1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_STORE_BUFFER_H_
#define V8_STORE_BUFFER_H_
#include "src/allocation.h"
#include "src/base/logging.h"
#include "src/base/platform/platform.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
class Page;
class PagedSpace;
class StoreBuffer;
typedef void (*ObjectSlotCallback)(HeapObject** from, HeapObject* to);
// Used to implement the write barrier by collecting addresses of pointers
// between spaces.
class StoreBuffer {
public:
explicit StoreBuffer(Heap* heap);
static void StoreBufferOverflow(Isolate* isolate);
void SetUp();
void TearDown();
// This is used to add addresses to the store buffer non-concurrently.
inline void Mark(Address addr);
// This is used to add addresses to the store buffer when multiple threads
// may operate on the store buffer.
inline void MarkSynchronized(Address addr);
// This is used by the heap traversal to enter the addresses into the store
// buffer that should still be in the store buffer after GC. It enters
// addresses directly into the old buffer because the GC starts by wiping the
// old buffer and thereafter only visits each cell once so there is no need
// to attempt to remove any dupes. During the first part of a GC we
// are using the store buffer to access the old spaces and at the same time
// we are rebuilding the store buffer using this function. There is, however
// no issue of overwriting the buffer we are iterating over, because this
// stage of the scavenge can only reduce the number of addresses in the store
// buffer (some objects are promoted so pointers to them do not need to be in
// the store buffer). The later parts of the GC scan the pages that are
// exempt from the store buffer and process the promotion queue. These steps
// can overflow this buffer. We check for this and on overflow we call the
// callback set up with the StoreBufferRebuildScope object.
inline void EnterDirectlyIntoStoreBuffer(Address addr);
// Iterates over all pointers that go from old space to new space. It will
// delete the store buffer as it starts so the callback should reenter
// surviving old-to-new pointers into the store buffer to rebuild it.
void IteratePointersToNewSpace(ObjectSlotCallback callback);
static const int kStoreBufferOverflowBit = 1 << (14 + kPointerSizeLog2);
static const int kStoreBufferSize = kStoreBufferOverflowBit;
static const int kStoreBufferLength = kStoreBufferSize / sizeof(Address);
static const int kOldStoreBufferLength = kStoreBufferLength * 16;
static const int kHashSetLengthLog2 = 12;
static const int kHashSetLength = 1 << kHashSetLengthLog2;
void Compact();
void GCPrologue();
void GCEpilogue();
Object*** Limit() { return reinterpret_cast<Object***>(old_limit_); }
Object*** Start() { return reinterpret_cast<Object***>(old_start_); }
Object*** Top() { return reinterpret_cast<Object***>(old_top_); }
void SetTop(Object*** top) {
DCHECK(top >= Start());
DCHECK(top <= Limit());
old_top_ = reinterpret_cast<Address*>(top);
}
bool old_buffer_is_sorted() { return old_buffer_is_sorted_; }
bool old_buffer_is_filtered() { return old_buffer_is_filtered_; }
void EnsureSpace(intptr_t space_needed);
void Verify();
bool PrepareForIteration();
void Filter(int flag);
// Eliminates all stale store buffer entries from the store buffer, i.e.,
// slots that are not part of live objects anymore. This method must be
// called after marking, when the whole transitive closure is known and
// must be called before sweeping when mark bits are still intact.
void ClearInvalidStoreBufferEntries();
void VerifyValidStoreBufferEntries();
private:
Heap* heap_;
// The store buffer is divided up into a new buffer that is constantly being
// filled by mutator activity and an old buffer that is filled with the data
// from the new buffer after compression.
Address* start_;
Address* limit_;
Address* old_start_;
Address* old_limit_;
Address* old_top_;
Address* old_reserved_limit_;
base::VirtualMemory* old_virtual_memory_;
bool old_buffer_is_sorted_;
bool old_buffer_is_filtered_;
bool during_gc_;
// The garbage collector iterates over many pointers to new space that are not
// handled by the store buffer. This flag indicates whether the pointers
// found by the callbacks should be added to the store buffer or not.
bool store_buffer_rebuilding_enabled_;
StoreBufferCallback callback_;
bool may_move_store_buffer_entries_;
base::VirtualMemory* virtual_memory_;
// Two hash sets used for filtering.
// If address is in the hash set then it is guaranteed to be in the
// old part of the store buffer.
uintptr_t* hash_set_1_;
uintptr_t* hash_set_2_;
bool hash_sets_are_empty_;
// Used for synchronization of concurrent store buffer access.
base::Mutex mutex_;
void ClearFilteringHashSets();
bool SpaceAvailable(intptr_t space_needed);
void ExemptPopularPages(int prime_sample_step, int threshold);
void ProcessOldToNewSlot(Address slot_address,
ObjectSlotCallback slot_callback);
void FindPointersToNewSpaceInRegion(Address start, Address end,
ObjectSlotCallback slot_callback);
void IteratePointersInStoreBuffer(ObjectSlotCallback slot_callback);
#ifdef VERIFY_HEAP
void VerifyPointers(LargeObjectSpace* space);
#endif
friend class DontMoveStoreBufferEntriesScope;
friend class FindPointersToNewSpaceVisitor;
friend class StoreBufferRebuildScope;
};
class StoreBufferRebuilder {
public:
explicit StoreBufferRebuilder(StoreBuffer* store_buffer)
: store_buffer_(store_buffer) {}
void Callback(MemoryChunk* page, StoreBufferEvent event);
private:
StoreBuffer* store_buffer_;
// We record in this variable how full the store buffer was when we started
// iterating over the current page, finding pointers to new space. If the
// store buffer overflows again we can exempt the page from the store buffer
// by rewinding to this point instead of having to search the store buffer.
Object*** start_of_current_page_;
// The current page we are scanning in the store buffer iterator.
MemoryChunk* current_page_;
};
class StoreBufferRebuildScope {
public:
explicit StoreBufferRebuildScope(Heap* heap, StoreBuffer* store_buffer,
StoreBufferCallback callback)
: store_buffer_(store_buffer),
stored_state_(store_buffer->store_buffer_rebuilding_enabled_),
stored_callback_(store_buffer->callback_) {
store_buffer_->store_buffer_rebuilding_enabled_ = true;
store_buffer_->callback_ = callback;
(*callback)(heap, NULL, kStoreBufferStartScanningPagesEvent);
}
~StoreBufferRebuildScope() {
store_buffer_->callback_ = stored_callback_;
store_buffer_->store_buffer_rebuilding_enabled_ = stored_state_;
}
private:
StoreBuffer* store_buffer_;
bool stored_state_;
StoreBufferCallback stored_callback_;
};
class DontMoveStoreBufferEntriesScope {
public:
explicit DontMoveStoreBufferEntriesScope(StoreBuffer* store_buffer)
: store_buffer_(store_buffer),
stored_state_(store_buffer->may_move_store_buffer_entries_) {
store_buffer_->may_move_store_buffer_entries_ = false;
}
~DontMoveStoreBufferEntriesScope() {
store_buffer_->may_move_store_buffer_entries_ = stored_state_;
}
private:
StoreBuffer* store_buffer_;
bool stored_state_;
};
} // namespace internal
} // namespace v8
#endif // V8_STORE_BUFFER_H_
|