summaryrefslogtreecommitdiff
path: root/deps/v8/src/ia32/assembler-ia32.h
blob: 40a981f53f9cf46f14c6d74f9107527bbf61a0c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2011 the V8 project authors. All rights reserved.

// A light-weight IA32 Assembler.

#ifndef V8_IA32_ASSEMBLER_IA32_H_
#define V8_IA32_ASSEMBLER_IA32_H_

#include <deque>

#include "src/assembler.h"
#include "src/ia32/constants-ia32.h"
#include "src/ia32/sse-instr.h"
#include "src/isolate.h"
#include "src/utils.h"

namespace v8 {
namespace internal {

#define GENERAL_REGISTERS(V) \
  V(eax)                     \
  V(ecx)                     \
  V(edx)                     \
  V(ebx)                     \
  V(esp)                     \
  V(ebp)                     \
  V(esi)                     \
  V(edi)

#define ALLOCATABLE_GENERAL_REGISTERS(V) \
  V(eax)                                 \
  V(ecx)                                 \
  V(edx)                                 \
  V(ebx)                                 \
  V(esi)                                 \
  V(edi)

#define DOUBLE_REGISTERS(V) \
  V(xmm0)                   \
  V(xmm1)                   \
  V(xmm2)                   \
  V(xmm3)                   \
  V(xmm4)                   \
  V(xmm5)                   \
  V(xmm6)                   \
  V(xmm7)

#define FLOAT_REGISTERS DOUBLE_REGISTERS
#define SIMD128_REGISTERS DOUBLE_REGISTERS

#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
  V(xmm1)                               \
  V(xmm2)                               \
  V(xmm3)                               \
  V(xmm4)                               \
  V(xmm5)                               \
  V(xmm6)                               \
  V(xmm7)

enum RegisterCode {
#define REGISTER_CODE(R) kRegCode_##R,
  GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
      kRegAfterLast
};

class Register : public RegisterBase<Register, kRegAfterLast> {
 public:
  bool is_byte_register() const { return reg_code_ <= 3; }

 private:
  friend class RegisterBase<Register, kRegAfterLast>;
  explicit constexpr Register(int code) : RegisterBase(code) {}
};

ASSERT_TRIVIALLY_COPYABLE(Register);
static_assert(sizeof(Register) == sizeof(int),
              "Register can efficiently be passed by value");

#define DEFINE_REGISTER(R) \
  constexpr Register R = Register::from_code<kRegCode_##R>();
GENERAL_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr Register no_reg = Register::no_reg();

constexpr bool kPadArguments = false;
constexpr bool kSimpleFPAliasing = true;
constexpr bool kSimdMaskRegisters = false;

enum DoubleCode {
#define REGISTER_CODE(R) kDoubleCode_##R,
  DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
      kDoubleAfterLast
};

class XMMRegister : public RegisterBase<XMMRegister, kDoubleAfterLast> {
  friend class RegisterBase<XMMRegister, kDoubleAfterLast>;
  explicit constexpr XMMRegister(int code) : RegisterBase(code) {}
};

typedef XMMRegister FloatRegister;

typedef XMMRegister DoubleRegister;

typedef XMMRegister Simd128Register;

#define DEFINE_REGISTER(R) \
  constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>();
DOUBLE_REGISTERS(DEFINE_REGISTER)
#undef DEFINE_REGISTER
constexpr DoubleRegister no_double_reg = DoubleRegister::no_reg();

// Note that the bit values must match those used in actual instruction encoding
constexpr int kNumRegs = 8;

// Caller-saved registers
constexpr RegList kJSCallerSaved =
    Register::ListOf<eax, ecx, edx,
                     ebx,  // used as a caller-saved register in JavaScript code
                     edi   // callee function
                     >();

constexpr int kNumJSCallerSaved = 5;

// Number of registers for which space is reserved in safepoints.
constexpr int kNumSafepointRegisters = 8;

enum Condition {
  // any value < 0 is considered no_condition
  no_condition  = -1,

  overflow      =  0,
  no_overflow   =  1,
  below         =  2,
  above_equal   =  3,
  equal         =  4,
  not_equal     =  5,
  below_equal   =  6,
  above         =  7,
  negative      =  8,
  positive      =  9,
  parity_even   = 10,
  parity_odd    = 11,
  less          = 12,
  greater_equal = 13,
  less_equal    = 14,
  greater       = 15,

  // aliases
  carry         = below,
  not_carry     = above_equal,
  zero          = equal,
  not_zero      = not_equal,
  sign          = negative,
  not_sign      = positive
};


// Returns the equivalent of !cc.
// Negation of the default no_condition (-1) results in a non-default
// no_condition value (-2). As long as tests for no_condition check
// for condition < 0, this will work as expected.
inline Condition NegateCondition(Condition cc) {
  return static_cast<Condition>(cc ^ 1);
}


// Commute a condition such that {a cond b == b cond' a}.
inline Condition CommuteCondition(Condition cc) {
  switch (cc) {
    case below:
      return above;
    case above:
      return below;
    case above_equal:
      return below_equal;
    case below_equal:
      return above_equal;
    case less:
      return greater;
    case greater:
      return less;
    case greater_equal:
      return less_equal;
    case less_equal:
      return greater_equal;
    default:
      return cc;
  }
}


enum RoundingMode {
  kRoundToNearest = 0x0,
  kRoundDown = 0x1,
  kRoundUp = 0x2,
  kRoundToZero = 0x3
};

// -----------------------------------------------------------------------------
// Machine instruction Immediates

class Immediate BASE_EMBEDDED {
 public:
  // Calls where x is an Address (uintptr_t) resolve to this overload.
  inline explicit Immediate(int x, RelocInfo::Mode rmode = RelocInfo::NONE) {
    value_.immediate = x;
    rmode_ = rmode;
  }
  inline explicit Immediate(const ExternalReference& ext)
      : Immediate(ext.address(), RelocInfo::EXTERNAL_REFERENCE) {}
  inline explicit Immediate(Handle<HeapObject> handle)
      : Immediate(handle.address(), RelocInfo::EMBEDDED_OBJECT) {}
  inline explicit Immediate(Smi* value)
      : Immediate(reinterpret_cast<intptr_t>(value)) {}

  static Immediate EmbeddedNumber(double number);  // Smi or HeapNumber.
  static Immediate EmbeddedCode(CodeStub* code);

  static Immediate CodeRelativeOffset(Label* label) {
    return Immediate(label);
  }

  bool is_heap_object_request() const {
    DCHECK_IMPLIES(is_heap_object_request_,
                   rmode_ == RelocInfo::EMBEDDED_OBJECT ||
                       rmode_ == RelocInfo::CODE_TARGET);
    return is_heap_object_request_;
  }

  HeapObjectRequest heap_object_request() const {
    DCHECK(is_heap_object_request());
    return value_.heap_object_request;
  }

  int immediate() const {
    DCHECK(!is_heap_object_request());
    return value_.immediate;
  }

  bool is_zero() const { return RelocInfo::IsNone(rmode_) && immediate() == 0; }
  bool is_int8() const {
    return RelocInfo::IsNone(rmode_) && i::is_int8(immediate());
  }
  bool is_uint8() const {
    return RelocInfo::IsNone(rmode_) && i::is_uint8(immediate());
  }
  bool is_int16() const {
    return RelocInfo::IsNone(rmode_) && i::is_int16(immediate());
  }

  bool is_uint16() const {
    return RelocInfo::IsNone(rmode_) && i::is_uint16(immediate());
  }

  RelocInfo::Mode rmode() const { return rmode_; }

 private:
  inline explicit Immediate(Label* value) {
    value_.immediate = reinterpret_cast<int32_t>(value);
    rmode_ = RelocInfo::INTERNAL_REFERENCE;
  }

  union Value {
    Value() {}
    HeapObjectRequest heap_object_request;
    int immediate;
  } value_;
  bool is_heap_object_request_ = false;
  RelocInfo::Mode rmode_;

  friend class Operand;
  friend class Assembler;
  friend class MacroAssembler;
};


// -----------------------------------------------------------------------------
// Machine instruction Operands

enum ScaleFactor {
  times_1 = 0,
  times_2 = 1,
  times_4 = 2,
  times_8 = 3,
  times_int_size = times_4,
  times_half_pointer_size = times_2,
  times_pointer_size = times_4,
  times_twice_pointer_size = times_8
};

class Operand {
 public:
  // reg
  V8_INLINE explicit Operand(Register reg) { set_modrm(3, reg); }

  // XMM reg
  V8_INLINE explicit Operand(XMMRegister xmm_reg) {
    Register reg = Register::from_code(xmm_reg.code());
    set_modrm(3, reg);
  }

  // [disp/r]
  V8_INLINE explicit Operand(int32_t disp, RelocInfo::Mode rmode) {
    set_modrm(0, ebp);
    set_dispr(disp, rmode);
  }

  // [disp/r]
  V8_INLINE explicit Operand(Immediate imm) {
    set_modrm(0, ebp);
    set_dispr(imm.immediate(), imm.rmode_);
  }

  // [base + disp/r]
  explicit Operand(Register base, int32_t disp,
                   RelocInfo::Mode rmode = RelocInfo::NONE);

  // [base + index*scale + disp/r]
  explicit Operand(Register base, Register index, ScaleFactor scale,
                   int32_t disp, RelocInfo::Mode rmode = RelocInfo::NONE);

  // [index*scale + disp/r]
  explicit Operand(Register index, ScaleFactor scale, int32_t disp,
                   RelocInfo::Mode rmode = RelocInfo::NONE);

  static Operand JumpTable(Register index, ScaleFactor scale, Label* table) {
    return Operand(index, scale, reinterpret_cast<int32_t>(table),
                   RelocInfo::INTERNAL_REFERENCE);
  }

  static Operand StaticVariable(const ExternalReference& ext) {
    return Operand(ext.address(), RelocInfo::EXTERNAL_REFERENCE);
  }

  static Operand StaticArray(Register index,
                             ScaleFactor scale,
                             const ExternalReference& arr) {
    return Operand(index, scale, arr.address(), RelocInfo::EXTERNAL_REFERENCE);
  }

  static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
    return Operand(base, imm.value_.immediate, imm.rmode_);
  }

  // Returns true if this Operand is a wrapper for the specified register.
  bool is_reg(Register reg) const { return is_reg(reg.code()); }
  bool is_reg(XMMRegister reg) const { return is_reg(reg.code()); }

  // Returns true if this Operand is a wrapper for one register.
  bool is_reg_only() const;

  // Asserts that this Operand is a wrapper for one register and returns the
  // register.
  Register reg() const;

 private:
  // Set the ModRM byte without an encoded 'reg' register. The
  // register is encoded later as part of the emit_operand operation.
  inline void set_modrm(int mod, Register rm) {
    DCHECK_EQ(mod & -4, 0);
    buf_[0] = mod << 6 | rm.code();
    len_ = 1;
  }

  inline void set_sib(ScaleFactor scale, Register index, Register base);
  inline void set_disp8(int8_t disp);
  inline void set_dispr(int32_t disp, RelocInfo::Mode rmode) {
    DCHECK(len_ == 1 || len_ == 2);
    int32_t* p = reinterpret_cast<int32_t*>(&buf_[len_]);
    *p = disp;
    len_ += sizeof(int32_t);
    rmode_ = rmode;
  }

  inline bool is_reg(int reg_code) const {
    return ((buf_[0] & 0xF8) == 0xC0)  // addressing mode is register only.
           && ((buf_[0] & 0x07) == reg_code);  // register codes match.
  }

  byte buf_[6];
  // The number of bytes in buf_.
  uint8_t len_;
  // Only valid if len_ > 4.
  RelocInfo::Mode rmode_;

  // TODO(clemensh): Get rid of this friendship, or make Operand immutable.
  friend class Assembler;
};
ASSERT_TRIVIALLY_COPYABLE(Operand);
static_assert(sizeof(Operand) <= 2 * kPointerSize,
              "Operand must be small enough to pass it by value");

// -----------------------------------------------------------------------------
// A Displacement describes the 32bit immediate field of an instruction which
// may be used together with a Label in order to refer to a yet unknown code
// position. Displacements stored in the instruction stream are used to describe
// the instruction and to chain a list of instructions using the same Label.
// A Displacement contains 2 different fields:
//
// next field: position of next displacement in the chain (0 = end of list)
// type field: instruction type
//
// A next value of null (0) indicates the end of a chain (note that there can
// be no displacement at position zero, because there is always at least one
// instruction byte before the displacement).
//
// Displacement _data field layout
//
// |31.....2|1......0|
// [  next  |  type  |

class Displacement BASE_EMBEDDED {
 public:
  enum Type { UNCONDITIONAL_JUMP, CODE_RELATIVE, OTHER, CODE_ABSOLUTE };

  int data() const { return data_; }
  Type type() const { return TypeField::decode(data_); }
  void next(Label* L) const {
    int n = NextField::decode(data_);
    n > 0 ? L->link_to(n) : L->Unuse();
  }
  void link_to(Label* L) { init(L, type()); }

  explicit Displacement(int data) { data_ = data; }

  Displacement(Label* L, Type type) { init(L, type); }

  void print() {
    PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
                       NextField::decode(data_));
  }

 private:
  int data_;

  class TypeField: public BitField<Type, 0, 2> {};
  class NextField: public BitField<int,  2, 32-2> {};

  void init(Label* L, Type type);
};


class Assembler : public AssemblerBase {
 private:
  // We check before assembling an instruction that there is sufficient
  // space to write an instruction and its relocation information.
  // The relocation writer's position must be kGap bytes above the end of
  // the generated instructions. This leaves enough space for the
  // longest possible ia32 instruction, 15 bytes, and the longest possible
  // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
  // (There is a 15 byte limit on ia32 instruction length that rules out some
  // otherwise valid instructions.)
  // This allows for a single, fast space check per instruction.
  static constexpr int kGap = 32;

 public:
  // Create an assembler. Instructions and relocation information are emitted
  // into a buffer, with the instructions starting from the beginning and the
  // relocation information starting from the end of the buffer. See CodeDesc
  // for a detailed comment on the layout (globals.h).
  //
  // If the provided buffer is nullptr, the assembler allocates and grows its
  // own buffer, and buffer_size determines the initial buffer size. The buffer
  // is owned by the assembler and deallocated upon destruction of the
  // assembler.
  //
  // If the provided buffer is not nullptr, the assembler uses the provided
  // buffer for code generation and assumes its size to be buffer_size. If the
  // buffer is too small, a fatal error occurs. No deallocation of the buffer is
  // done upon destruction of the assembler.
  Assembler(const AssemblerOptions& options, void* buffer, int buffer_size);
  virtual ~Assembler() {}

  // GetCode emits any pending (non-emitted) code and fills the descriptor
  // desc. GetCode() is idempotent; it returns the same result if no other
  // Assembler functions are invoked in between GetCode() calls.
  void GetCode(Isolate* isolate, CodeDesc* desc);

  // Read/Modify the code target in the branch/call instruction at pc.
  // The isolate argument is unused (and may be nullptr) when skipping flushing.
  inline static Address target_address_at(Address pc, Address constant_pool);
  inline static void set_target_address_at(
      Address pc, Address constant_pool, Address target,
      ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);

  // Return the code target address at a call site from the return address
  // of that call in the instruction stream.
  inline static Address target_address_from_return_address(Address pc);

  // This sets the branch destination (which is in the instruction on x86).
  // This is for calls and branches within generated code.
  inline static void deserialization_set_special_target_at(
      Address instruction_payload, Code* code, Address target);

  // Get the size of the special target encoded at 'instruction_payload'.
  inline static int deserialization_special_target_size(
      Address instruction_payload);

  // This sets the internal reference at the pc.
  inline static void deserialization_set_target_internal_reference_at(
      Address pc, Address target,
      RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);

  static constexpr int kSpecialTargetSize = kPointerSize;

  // Distance between the address of the code target in the call instruction
  // and the return address
  static constexpr int kCallTargetAddressOffset = kPointerSize;

  static constexpr int kCallInstructionLength = 5;

  // One byte opcode for test al, 0xXX.
  static constexpr byte kTestAlByte = 0xA8;
  // One byte opcode for nop.
  static constexpr byte kNopByte = 0x90;

  // One byte opcode for a short unconditional jump.
  static constexpr byte kJmpShortOpcode = 0xEB;
  // One byte prefix for a short conditional jump.
  static constexpr byte kJccShortPrefix = 0x70;
  static constexpr byte kJncShortOpcode = kJccShortPrefix | not_carry;
  static constexpr byte kJcShortOpcode = kJccShortPrefix | carry;
  static constexpr byte kJnzShortOpcode = kJccShortPrefix | not_zero;
  static constexpr byte kJzShortOpcode = kJccShortPrefix | zero;

  // ---------------------------------------------------------------------------
  // Code generation
  //
  // - function names correspond one-to-one to ia32 instruction mnemonics
  // - unless specified otherwise, instructions operate on 32bit operands
  // - instructions on 8bit (byte) operands/registers have a trailing '_b'
  // - instructions on 16bit (word) operands/registers have a trailing '_w'
  // - naming conflicts with C++ keywords are resolved via a trailing '_'

  // NOTE ON INTERFACE: Currently, the interface is not very consistent
  // in the sense that some operations (e.g. mov()) can be called in more
  // the one way to generate the same instruction: The Register argument
  // can in some cases be replaced with an Operand(Register) argument.
  // This should be cleaned up and made more orthogonal. The questions
  // is: should we always use Operands instead of Registers where an
  // Operand is possible, or should we have a Register (overloaded) form
  // instead? We must be careful to make sure that the selected instruction
  // is obvious from the parameters to avoid hard-to-find code generation
  // bugs.

  // Insert the smallest number of nop instructions
  // possible to align the pc offset to a multiple
  // of m. m must be a power of 2.
  void Align(int m);
  // Insert the smallest number of zero bytes possible to align the pc offset
  // to a mulitple of m. m must be a power of 2 (>= 2).
  void DataAlign(int m);
  void Nop(int bytes = 1);
  // Aligns code to something that's optimal for a jump target for the platform.
  void CodeTargetAlign();

  // Stack
  void pushad();
  void popad();

  void pushfd();
  void popfd();

  void push(const Immediate& x);
  void push_imm32(int32_t imm32);
  void push(Register src);
  void push(Operand src);

  void pop(Register dst);
  void pop(Operand dst);

  void enter(const Immediate& size);
  void leave();

  // Moves
  void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
  void mov_b(Register dst, Operand src);
  void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
  void mov_b(Operand dst, int8_t src) { mov_b(dst, Immediate(src)); }
  void mov_b(Operand dst, const Immediate& src);
  void mov_b(Operand dst, Register src);

  void mov_w(Register dst, Operand src);
  void mov_w(Operand dst, int16_t src) { mov_w(dst, Immediate(src)); }
  void mov_w(Operand dst, const Immediate& src);
  void mov_w(Operand dst, Register src);

  void mov(Register dst, int32_t imm32);
  void mov(Register dst, const Immediate& x);
  void mov(Register dst, Handle<HeapObject> handle);
  void mov(Register dst, Operand src);
  void mov(Register dst, Register src);
  void mov(Operand dst, const Immediate& x);
  void mov(Operand dst, Handle<HeapObject> handle);
  void mov(Operand dst, Register src);
  void mov(Operand dst, Address src, RelocInfo::Mode);

  void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
  void movsx_b(Register dst, Operand src);

  void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
  void movsx_w(Register dst, Operand src);

  void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
  void movzx_b(Register dst, Operand src);

  void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
  void movzx_w(Register dst, Operand src);

  // Conditional moves
  void cmov(Condition cc, Register dst, Register src) {
    cmov(cc, dst, Operand(src));
  }
  void cmov(Condition cc, Register dst, Operand src);

  // Flag management.
  void cld();

  // Repetitive string instructions.
  void rep_movs();
  void rep_stos();
  void stos();

  // Exchange
  void xchg(Register dst, Register src);
  void xchg(Register dst, Operand src);
  void xchg_b(Register reg, Operand op);
  void xchg_w(Register reg, Operand op);

  // Lock prefix
  void lock();

  // CompareExchange
  void cmpxchg(Operand dst, Register src);
  void cmpxchg_b(Operand dst, Register src);
  void cmpxchg_w(Operand dst, Register src);

  // Memory Fence
  void lfence();

  void pause();

  // Arithmetics
  void adc(Register dst, int32_t imm32);
  void adc(Register dst, Register src) { adc(dst, Operand(src)); }
  void adc(Register dst, Operand src);

  void add(Register dst, Register src) { add(dst, Operand(src)); }
  void add(Register dst, Operand src);
  void add(Operand dst, Register src);
  void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
  void add(Operand dst, const Immediate& x);

  void and_(Register dst, int32_t imm32);
  void and_(Register dst, const Immediate& x);
  void and_(Register dst, Register src) { and_(dst, Operand(src)); }
  void and_(Register dst, Operand src);
  void and_(Operand dst, Register src);
  void and_(Operand dst, const Immediate& x);

  void cmpb(Register reg, Immediate imm8) { cmpb(Operand(reg), imm8); }
  void cmpb(Operand op, Immediate imm8);
  void cmpb(Register reg, Operand op);
  void cmpb(Operand op, Register reg);
  void cmpb(Register dst, Register src) { cmpb(Operand(dst), src); }
  void cmpb_al(Operand op);
  void cmpw_ax(Operand op);
  void cmpw(Operand dst, Immediate src);
  void cmpw(Register dst, Immediate src) { cmpw(Operand(dst), src); }
  void cmpw(Register dst, Operand src);
  void cmpw(Register dst, Register src) { cmpw(Operand(dst), src); }
  void cmpw(Operand dst, Register src);
  void cmp(Register reg, int32_t imm32);
  void cmp(Register reg, Handle<HeapObject> handle);
  void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
  void cmp(Register reg, Operand op);
  void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
  void cmp(Operand op, Register reg);
  void cmp(Operand op, const Immediate& imm);
  void cmp(Operand op, Handle<HeapObject> handle);

  void dec_b(Register dst);
  void dec_b(Operand dst);

  void dec(Register dst);
  void dec(Operand dst);

  void cdq();

  void idiv(Register src) { idiv(Operand(src)); }
  void idiv(Operand src);
  void div(Register src) { div(Operand(src)); }
  void div(Operand src);

  // Signed multiply instructions.
  void imul(Register src);                               // edx:eax = eax * src.
  void imul(Register dst, Register src) { imul(dst, Operand(src)); }
  void imul(Register dst, Operand src);                  // dst = dst * src.
  void imul(Register dst, Register src, int32_t imm32);  // dst = src * imm32.
  void imul(Register dst, Operand src, int32_t imm32);

  void inc(Register dst);
  void inc(Operand dst);

  void lea(Register dst, Operand src);

  // Unsigned multiply instruction.
  void mul(Register src);                                // edx:eax = eax * reg.

  void neg(Register dst);
  void neg(Operand dst);

  void not_(Register dst);
  void not_(Operand dst);

  void or_(Register dst, int32_t imm32);
  void or_(Register dst, Register src) { or_(dst, Operand(src)); }
  void or_(Register dst, Operand src);
  void or_(Operand dst, Register src);
  void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
  void or_(Operand dst, const Immediate& x);

  void rcl(Register dst, uint8_t imm8);
  void rcr(Register dst, uint8_t imm8);

  void ror(Register dst, uint8_t imm8) { ror(Operand(dst), imm8); }
  void ror(Operand dst, uint8_t imm8);
  void ror_cl(Register dst) { ror_cl(Operand(dst)); }
  void ror_cl(Operand dst);

  void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
  void sar(Operand dst, uint8_t imm8);
  void sar_cl(Register dst) { sar_cl(Operand(dst)); }
  void sar_cl(Operand dst);

  void sbb(Register dst, Register src) { sbb(dst, Operand(src)); }
  void sbb(Register dst, Operand src);

  void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
  void shl(Operand dst, uint8_t imm8);
  void shl_cl(Register dst) { shl_cl(Operand(dst)); }
  void shl_cl(Operand dst);
  void shld(Register dst, Register src, uint8_t shift);
  void shld_cl(Register dst, Register src);

  void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
  void shr(Operand dst, uint8_t imm8);
  void shr_cl(Register dst) { shr_cl(Operand(dst)); }
  void shr_cl(Operand dst);
  void shrd(Register dst, Register src, uint8_t shift);
  void shrd_cl(Register dst, Register src) { shrd_cl(Operand(dst), src); }
  void shrd_cl(Operand dst, Register src);

  void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
  void sub(Operand dst, const Immediate& x);
  void sub(Register dst, Register src) { sub(dst, Operand(src)); }
  void sub(Register dst, Operand src);
  void sub(Operand dst, Register src);
  void sub_sp_32(uint32_t imm);

  void test(Register reg, const Immediate& imm);
  void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
  void test(Register reg, Operand op);
  void test(Operand op, const Immediate& imm);
  void test(Operand op, Register reg) { test(reg, op); }
  void test_b(Register reg, Operand op);
  void test_b(Register reg, Immediate imm8);
  void test_b(Operand op, Immediate imm8);
  void test_b(Operand op, Register reg) { test_b(reg, op); }
  void test_b(Register dst, Register src) { test_b(dst, Operand(src)); }
  void test_w(Register reg, Operand op);
  void test_w(Register reg, Immediate imm16);
  void test_w(Operand op, Immediate imm16);
  void test_w(Operand op, Register reg) { test_w(reg, op); }
  void test_w(Register dst, Register src) { test_w(dst, Operand(src)); }

  void xor_(Register dst, int32_t imm32);
  void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
  void xor_(Register dst, Operand src);
  void xor_(Operand dst, Register src);
  void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
  void xor_(Operand dst, const Immediate& x);

  // Bit operations.
  void bt(Operand dst, Register src);
  void bts(Register dst, Register src) { bts(Operand(dst), src); }
  void bts(Operand dst, Register src);
  void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
  void bsr(Register dst, Operand src);
  void bsf(Register dst, Register src) { bsf(dst, Operand(src)); }
  void bsf(Register dst, Operand src);

  // Miscellaneous
  void hlt();
  void int3();
  void nop();
  void ret(int imm16);
  void ud2();

  // Label operations & relative jumps (PPUM Appendix D)
  //
  // Takes a branch opcode (cc) and a label (L) and generates
  // either a backward branch or a forward branch and links it
  // to the label fixup chain. Usage:
  //
  // Label L;    // unbound label
  // j(cc, &L);  // forward branch to unbound label
  // bind(&L);   // bind label to the current pc
  // j(cc, &L);  // backward branch to bound label
  // bind(&L);   // illegal: a label may be bound only once
  //
  // Note: The same Label can be used for forward and backward branches
  // but it may be bound only once.

  void bind(Label* L);  // binds an unbound label L to the current code position

  // Calls
  void call(Label* L);
  void call(Address entry, RelocInfo::Mode rmode);
  int CallSize(Operand adr);
  void call(Register reg) { call(Operand(reg)); }
  void call(Operand adr);
  int CallSize(Handle<Code> code, RelocInfo::Mode mode);
  void call(Handle<Code> code, RelocInfo::Mode rmode);
  void call(CodeStub* stub);
  void wasm_call(Address address, RelocInfo::Mode rmode);

  // Jumps
  // unconditional jump to L
  void jmp(Label* L, Label::Distance distance = Label::kFar);
  void jmp(Address entry, RelocInfo::Mode rmode);
  void jmp(Register reg) { jmp(Operand(reg)); }
  void jmp(Operand adr);
  void jmp(Handle<Code> code, RelocInfo::Mode rmode);
  // unconditionoal jump relative to the current address. Low-level rountine,
  // use with caution!
  void jmp_rel(int offset);

  // Conditional jumps
  void j(Condition cc,
         Label* L,
         Label::Distance distance = Label::kFar);
  void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
  void j(Condition cc, Handle<Code> code,
         RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);

  // Floating-point operations
  void fld(int i);
  void fstp(int i);

  void fld1();
  void fldz();
  void fldpi();
  void fldln2();

  void fld_s(Operand adr);
  void fld_d(Operand adr);

  void fstp_s(Operand adr);
  void fst_s(Operand adr);
  void fstp_d(Operand adr);
  void fst_d(Operand adr);

  void fild_s(Operand adr);
  void fild_d(Operand adr);

  void fist_s(Operand adr);

  void fistp_s(Operand adr);
  void fistp_d(Operand adr);

  // The fisttp instructions require SSE3.
  void fisttp_s(Operand adr);
  void fisttp_d(Operand adr);

  void fabs();
  void fchs();
  void fcos();
  void fsin();
  void fptan();
  void fyl2x();
  void f2xm1();
  void fscale();
  void fninit();

  void fadd(int i);
  void fadd_i(int i);
  void fsub(int i);
  void fsub_i(int i);
  void fmul(int i);
  void fmul_i(int i);
  void fdiv(int i);
  void fdiv_i(int i);

  void fisub_s(Operand adr);

  void faddp(int i = 1);
  void fsubp(int i = 1);
  void fsubrp(int i = 1);
  void fmulp(int i = 1);
  void fdivp(int i = 1);
  void fprem();
  void fprem1();

  void fxch(int i = 1);
  void fincstp();
  void ffree(int i = 0);

  void ftst();
  void fucomp(int i);
  void fucompp();
  void fucomi(int i);
  void fucomip();
  void fcompp();
  void fnstsw_ax();
  void fwait();
  void fnclex();

  void frndint();

  void sahf();
  void setcc(Condition cc, Register reg);

  void cpuid();

  // SSE instructions
  void addss(XMMRegister dst, XMMRegister src) { addss(dst, Operand(src)); }
  void addss(XMMRegister dst, Operand src);
  void subss(XMMRegister dst, XMMRegister src) { subss(dst, Operand(src)); }
  void subss(XMMRegister dst, Operand src);
  void mulss(XMMRegister dst, XMMRegister src) { mulss(dst, Operand(src)); }
  void mulss(XMMRegister dst, Operand src);
  void divss(XMMRegister dst, XMMRegister src) { divss(dst, Operand(src)); }
  void divss(XMMRegister dst, Operand src);
  void sqrtss(XMMRegister dst, XMMRegister src) { sqrtss(dst, Operand(src)); }
  void sqrtss(XMMRegister dst, Operand src);

  void ucomiss(XMMRegister dst, XMMRegister src) { ucomiss(dst, Operand(src)); }
  void ucomiss(XMMRegister dst, Operand src);
  void movaps(XMMRegister dst, XMMRegister src);
  void movups(XMMRegister dst, XMMRegister src);
  void movups(XMMRegister dst, Operand src);
  void movups(Operand dst, XMMRegister src);
  void shufps(XMMRegister dst, XMMRegister src, byte imm8);

  void maxss(XMMRegister dst, XMMRegister src) { maxss(dst, Operand(src)); }
  void maxss(XMMRegister dst, Operand src);
  void minss(XMMRegister dst, XMMRegister src) { minss(dst, Operand(src)); }
  void minss(XMMRegister dst, Operand src);

  void andps(XMMRegister dst, Operand src);
  void andps(XMMRegister dst, XMMRegister src) { andps(dst, Operand(src)); }
  void xorps(XMMRegister dst, Operand src);
  void xorps(XMMRegister dst, XMMRegister src) { xorps(dst, Operand(src)); }
  void orps(XMMRegister dst, Operand src);
  void orps(XMMRegister dst, XMMRegister src) { orps(dst, Operand(src)); }

  void addps(XMMRegister dst, Operand src);
  void addps(XMMRegister dst, XMMRegister src) { addps(dst, Operand(src)); }
  void subps(XMMRegister dst, Operand src);
  void subps(XMMRegister dst, XMMRegister src) { subps(dst, Operand(src)); }
  void mulps(XMMRegister dst, Operand src);
  void mulps(XMMRegister dst, XMMRegister src) { mulps(dst, Operand(src)); }
  void divps(XMMRegister dst, Operand src);
  void divps(XMMRegister dst, XMMRegister src) { divps(dst, Operand(src)); }
  void rcpps(XMMRegister dst, Operand src);
  void rcpps(XMMRegister dst, XMMRegister src) { rcpps(dst, Operand(src)); }
  void rsqrtps(XMMRegister dst, Operand src);
  void rsqrtps(XMMRegister dst, XMMRegister src) { rsqrtps(dst, Operand(src)); }
  void haddps(XMMRegister dst, Operand src);
  void haddps(XMMRegister dst, XMMRegister src) { haddps(dst, Operand(src)); }

  void minps(XMMRegister dst, Operand src);
  void minps(XMMRegister dst, XMMRegister src) { minps(dst, Operand(src)); }
  void maxps(XMMRegister dst, Operand src);
  void maxps(XMMRegister dst, XMMRegister src) { maxps(dst, Operand(src)); }

  void cmpps(XMMRegister dst, Operand src, int8_t cmp);
#define SSE_CMP_P(instr, imm8)                       \
  void instr##ps(XMMRegister dst, XMMRegister src) { \
    cmpps(dst, Operand(src), imm8);                  \
  }                                                  \
  void instr##ps(XMMRegister dst, Operand src) { cmpps(dst, src, imm8); }

  SSE_CMP_P(cmpeq, 0x0);
  SSE_CMP_P(cmplt, 0x1);
  SSE_CMP_P(cmple, 0x2);
  SSE_CMP_P(cmpneq, 0x4);

#undef SSE_CMP_P

  // SSE2 instructions
  void cvttss2si(Register dst, Operand src);
  void cvttss2si(Register dst, XMMRegister src) {
    cvttss2si(dst, Operand(src));
  }
  void cvttsd2si(Register dst, Operand src);
  void cvttsd2si(Register dst, XMMRegister src) {
    cvttsd2si(dst, Operand(src));
  }
  void cvtsd2si(Register dst, XMMRegister src);

  void cvtsi2ss(XMMRegister dst, Register src) { cvtsi2ss(dst, Operand(src)); }
  void cvtsi2ss(XMMRegister dst, Operand src);
  void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); }
  void cvtsi2sd(XMMRegister dst, Operand src);
  void cvtss2sd(XMMRegister dst, Operand src);
  void cvtss2sd(XMMRegister dst, XMMRegister src) {
    cvtss2sd(dst, Operand(src));
  }
  void cvtsd2ss(XMMRegister dst, Operand src);
  void cvtsd2ss(XMMRegister dst, XMMRegister src) {
    cvtsd2ss(dst, Operand(src));
  }
  void cvtdq2ps(XMMRegister dst, XMMRegister src) {
    cvtdq2ps(dst, Operand(src));
  }
  void cvtdq2ps(XMMRegister dst, Operand src);
  void cvttps2dq(XMMRegister dst, XMMRegister src) {
    cvttps2dq(dst, Operand(src));
  }
  void cvttps2dq(XMMRegister dst, Operand src);

  void addsd(XMMRegister dst, XMMRegister src) { addsd(dst, Operand(src)); }
  void addsd(XMMRegister dst, Operand src);
  void subsd(XMMRegister dst, XMMRegister src) { subsd(dst, Operand(src)); }
  void subsd(XMMRegister dst, Operand src);
  void mulsd(XMMRegister dst, XMMRegister src) { mulsd(dst, Operand(src)); }
  void mulsd(XMMRegister dst, Operand src);
  void divsd(XMMRegister dst, XMMRegister src) { divsd(dst, Operand(src)); }
  void divsd(XMMRegister dst, Operand src);
  void xorpd(XMMRegister dst, XMMRegister src) { xorpd(dst, Operand(src)); }
  void xorpd(XMMRegister dst, Operand src);
  void sqrtsd(XMMRegister dst, XMMRegister src) { sqrtsd(dst, Operand(src)); }
  void sqrtsd(XMMRegister dst, Operand src);

  void andpd(XMMRegister dst, XMMRegister src) { andpd(dst, Operand(src)); }
  void andpd(XMMRegister dst, Operand src);
  void orpd(XMMRegister dst, XMMRegister src) { orpd(dst, Operand(src)); }
  void orpd(XMMRegister dst, Operand src);

  void ucomisd(XMMRegister dst, XMMRegister src) { ucomisd(dst, Operand(src)); }
  void ucomisd(XMMRegister dst, Operand src);

  void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
  void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);

  void movmskpd(Register dst, XMMRegister src);
  void movmskps(Register dst, XMMRegister src);

  void cmpltsd(XMMRegister dst, XMMRegister src);

  void maxsd(XMMRegister dst, XMMRegister src) { maxsd(dst, Operand(src)); }
  void maxsd(XMMRegister dst, Operand src);
  void minsd(XMMRegister dst, XMMRegister src) { minsd(dst, Operand(src)); }
  void minsd(XMMRegister dst, Operand src);

  void movdqa(XMMRegister dst, Operand src);
  void movdqa(Operand dst, XMMRegister src);
  void movdqu(XMMRegister dst, Operand src);
  void movdqu(Operand dst, XMMRegister src);
  void movdq(bool aligned, XMMRegister dst, Operand src) {
    if (aligned) {
      movdqa(dst, src);
    } else {
      movdqu(dst, src);
    }
  }

  void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); }
  void movd(XMMRegister dst, Operand src);
  void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
  void movd(Operand dst, XMMRegister src);
  void movsd(XMMRegister dst, XMMRegister src) { movsd(dst, Operand(src)); }
  void movsd(XMMRegister dst, Operand src);
  void movsd(Operand dst, XMMRegister src);

  void movss(XMMRegister dst, Operand src);
  void movss(Operand dst, XMMRegister src);
  void movss(XMMRegister dst, XMMRegister src) { movss(dst, Operand(src)); }
  void extractps(Register dst, XMMRegister src, byte imm8);

  void psllw(XMMRegister reg, int8_t shift);
  void pslld(XMMRegister reg, int8_t shift);
  void psrlw(XMMRegister reg, int8_t shift);
  void psrld(XMMRegister reg, int8_t shift);
  void psraw(XMMRegister reg, int8_t shift);
  void psrad(XMMRegister reg, int8_t shift);
  void psllq(XMMRegister reg, int8_t shift);
  void psllq(XMMRegister dst, XMMRegister src);
  void psrlq(XMMRegister reg, int8_t shift);
  void psrlq(XMMRegister dst, XMMRegister src);

  void pshufhw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
    pshufhw(dst, Operand(src), shuffle);
  }
  void pshufhw(XMMRegister dst, Operand src, uint8_t shuffle);
  void pshuflw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
    pshuflw(dst, Operand(src), shuffle);
  }
  void pshuflw(XMMRegister dst, Operand src, uint8_t shuffle);
  void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
    pshufd(dst, Operand(src), shuffle);
  }
  void pshufd(XMMRegister dst, Operand src, uint8_t shuffle);

  void pblendw(XMMRegister dst, XMMRegister src, uint8_t mask) {
    pblendw(dst, Operand(src), mask);
  }
  void pblendw(XMMRegister dst, Operand src, uint8_t mask);

  void palignr(XMMRegister dst, XMMRegister src, uint8_t mask) {
    palignr(dst, Operand(src), mask);
  }
  void palignr(XMMRegister dst, Operand src, uint8_t mask);

  void pextrb(Register dst, XMMRegister src, int8_t offset) {
    pextrb(Operand(dst), src, offset);
  }
  void pextrb(Operand dst, XMMRegister src, int8_t offset);
  // Use SSE4_1 encoding for pextrw reg, xmm, imm8 for consistency
  void pextrw(Register dst, XMMRegister src, int8_t offset) {
    pextrw(Operand(dst), src, offset);
  }
  void pextrw(Operand dst, XMMRegister src, int8_t offset);
  void pextrd(Register dst, XMMRegister src, int8_t offset) {
    pextrd(Operand(dst), src, offset);
  }
  void pextrd(Operand dst, XMMRegister src, int8_t offset);

  void insertps(XMMRegister dst, XMMRegister src, int8_t offset) {
    insertps(dst, Operand(src), offset);
  }
  void insertps(XMMRegister dst, Operand src, int8_t offset);
  void pinsrb(XMMRegister dst, Register src, int8_t offset) {
    pinsrb(dst, Operand(src), offset);
  }
  void pinsrb(XMMRegister dst, Operand src, int8_t offset);
  void pinsrw(XMMRegister dst, Register src, int8_t offset) {
    pinsrw(dst, Operand(src), offset);
  }
  void pinsrw(XMMRegister dst, Operand src, int8_t offset);
  void pinsrd(XMMRegister dst, Register src, int8_t offset) {
    pinsrd(dst, Operand(src), offset);
  }
  void pinsrd(XMMRegister dst, Operand src, int8_t offset);

  // AVX instructions
  void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmadd132sd(dst, src1, Operand(src2));
  }
  void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmadd213sd(dst, src1, Operand(src2));
  }
  void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmadd231sd(dst, src1, Operand(src2));
  }
  void vfmadd132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmasd(0x99, dst, src1, src2);
  }
  void vfmadd213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmasd(0xa9, dst, src1, src2);
  }
  void vfmadd231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmasd(0xb9, dst, src1, src2);
  }
  void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmsub132sd(dst, src1, Operand(src2));
  }
  void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmsub213sd(dst, src1, Operand(src2));
  }
  void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmsub231sd(dst, src1, Operand(src2));
  }
  void vfmsub132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmasd(0x9b, dst, src1, src2);
  }
  void vfmsub213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmasd(0xab, dst, src1, src2);
  }
  void vfmsub231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmasd(0xbb, dst, src1, src2);
  }
  void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmadd132sd(dst, src1, Operand(src2));
  }
  void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmadd213sd(dst, src1, Operand(src2));
  }
  void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmadd231sd(dst, src1, Operand(src2));
  }
  void vfnmadd132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmasd(0x9d, dst, src1, src2);
  }
  void vfnmadd213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmasd(0xad, dst, src1, src2);
  }
  void vfnmadd231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmasd(0xbd, dst, src1, src2);
  }
  void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmsub132sd(dst, src1, Operand(src2));
  }
  void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmsub213sd(dst, src1, Operand(src2));
  }
  void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmsub231sd(dst, src1, Operand(src2));
  }
  void vfnmsub132sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmasd(0x9f, dst, src1, src2);
  }
  void vfnmsub213sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmasd(0xaf, dst, src1, src2);
  }
  void vfnmsub231sd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmasd(0xbf, dst, src1, src2);
  }
  void vfmasd(byte op, XMMRegister dst, XMMRegister src1, Operand src2);

  void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmadd132ss(dst, src1, Operand(src2));
  }
  void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmadd213ss(dst, src1, Operand(src2));
  }
  void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmadd231ss(dst, src1, Operand(src2));
  }
  void vfmadd132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmass(0x99, dst, src1, src2);
  }
  void vfmadd213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmass(0xa9, dst, src1, src2);
  }
  void vfmadd231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmass(0xb9, dst, src1, src2);
  }
  void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmsub132ss(dst, src1, Operand(src2));
  }
  void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmsub213ss(dst, src1, Operand(src2));
  }
  void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfmsub231ss(dst, src1, Operand(src2));
  }
  void vfmsub132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmass(0x9b, dst, src1, src2);
  }
  void vfmsub213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmass(0xab, dst, src1, src2);
  }
  void vfmsub231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmass(0xbb, dst, src1, src2);
  }
  void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmadd132ss(dst, src1, Operand(src2));
  }
  void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmadd213ss(dst, src1, Operand(src2));
  }
  void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmadd231ss(dst, src1, Operand(src2));
  }
  void vfnmadd132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmass(0x9d, dst, src1, src2);
  }
  void vfnmadd213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmass(0xad, dst, src1, src2);
  }
  void vfnmadd231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmass(0xbd, dst, src1, src2);
  }
  void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmsub132ss(dst, src1, Operand(src2));
  }
  void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmsub213ss(dst, src1, Operand(src2));
  }
  void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vfnmsub231ss(dst, src1, Operand(src2));
  }
  void vfnmsub132ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmass(0x9f, dst, src1, src2);
  }
  void vfnmsub213ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmass(0xaf, dst, src1, src2);
  }
  void vfnmsub231ss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vfmass(0xbf, dst, src1, src2);
  }
  void vfmass(byte op, XMMRegister dst, XMMRegister src1, Operand src2);

  void vaddsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vaddsd(dst, src1, Operand(src2));
  }
  void vaddsd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vsd(0x58, dst, src1, src2);
  }
  void vsubsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vsubsd(dst, src1, Operand(src2));
  }
  void vsubsd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vsd(0x5c, dst, src1, src2);
  }
  void vmulsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vmulsd(dst, src1, Operand(src2));
  }
  void vmulsd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vsd(0x59, dst, src1, src2);
  }
  void vdivsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vdivsd(dst, src1, Operand(src2));
  }
  void vdivsd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vsd(0x5e, dst, src1, src2);
  }
  void vmaxsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vmaxsd(dst, src1, Operand(src2));
  }
  void vmaxsd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vsd(0x5f, dst, src1, src2);
  }
  void vminsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vminsd(dst, src1, Operand(src2));
  }
  void vminsd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vsd(0x5d, dst, src1, src2);
  }
  void vsqrtsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vsqrtsd(dst, src1, Operand(src2));
  }
  void vsqrtsd(XMMRegister dst, XMMRegister src1, Operand src2) {
    vsd(0x51, dst, src1, src2);
  }
  void vsd(byte op, XMMRegister dst, XMMRegister src1, Operand src2);

  void vaddss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vaddss(dst, src1, Operand(src2));
  }
  void vaddss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vss(0x58, dst, src1, src2);
  }
  void vsubss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vsubss(dst, src1, Operand(src2));
  }
  void vsubss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vss(0x5c, dst, src1, src2);
  }
  void vmulss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vmulss(dst, src1, Operand(src2));
  }
  void vmulss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vss(0x59, dst, src1, src2);
  }
  void vdivss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vdivss(dst, src1, Operand(src2));
  }
  void vdivss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vss(0x5e, dst, src1, src2);
  }
  void vmaxss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vmaxss(dst, src1, Operand(src2));
  }
  void vmaxss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vss(0x5f, dst, src1, src2);
  }
  void vminss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vminss(dst, src1, Operand(src2));
  }
  void vminss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vss(0x5d, dst, src1, src2);
  }
  void vsqrtss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vsqrtss(dst, src1, Operand(src2));
  }
  void vsqrtss(XMMRegister dst, XMMRegister src1, Operand src2) {
    vss(0x51, dst, src1, src2);
  }
  void vss(byte op, XMMRegister dst, XMMRegister src1, Operand src2);

  void vrcpps(XMMRegister dst, XMMRegister src) { vrcpps(dst, Operand(src)); }
  void vrcpps(XMMRegister dst, Operand src) {
    vinstr(0x53, dst, xmm0, src, kNone, k0F, kWIG);
  }
  void vrsqrtps(XMMRegister dst, XMMRegister src) {
    vrsqrtps(dst, Operand(src));
  }
  void vrsqrtps(XMMRegister dst, Operand src) {
    vinstr(0x52, dst, xmm0, src, kNone, k0F, kWIG);
  }
  void vhaddps(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
    vhaddps(dst, src1, Operand(src2));
  }
  void vhaddps(XMMRegister dst, XMMRegister src1, Operand src2) {
    vinstr(0x7C, dst, src1, src2, kF2, k0F, kWIG);
  }
  void vmovaps(XMMRegister dst, XMMRegister src) {
    vps(0x28, dst, xmm0, Operand(src));
  }
  void vshufps(XMMRegister dst, XMMRegister src1, XMMRegister src2, byte imm8) {
    vshufps(dst, src1, Operand(src2), imm8);
  }
  void vshufps(XMMRegister dst, XMMRegister src1, Operand src2, byte imm8);

  void vpsllw(XMMRegister dst, XMMRegister src, int8_t imm8);
  void vpslld(XMMRegister dst, XMMRegister src, int8_t imm8);
  void vpsrlw(XMMRegister dst, XMMRegister src, int8_t imm8);
  void vpsrld(XMMRegister dst, XMMRegister src, int8_t imm8);
  void vpsraw(XMMRegister dst, XMMRegister src, int8_t imm8);
  void vpsrad(XMMRegister dst, XMMRegister src, int8_t imm8);

  void vpshufhw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
    vpshufhw(dst, Operand(src), shuffle);
  }
  void vpshufhw(XMMRegister dst, Operand src, uint8_t shuffle);
  void vpshuflw(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
    vpshuflw(dst, Operand(src), shuffle);
  }
  void vpshuflw(XMMRegister dst, Operand src, uint8_t shuffle);
  void vpshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle) {
    vpshufd(dst, Operand(src), shuffle);
  }
  void vpshufd(XMMRegister dst, Operand src, uint8_t shuffle);

  void vpblendw(XMMRegister dst, XMMRegister src1, XMMRegister src2,
                uint8_t mask) {
    vpblendw(dst, src1, Operand(src2), mask);
  }
  void vpblendw(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t mask);

  void vpalignr(XMMRegister dst, XMMRegister src1, XMMRegister src2,
                uint8_t mask) {
    vpalignr(dst, src1, Operand(src2), mask);
  }
  void vpalignr(XMMRegister dst, XMMRegister src1, Operand src2, uint8_t mask);

  void vpextrb(Register dst, XMMRegister src, int8_t offset) {
    vpextrb(Operand(dst), src, offset);
  }
  void vpextrb(Operand dst, XMMRegister src, int8_t offset);
  void vpextrw(Register dst, XMMRegister src, int8_t offset) {
    vpextrw(Operand(dst), src, offset);
  }
  void vpextrw(Operand dst, XMMRegister src, int8_t offset);
  void vpextrd(Register dst, XMMRegister src, int8_t offset) {
    vpextrd(Operand(dst), src, offset);
  }
  void vpextrd(Operand dst, XMMRegister src, int8_t offset);

  void vinsertps(XMMRegister dst, XMMRegister src1, XMMRegister src2,
                 int8_t offset) {
    vinsertps(dst, src1, Operand(src2), offset);
  }
  void vinsertps(XMMRegister dst, XMMRegister src1, Operand src2,
                 int8_t offset);
  void vpinsrb(XMMRegister dst, XMMRegister src1, Register src2,
               int8_t offset) {
    vpinsrb(dst, src1, Operand(src2), offset);
  }
  void vpinsrb(XMMRegister dst, XMMRegister src1, Operand src2, int8_t offset);
  void vpinsrw(XMMRegister dst, XMMRegister src1, Register src2,
               int8_t offset) {
    vpinsrw(dst, src1, Operand(src2), offset);
  }
  void vpinsrw(XMMRegister dst, XMMRegister src1, Operand src2, int8_t offset);
  void vpinsrd(XMMRegister dst, XMMRegister src1, Register src2,
               int8_t offset) {
    vpinsrd(dst, src1, Operand(src2), offset);
  }
  void vpinsrd(XMMRegister dst, XMMRegister src1, Operand src2, int8_t offset);

  void vcvtdq2ps(XMMRegister dst, XMMRegister src) {
    vcvtdq2ps(dst, Operand(src));
  }
  void vcvtdq2ps(XMMRegister dst, Operand src) {
    vinstr(0x5B, dst, xmm0, src, kNone, k0F, kWIG);
  }
  void vcvttps2dq(XMMRegister dst, XMMRegister src) {
    vcvttps2dq(dst, Operand(src));
  }
  void vcvttps2dq(XMMRegister dst, Operand src) {
    vinstr(0x5B, dst, xmm0, src, kF3, k0F, kWIG);
  }

  void vmovdqu(XMMRegister dst, Operand src) {
    vinstr(0x6F, dst, xmm0, src, kF3, k0F, kWIG);
  }
  void vmovdqu(Operand dst, XMMRegister src) {
    vinstr(0x7F, src, xmm0, dst, kF3, k0F, kWIG);
  }
  void vmovd(XMMRegister dst, Register src) { vmovd(dst, Operand(src)); }
  void vmovd(XMMRegister dst, Operand src) {
    vinstr(0x6E, dst, xmm0, src, k66, k0F, kWIG);
  }
  void vmovd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
  void vmovd(Operand dst, XMMRegister src) {
    vinstr(0x7E, src, xmm0, dst, k66, k0F, kWIG);
  }

  // BMI instruction
  void andn(Register dst, Register src1, Register src2) {
    andn(dst, src1, Operand(src2));
  }
  void andn(Register dst, Register src1, Operand src2) {
    bmi1(0xf2, dst, src1, src2);
  }
  void bextr(Register dst, Register src1, Register src2) {
    bextr(dst, Operand(src1), src2);
  }
  void bextr(Register dst, Operand src1, Register src2) {
    bmi1(0xf7, dst, src2, src1);
  }
  void blsi(Register dst, Register src) { blsi(dst, Operand(src)); }
  void blsi(Register dst, Operand src) { bmi1(0xf3, ebx, dst, src); }
  void blsmsk(Register dst, Register src) { blsmsk(dst, Operand(src)); }
  void blsmsk(Register dst, Operand src) { bmi1(0xf3, edx, dst, src); }
  void blsr(Register dst, Register src) { blsr(dst, Operand(src)); }
  void blsr(Register dst, Operand src) { bmi1(0xf3, ecx, dst, src); }
  void tzcnt(Register dst, Register src) { tzcnt(dst, Operand(src)); }
  void tzcnt(Register dst, Operand src);

  void lzcnt(Register dst, Register src) { lzcnt(dst, Operand(src)); }
  void lzcnt(Register dst, Operand src);

  void popcnt(Register dst, Register src) { popcnt(dst, Operand(src)); }
  void popcnt(Register dst, Operand src);

  void bzhi(Register dst, Register src1, Register src2) {
    bzhi(dst, Operand(src1), src2);
  }
  void bzhi(Register dst, Operand src1, Register src2) {
    bmi2(kNone, 0xf5, dst, src2, src1);
  }
  void mulx(Register dst1, Register dst2, Register src) {
    mulx(dst1, dst2, Operand(src));
  }
  void mulx(Register dst1, Register dst2, Operand src) {
    bmi2(kF2, 0xf6, dst1, dst2, src);
  }
  void pdep(Register dst, Register src1, Register src2) {
    pdep(dst, src1, Operand(src2));
  }
  void pdep(Register dst, Register src1, Operand src2) {
    bmi2(kF2, 0xf5, dst, src1, src2);
  }
  void pext(Register dst, Register src1, Register src2) {
    pext(dst, src1, Operand(src2));
  }
  void pext(Register dst, Register src1, Operand src2) {
    bmi2(kF3, 0xf5, dst, src1, src2);
  }
  void sarx(Register dst, Register src1, Register src2) {
    sarx(dst, Operand(src1), src2);
  }
  void sarx(Register dst, Operand src1, Register src2) {
    bmi2(kF3, 0xf7, dst, src2, src1);
  }
  void shlx(Register dst, Register src1, Register src2) {
    shlx(dst, Operand(src1), src2);
  }
  void shlx(Register dst, Operand src1, Register src2) {
    bmi2(k66, 0xf7, dst, src2, src1);
  }
  void shrx(Register dst, Register src1, Register src2) {
    shrx(dst, Operand(src1), src2);
  }
  void shrx(Register dst, Operand src1, Register src2) {
    bmi2(kF2, 0xf7, dst, src2, src1);
  }
  void rorx(Register dst, Register src, byte imm8) {
    rorx(dst, Operand(src), imm8);
  }
  void rorx(Register dst, Operand src, byte imm8);

#define PACKED_OP_LIST(V) \
  V(and, 0x54)            \
  V(xor, 0x57)            \
  V(add, 0x58)            \
  V(mul, 0x59)            \
  V(sub, 0x5c)            \
  V(min, 0x5d)            \
  V(div, 0x5e)            \
  V(max, 0x5f)

#define AVX_PACKED_OP_DECLARE(name, opcode)                               \
  void v##name##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
    vps(opcode, dst, src1, Operand(src2));                                \
  }                                                                       \
  void v##name##ps(XMMRegister dst, XMMRegister src1, Operand src2) {     \
    vps(opcode, dst, src1, src2);                                         \
  }                                                                       \
  void v##name##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
    vpd(opcode, dst, src1, Operand(src2));                                \
  }                                                                       \
  void v##name##pd(XMMRegister dst, XMMRegister src1, Operand src2) {     \
    vpd(opcode, dst, src1, src2);                                         \
  }

  PACKED_OP_LIST(AVX_PACKED_OP_DECLARE);
  void vps(byte op, XMMRegister dst, XMMRegister src1, Operand src2);
  void vpd(byte op, XMMRegister dst, XMMRegister src1, Operand src2);

  void vcmpps(XMMRegister dst, XMMRegister src1, Operand src2, int8_t cmp);
#define AVX_CMP_P(instr, imm8)                                          \
  void instr##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
    vcmpps(dst, src1, Operand(src2), imm8);                             \
  }                                                                     \
  void instr##ps(XMMRegister dst, XMMRegister src1, Operand src2) {     \
    vcmpps(dst, src1, src2, imm8);                                      \
  }

  AVX_CMP_P(vcmpeq, 0x0);
  AVX_CMP_P(vcmplt, 0x1);
  AVX_CMP_P(vcmple, 0x2);
  AVX_CMP_P(vcmpneq, 0x4);

#undef AVX_CMP_P

// Other SSE and AVX instructions
#define DECLARE_SSE2_INSTRUCTION(instruction, prefix, escape, opcode) \
  void instruction(XMMRegister dst, XMMRegister src) {                \
    instruction(dst, Operand(src));                                   \
  }                                                                   \
  void instruction(XMMRegister dst, Operand src) {                    \
    sse2_instr(dst, src, 0x##prefix, 0x##escape, 0x##opcode);         \
  }

  SSE2_INSTRUCTION_LIST(DECLARE_SSE2_INSTRUCTION)
#undef DECLARE_SSE2_INSTRUCTION

#define DECLARE_SSE2_AVX_INSTRUCTION(instruction, prefix, escape, opcode)    \
  void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
    v##instruction(dst, src1, Operand(src2));                                \
  }                                                                          \
  void v##instruction(XMMRegister dst, XMMRegister src1, Operand src2) {     \
    vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape, kW0);          \
  }

  SSE2_INSTRUCTION_LIST(DECLARE_SSE2_AVX_INSTRUCTION)
#undef DECLARE_SSE2_AVX_INSTRUCTION

#define DECLARE_SSSE3_INSTRUCTION(instruction, prefix, escape1, escape2,     \
                                  opcode)                                    \
  void instruction(XMMRegister dst, XMMRegister src) {                       \
    instruction(dst, Operand(src));                                          \
  }                                                                          \
  void instruction(XMMRegister dst, Operand src) {                           \
    ssse3_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
  }

  SSSE3_INSTRUCTION_LIST(DECLARE_SSSE3_INSTRUCTION)
#undef DECLARE_SSSE3_INSTRUCTION

#define DECLARE_SSE4_INSTRUCTION(instruction, prefix, escape1, escape2,     \
                                 opcode)                                    \
  void instruction(XMMRegister dst, XMMRegister src) {                      \
    instruction(dst, Operand(src));                                         \
  }                                                                         \
  void instruction(XMMRegister dst, Operand src) {                          \
    sse4_instr(dst, src, 0x##prefix, 0x##escape1, 0x##escape2, 0x##opcode); \
  }

  SSE4_INSTRUCTION_LIST(DECLARE_SSE4_INSTRUCTION)
  SSE4_RM_INSTRUCTION_LIST(DECLARE_SSE4_INSTRUCTION)
#undef DECLARE_SSE4_INSTRUCTION

#define DECLARE_SSE34_AVX_INSTRUCTION(instruction, prefix, escape1, escape2,  \
                                      opcode)                                 \
  void v##instruction(XMMRegister dst, XMMRegister src1, XMMRegister src2) {  \
    v##instruction(dst, src1, Operand(src2));                                 \
  }                                                                           \
  void v##instruction(XMMRegister dst, XMMRegister src1, Operand src2) {      \
    vinstr(0x##opcode, dst, src1, src2, k##prefix, k##escape1##escape2, kW0); \
  }

  SSSE3_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
  SSE4_INSTRUCTION_LIST(DECLARE_SSE34_AVX_INSTRUCTION)
#undef DECLARE_SSE34_AVX_INSTRUCTION

#define DECLARE_SSE4_AVX_RM_INSTRUCTION(instruction, prefix, escape1, escape2, \
                                        opcode)                                \
  void v##instruction(XMMRegister dst, XMMRegister src) {                      \
    v##instruction(dst, Operand(src));                                         \
  }                                                                            \
  void v##instruction(XMMRegister dst, Operand src) {                          \
    vinstr(0x##opcode, dst, xmm0, src, k##prefix, k##escape1##escape2, kW0);   \
  }

  SSE4_RM_INSTRUCTION_LIST(DECLARE_SSE4_AVX_RM_INSTRUCTION)
#undef DECLARE_SSE4_AVX_RM_INSTRUCTION

  // Prefetch src position into cache level.
  // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
  // non-temporal
  void prefetch(Operand src, int level);
  // TODO(lrn): Need SFENCE for movnt?

  // Check the code size generated from label to here.
  int SizeOfCodeGeneratedSince(Label* label) {
    return pc_offset() - label->pos();
  }

  // Use --code-comments to enable.
  void RecordComment(const char* msg);

  // Record a deoptimization reason that can be used by a log or cpu profiler.
  // Use --trace-deopt to enable.
  void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
                         int id);

  // Writes a single byte or word of data in the code stream.  Used for
  // inline tables, e.g., jump-tables.
  void db(uint8_t data);
  void dd(uint32_t data);
  void dq(uint64_t data);
  void dp(uintptr_t data) { dd(data); }
  void dd(Label* label);

  // Check if there is less than kGap bytes available in the buffer.
  // If this is the case, we need to grow the buffer before emitting
  // an instruction or relocation information.
  inline bool buffer_overflow() const {
    return pc_ >= reloc_info_writer.pos() - kGap;
  }

  // Get the number of bytes available in the buffer.
  inline int available_space() const { return reloc_info_writer.pos() - pc_; }

  static bool IsNop(Address addr);

  int relocation_writer_size() {
    return (buffer_ + buffer_size_) - reloc_info_writer.pos();
  }

  // Avoid overflows for displacements etc.
  static constexpr int kMaximalBufferSize = 512 * MB;

  byte byte_at(int pos) { return buffer_[pos]; }
  void set_byte_at(int pos, byte value) { buffer_[pos] = value; }

  void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
                                          ConstantPoolEntry::Access access,
                                          ConstantPoolEntry::Type type) {
    // No embedded constant pool support.
    UNREACHABLE();
  }

 protected:
  void emit_sse_operand(XMMRegister reg, Operand adr);
  void emit_sse_operand(XMMRegister dst, XMMRegister src);
  void emit_sse_operand(Register dst, XMMRegister src);
  void emit_sse_operand(XMMRegister dst, Register src);

  byte* addr_at(int pos) { return buffer_ + pos; }


 private:
  uint32_t long_at(int pos)  {
    return *reinterpret_cast<uint32_t*>(addr_at(pos));
  }
  void long_at_put(int pos, uint32_t x)  {
    *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
  }

  // code emission
  void GrowBuffer();
  inline void emit(uint32_t x);
  inline void emit(Handle<HeapObject> handle);
  inline void emit(uint32_t x, RelocInfo::Mode rmode);
  inline void emit(Handle<Code> code, RelocInfo::Mode rmode);
  inline void emit(const Immediate& x);
  inline void emit_b(Immediate x);
  inline void emit_w(const Immediate& x);
  inline void emit_q(uint64_t x);

  // Emit the code-object-relative offset of the label's position
  inline void emit_code_relative_offset(Label* label);

  // instruction generation
  void emit_arith_b(int op1, int op2, Register dst, int imm8);

  // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
  // with a given destination expression and an immediate operand.  It attempts
  // to use the shortest encoding possible.
  // sel specifies the /n in the modrm byte (see the Intel PRM).
  void emit_arith(int sel, Operand dst, const Immediate& x);

  void emit_operand(Register reg, Operand adr);

  void emit_label(Label* label);

  void emit_farith(int b1, int b2, int i);

  // Emit vex prefix
  enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
  enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
  enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
  enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
  inline void emit_vex_prefix(XMMRegister v, VectorLength l, SIMDPrefix pp,
                              LeadingOpcode m, VexW w);
  inline void emit_vex_prefix(Register v, VectorLength l, SIMDPrefix pp,
                              LeadingOpcode m, VexW w);

  // labels
  void print(const Label* L);
  void bind_to(Label* L, int pos);

  // displacements
  inline Displacement disp_at(Label* L);
  inline void disp_at_put(Label* L, Displacement disp);
  inline void emit_disp(Label* L, Displacement::Type type);
  inline void emit_near_disp(Label* L);

  void sse2_instr(XMMRegister dst, Operand src, byte prefix, byte escape,
                  byte opcode);
  void ssse3_instr(XMMRegister dst, Operand src, byte prefix, byte escape1,
                   byte escape2, byte opcode);
  void sse4_instr(XMMRegister dst, Operand src, byte prefix, byte escape1,
                  byte escape2, byte opcode);
  void vinstr(byte op, XMMRegister dst, XMMRegister src1, Operand src2,
              SIMDPrefix pp, LeadingOpcode m, VexW w);
  // Most BMI instructions are similar.
  void bmi1(byte op, Register reg, Register vreg, Operand rm);
  void bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg, Operand rm);

  // record reloc info for current pc_
  void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);

  // record the position of jmp/jcc instruction
  void record_farjmp_position(Label* L, int pos);

  bool is_optimizable_farjmp(int idx);

  void AllocateAndInstallRequestedHeapObjects(Isolate* isolate);

  friend class EnsureSpace;

  // Internal reference positions, required for (potential) patching in
  // GrowBuffer(); contains only those internal references whose labels
  // are already bound.
  std::deque<int> internal_reference_positions_;

  // code generation
  RelocInfoWriter reloc_info_writer;

  // Variables for this instance of assembler
  int farjmp_num_ = 0;
  std::deque<int> farjmp_positions_;
  std::map<Label*, std::vector<int>> label_farjmp_maps_;
};


// Helper class that ensures that there is enough space for generating
// instructions and relocation information.  The constructor makes
// sure that there is enough space and (in debug mode) the destructor
// checks that we did not generate too much.
class EnsureSpace BASE_EMBEDDED {
 public:
  explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
    if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
#ifdef DEBUG
    space_before_ = assembler_->available_space();
#endif
  }

#ifdef DEBUG
  ~EnsureSpace() {
    int bytes_generated = space_before_ - assembler_->available_space();
    DCHECK(bytes_generated < assembler_->kGap);
  }
#endif

 private:
  Assembler* assembler_;
#ifdef DEBUG
  int space_before_;
#endif
};

}  // namespace internal
}  // namespace v8

#endif  // V8_IA32_ASSEMBLER_IA32_H_