOT) {
            new_count++;
            empty = false;
          } else {
            buffer[i].Clear();
          }
        }
      }

      Chunk* next = chunk->next.Value();
      if (mode == PREFREE_EMPTY_CHUNKS && empty) {
        // We remove the chunk from the list but let it still point its next
        // chunk to allow concurrent iteration.
        if (previous) {
          previous->next.SetValue(next);
        } else {
          chunk_.SetValue(next);
        }
        base::LockGuard<base::Mutex> guard(&to_be_freed_chunks_mutex_);
        to_be_freed_chunks_.push(chunk);
      } else {
        previous = chunk;
      }
      chunk = next;
    }
    return new_count;
  }

  void FreeToBeFreedChunks() {
    base::LockGuard<base::Mutex> guard(&to_be_freed_chunks_mutex_);
    while (!to_be_freed_chunks_.empty()) {
      Chunk* top = to_be_freed_chunks_.top();
      to_be_freed_chunks_.pop();
      delete top;
    }
  }

  void RemoveInvaldSlots(std::map<uint32_t, uint32_t>& invalid_ranges) {
    Chunk* chunk = chunk_.Value();
    while (chunk != nullptr) {
      TypedSlot* buffer = chunk->buffer.Value();
      int count = chunk->count.Value();
      for (int i = 0; i < count; i++) {
        uint32_t host_offset = buffer[i].host_offset();
        std::map<uint32_t, uint32_t>::iterator upper_bound =
            invalid_ranges.upper_bound(host_offset);
        if (upper_bound == invalid_ranges.begin()) continue;
        // upper_bounds points to the invalid range after the given slot. Hence,
        // we have to go to the previous element.
        upper_bound--;
        DCHECK_LE(upper_bound->first, host_offset);
        if (upper_bound->second > host_offset) {
          buffer[i].Clear();
        }
      }
      chunk = chunk->next.Value();
    }
  }

 private:
  static const int kInitialBufferSize = 100;
  static const int kMaxBufferSize = 16 * KB;

  static int NextCapacity(int capacity) {
    return Min(kMaxBufferSize, capacity * 2);
  }

  class OffsetField : public BitField<int, 0, 29> {};
  class TypeField : public BitField<SlotType, 29, 3> {};

  struct Chunk : Malloced {
    explicit Chunk(Chunk* next_chunk, int chunk_capacity) {
      count.SetValue(0);
      capacity.SetValue(chunk_capacity);
      buffer.SetValue(NewArray<TypedSlot>(chunk_capacity));
      next.SetValue(next_chunk);
    }
    bool AddSlot(TypedSlot slot) {
      int current_count = count.Value();
      if (current_count == capacity.Value()) return false;
      TypedSlot* current_buffer = buffer.Value();
      // Order is important here. We have to write the slot first before
      // increasing the counter to guarantee that a consistent state is
      // observed by concurrent threads.
      current_buffer[current_count].Set(slot);
      count.SetValue(current_count + 1);
      return true;
    }
    ~Chunk() { DeleteArray(buffer.Value()); }
    base::AtomicValue<Chunk*> next;
    base::AtomicValue<int> count;
    base::AtomicValue<int> capacity;
    base::AtomicValue<TypedSlot*> buffer;
  };

  Address page_start_;
  base::AtomicValue<Chunk*> chunk_;
  base::Mutex to_be_freed_chunks_mutex_;
  std::stack<Chunk*> to_be_freed_chunks_;
};

}  // namespace internal
}  // namespace v8

#endif  // V8_SLOT_SET_H