summaryrefslogtreecommitdiff
path: root/deps/v8/src/ia32/builtins-ia32.cc
blob: 3adb014b149007e0aacd0ec7e76a7f404c5d2401 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include "v8.h"

#if defined(V8_TARGET_ARCH_IA32)

#include "codegen-inl.h"

namespace v8 {
namespace internal {


#define __ ACCESS_MASM(masm)


void Builtins::Generate_Adaptor(MacroAssembler* masm,
                                CFunctionId id,
                                BuiltinExtraArguments extra_args) {
  // ----------- S t a t e -------------
  //  -- eax                : number of arguments excluding receiver
  //  -- edi                : called function (only guaranteed when
  //                          extra_args requires it)
  //  -- esi                : context
  //  -- esp[0]             : return address
  //  -- esp[4]             : last argument
  //  -- ...
  //  -- esp[4 * argc]      : first argument (argc == eax)
  //  -- esp[4 * (argc +1)] : receiver
  // -----------------------------------

  // Insert extra arguments.
  int num_extra_args = 0;
  if (extra_args == NEEDS_CALLED_FUNCTION) {
    num_extra_args = 1;
    Register scratch = ebx;
    __ pop(scratch);  // Save return address.
    __ push(edi);
    __ push(scratch);  // Restore return address.
  } else {
    ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
  }

  // JumpToExternalReference expects eax to contain the number of arguments
  // including the receiver and the extra arguments.
  __ add(Operand(eax), Immediate(num_extra_args + 1));
  __ JumpToExternalReference(ExternalReference(id));
}


void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- eax: number of arguments
  //  -- edi: constructor function
  // -----------------------------------

  Label non_function_call;
  // Check that function is not a smi.
  __ test(edi, Immediate(kSmiTagMask));
  __ j(zero, &non_function_call);
  // Check that function is a JSFunction.
  __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
  __ j(not_equal, &non_function_call);

  // Jump to the function-specific construct stub.
  __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
  __ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kConstructStubOffset));
  __ lea(ebx, FieldOperand(ebx, Code::kHeaderSize));
  __ jmp(Operand(ebx));

  // edi: called object
  // eax: number of arguments
  __ bind(&non_function_call);
  // CALL_NON_FUNCTION expects the non-function constructor as receiver
  // (instead of the original receiver from the call site).  The receiver is
  // stack element argc+1.
  __ mov(Operand(esp, eax, times_4, kPointerSize), edi);
  // Set expected number of arguments to zero (not changing eax).
  __ Set(ebx, Immediate(0));
  __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
  __ jmp(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
         RelocInfo::CODE_TARGET);
}


static void Generate_JSConstructStubHelper(MacroAssembler* masm,
                                           bool is_api_function) {
  // Enter a construct frame.
  __ EnterConstructFrame();

  // Store a smi-tagged arguments count on the stack.
  __ SmiTag(eax);
  __ push(eax);

  // Push the function to invoke on the stack.
  __ push(edi);

  // Try to allocate the object without transitioning into C code. If any of the
  // preconditions is not met, the code bails out to the runtime call.
  Label rt_call, allocated;
  if (FLAG_inline_new) {
    Label undo_allocation;
#ifdef ENABLE_DEBUGGER_SUPPORT
    ExternalReference debug_step_in_fp =
        ExternalReference::debug_step_in_fp_address();
    __ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0));
    __ j(not_equal, &rt_call);
#endif

    // Verified that the constructor is a JSFunction.
    // Load the initial map and verify that it is in fact a map.
    // edi: constructor
    __ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
    // Will both indicate a NULL and a Smi
    __ test(eax, Immediate(kSmiTagMask));
    __ j(zero, &rt_call);
    // edi: constructor
    // eax: initial map (if proven valid below)
    __ CmpObjectType(eax, MAP_TYPE, ebx);
    __ j(not_equal, &rt_call);

    // Check that the constructor is not constructing a JSFunction (see comments
    // in Runtime_NewObject in runtime.cc). In which case the initial map's
    // instance type would be JS_FUNCTION_TYPE.
    // edi: constructor
    // eax: initial map
    __ CmpInstanceType(eax, JS_FUNCTION_TYPE);
    __ j(equal, &rt_call);

    // Now allocate the JSObject on the heap.
    // edi: constructor
    // eax: initial map
    __ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset));
    __ shl(edi, kPointerSizeLog2);
    __ AllocateInNewSpace(edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS);
    // Allocated the JSObject, now initialize the fields.
    // eax: initial map
    // ebx: JSObject
    // edi: start of next object
    __ mov(Operand(ebx, JSObject::kMapOffset), eax);
    __ mov(ecx, Factory::empty_fixed_array());
    __ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx);
    __ mov(Operand(ebx, JSObject::kElementsOffset), ecx);
    // Set extra fields in the newly allocated object.
    // eax: initial map
    // ebx: JSObject
    // edi: start of next object
    { Label loop, entry;
      __ mov(edx, Factory::undefined_value());
      __ lea(ecx, Operand(ebx, JSObject::kHeaderSize));
      __ jmp(&entry);
      __ bind(&loop);
      __ mov(Operand(ecx, 0), edx);
      __ add(Operand(ecx), Immediate(kPointerSize));
      __ bind(&entry);
      __ cmp(ecx, Operand(edi));
      __ j(less, &loop);
    }

    // Add the object tag to make the JSObject real, so that we can continue and
    // jump into the continuation code at any time from now on. Any failures
    // need to undo the allocation, so that the heap is in a consistent state
    // and verifiable.
    // eax: initial map
    // ebx: JSObject
    // edi: start of next object
    __ or_(Operand(ebx), Immediate(kHeapObjectTag));

    // Check if a non-empty properties array is needed.
    // Allocate and initialize a FixedArray if it is.
    // eax: initial map
    // ebx: JSObject
    // edi: start of next object
    // Calculate the total number of properties described by the map.
    __ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset));
    __ movzx_b(ecx, FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
    __ add(edx, Operand(ecx));
    // Calculate unused properties past the end of the in-object properties.
    __ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset));
    __ sub(edx, Operand(ecx));
    // Done if no extra properties are to be allocated.
    __ j(zero, &allocated);
    __ Assert(positive, "Property allocation count failed.");

    // Scale the number of elements by pointer size and add the header for
    // FixedArrays to the start of the next object calculation from above.
    // ebx: JSObject
    // edi: start of next object (will be start of FixedArray)
    // edx: number of elements in properties array
    __ AllocateInNewSpace(FixedArray::kHeaderSize,
                          times_pointer_size,
                          edx,
                          edi,
                          ecx,
                          no_reg,
                          &undo_allocation,
                          RESULT_CONTAINS_TOP);

    // Initialize the FixedArray.
    // ebx: JSObject
    // edi: FixedArray
    // edx: number of elements
    // ecx: start of next object
    __ mov(eax, Factory::fixed_array_map());
    __ mov(Operand(edi, FixedArray::kMapOffset), eax);  // setup the map
    __ SmiTag(edx);
    __ mov(Operand(edi, FixedArray::kLengthOffset), edx);  // and length

    // Initialize the fields to undefined.
    // ebx: JSObject
    // edi: FixedArray
    // ecx: start of next object
    { Label loop, entry;
      __ mov(edx, Factory::undefined_value());
      __ lea(eax, Operand(edi, FixedArray::kHeaderSize));
      __ jmp(&entry);
      __ bind(&loop);
      __ mov(Operand(eax, 0), edx);
      __ add(Operand(eax), Immediate(kPointerSize));
      __ bind(&entry);
      __ cmp(eax, Operand(ecx));
      __ j(below, &loop);
    }

    // Store the initialized FixedArray into the properties field of
    // the JSObject
    // ebx: JSObject
    // edi: FixedArray
    __ or_(Operand(edi), Immediate(kHeapObjectTag));  // add the heap tag
    __ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi);


    // Continue with JSObject being successfully allocated
    // ebx: JSObject
    __ jmp(&allocated);

    // Undo the setting of the new top so that the heap is verifiable. For
    // example, the map's unused properties potentially do not match the
    // allocated objects unused properties.
    // ebx: JSObject (previous new top)
    __ bind(&undo_allocation);
    __ UndoAllocationInNewSpace(ebx);
  }

  // Allocate the new receiver object using the runtime call.
  __ bind(&rt_call);
  // Must restore edi (constructor) before calling runtime.
  __ mov(edi, Operand(esp, 0));
  // edi: function (constructor)
  __ push(edi);
  __ CallRuntime(Runtime::kNewObject, 1);
  __ mov(ebx, Operand(eax));  // store result in ebx

  // New object allocated.
  // ebx: newly allocated object
  __ bind(&allocated);
  // Retrieve the function from the stack.
  __ pop(edi);

  // Retrieve smi-tagged arguments count from the stack.
  __ mov(eax, Operand(esp, 0));
  __ SmiUntag(eax);

  // Push the allocated receiver to the stack. We need two copies
  // because we may have to return the original one and the calling
  // conventions dictate that the called function pops the receiver.
  __ push(ebx);
  __ push(ebx);

  // Setup pointer to last argument.
  __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));

  // Copy arguments and receiver to the expression stack.
  Label loop, entry;
  __ mov(ecx, Operand(eax));
  __ jmp(&entry);
  __ bind(&loop);
  __ push(Operand(ebx, ecx, times_4, 0));
  __ bind(&entry);
  __ dec(ecx);
  __ j(greater_equal, &loop);

  // Call the function.
  if (is_api_function) {
    __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
    Handle<Code> code = Handle<Code>(
        Builtins::builtin(Builtins::HandleApiCallConstruct));
    ParameterCount expected(0);
    __ InvokeCode(code, expected, expected,
                  RelocInfo::CODE_TARGET, CALL_FUNCTION);
  } else {
    ParameterCount actual(eax);
    __ InvokeFunction(edi, actual, CALL_FUNCTION);
  }

  // Restore context from the frame.
  __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));

  // If the result is an object (in the ECMA sense), we should get rid
  // of the receiver and use the result; see ECMA-262 section 13.2.2-7
  // on page 74.
  Label use_receiver, exit;

  // If the result is a smi, it is *not* an object in the ECMA sense.
  __ test(eax, Immediate(kSmiTagMask));
  __ j(zero, &use_receiver, not_taken);

  // If the type of the result (stored in its map) is less than
  // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
  __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
  __ j(above_equal, &exit, not_taken);

  // Throw away the result of the constructor invocation and use the
  // on-stack receiver as the result.
  __ bind(&use_receiver);
  __ mov(eax, Operand(esp, 0));

  // Restore the arguments count and leave the construct frame.
  __ bind(&exit);
  __ mov(ebx, Operand(esp, kPointerSize));  // get arguments count
  __ LeaveConstructFrame();

  // Remove caller arguments from the stack and return.
  ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
  __ pop(ecx);
  __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));  // 1 ~ receiver
  __ push(ecx);
  __ IncrementCounter(&Counters::constructed_objects, 1);
  __ ret(0);
}


void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
  Generate_JSConstructStubHelper(masm, false);
}


void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
  Generate_JSConstructStubHelper(masm, true);
}


static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
                                             bool is_construct) {
  // Clear the context before we push it when entering the JS frame.
  __ xor_(esi, Operand(esi));  // clear esi

  // Enter an internal frame.
  __ EnterInternalFrame();

  // Load the previous frame pointer (ebx) to access C arguments
  __ mov(ebx, Operand(ebp, 0));

  // Get the function from the frame and setup the context.
  __ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
  __ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset));

  // Push the function and the receiver onto the stack.
  __ push(ecx);
  __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));

  // Load the number of arguments and setup pointer to the arguments.
  __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
  __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));

  // Copy arguments to the stack in a loop.
  Label loop, entry;
  __ xor_(ecx, Operand(ecx));  // clear ecx
  __ jmp(&entry);
  __ bind(&loop);
  __ mov(edx, Operand(ebx, ecx, times_4, 0));  // push parameter from argv
  __ push(Operand(edx, 0));  // dereference handle
  __ inc(Operand(ecx));
  __ bind(&entry);
  __ cmp(ecx, Operand(eax));
  __ j(not_equal, &loop);

  // Get the function from the stack and call it.
  __ mov(edi, Operand(esp, eax, times_4, +1 * kPointerSize));  // +1 ~ receiver

  // Invoke the code.
  if (is_construct) {
    __ call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)),
            RelocInfo::CODE_TARGET);
  } else {
    ParameterCount actual(eax);
    __ InvokeFunction(edi, actual, CALL_FUNCTION);
  }

  // Exit the JS frame. Notice that this also removes the empty
  // context and the function left on the stack by the code
  // invocation.
  __ LeaveInternalFrame();
  __ ret(1 * kPointerSize);  // remove receiver
}


void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, false);
}


void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, true);
}


void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
  // 1. Make sure we have at least one argument.
  { Label done;
    __ test(eax, Operand(eax));
    __ j(not_zero, &done, taken);
    __ pop(ebx);
    __ push(Immediate(Factory::undefined_value()));
    __ push(ebx);
    __ inc(eax);
    __ bind(&done);
  }

  // 2. Get the function to call (passed as receiver) from the stack, check
  //    if it is a function.
  Label non_function;
  // 1 ~ return address.
  __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
  __ test(edi, Immediate(kSmiTagMask));
  __ j(zero, &non_function, not_taken);
  __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
  __ j(not_equal, &non_function, not_taken);


  // 3a. Patch the first argument if necessary when calling a function.
  Label shift_arguments;
  { Label convert_to_object, use_global_receiver, patch_receiver;
    // Change context eagerly in case we need the global receiver.
    __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));

    __ mov(ebx, Operand(esp, eax, times_4, 0));  // First argument.
    __ test(ebx, Immediate(kSmiTagMask));
    __ j(zero, &convert_to_object);

    __ cmp(ebx, Factory::null_value());
    __ j(equal, &use_global_receiver);
    __ cmp(ebx, Factory::undefined_value());
    __ j(equal, &use_global_receiver);

    // We don't use IsObjectJSObjectType here because we jump on success.
    __ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset));
    __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
    __ sub(Operand(ecx), Immediate(FIRST_JS_OBJECT_TYPE));
    __ cmp(ecx, LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE);
    __ j(below_equal, &shift_arguments);

    __ bind(&convert_to_object);
    __ EnterInternalFrame();  // In order to preserve argument count.
    __ SmiTag(eax);
    __ push(eax);

    __ push(ebx);
    __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
    __ mov(ebx, eax);

    __ pop(eax);
    __ SmiUntag(eax);
    __ LeaveInternalFrame();
    // Restore the function to edi.
    __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
    __ jmp(&patch_receiver);

    // Use the global receiver object from the called function as the
    // receiver.
    __ bind(&use_global_receiver);
    const int kGlobalIndex =
        Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
    __ mov(ebx, FieldOperand(esi, kGlobalIndex));
    __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset));
    __ mov(ebx, FieldOperand(ebx, kGlobalIndex));
    __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));

    __ bind(&patch_receiver);
    __ mov(Operand(esp, eax, times_4, 0), ebx);

    __ jmp(&shift_arguments);
  }

  // 3b. Patch the first argument when calling a non-function.  The
  //     CALL_NON_FUNCTION builtin expects the non-function callee as
  //     receiver, so overwrite the first argument which will ultimately
  //     become the receiver.
  __ bind(&non_function);
  __ mov(Operand(esp, eax, times_4, 0), edi);
  // Clear edi to indicate a non-function being called.
  __ xor_(edi, Operand(edi));

  // 4. Shift arguments and return address one slot down on the stack
  //    (overwriting the original receiver).  Adjust argument count to make
  //    the original first argument the new receiver.
  __ bind(&shift_arguments);
  { Label loop;
    __ mov(ecx, eax);
    __ bind(&loop);
    __ mov(ebx, Operand(esp, ecx, times_4, 0));
    __ mov(Operand(esp, ecx, times_4, kPointerSize), ebx);
    __ dec(ecx);
    __ j(not_sign, &loop);  // While non-negative (to copy return address).
    __ pop(ebx);  // Discard copy of return address.
    __ dec(eax);  // One fewer argument (first argument is new receiver).
  }

  // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
  { Label function;
    __ test(edi, Operand(edi));
    __ j(not_zero, &function, taken);
    __ xor_(ebx, Operand(ebx));
    __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
    __ jmp(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)),
           RelocInfo::CODE_TARGET);
    __ bind(&function);
  }

  // 5b. Get the code to call from the function and check that the number of
  //     expected arguments matches what we're providing.  If so, jump
  //     (tail-call) to the code in register edx without checking arguments.
  __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
  __ mov(ebx,
         FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
  __ SmiUntag(ebx);
  __ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset));
  __ lea(edx, FieldOperand(edx, Code::kHeaderSize));
  __ cmp(eax, Operand(ebx));
  __ j(not_equal, Handle<Code>(builtin(ArgumentsAdaptorTrampoline)));

  ParameterCount expected(0);
  __ InvokeCode(Operand(edx), expected, expected, JUMP_FUNCTION);
}


void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
  __ EnterInternalFrame();

  __ push(Operand(ebp, 4 * kPointerSize));  // push this
  __ push(Operand(ebp, 2 * kPointerSize));  // push arguments
  __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);

  // Check the stack for overflow. We are not trying need to catch
  // interruptions (e.g. debug break and preemption) here, so the "real stack
  // limit" is checked.
  Label okay;
  ExternalReference real_stack_limit =
      ExternalReference::address_of_real_stack_limit();
  __ mov(edi, Operand::StaticVariable(real_stack_limit));
  // Make ecx the space we have left. The stack might already be overflowed
  // here which will cause ecx to become negative.
  __ mov(ecx, Operand(esp));
  __ sub(ecx, Operand(edi));
  // Make edx the space we need for the array when it is unrolled onto the
  // stack.
  __ mov(edx, Operand(eax));
  __ shl(edx, kPointerSizeLog2 - kSmiTagSize);
  // Check if the arguments will overflow the stack.
  __ cmp(ecx, Operand(edx));
  __ j(greater, &okay, taken);  // Signed comparison.

  // Out of stack space.
  __ push(Operand(ebp, 4 * kPointerSize));  // push this
  __ push(eax);
  __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
  __ bind(&okay);
  // End of stack check.

  // Push current index and limit.
  const int kLimitOffset =
      StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
  const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
  __ push(eax);  // limit
  __ push(Immediate(0));  // index

  // Change context eagerly to get the right global object if
  // necessary.
  __ mov(edi, Operand(ebp, 4 * kPointerSize));
  __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));

  // Compute the receiver.
  Label call_to_object, use_global_receiver, push_receiver;
  __ mov(ebx, Operand(ebp, 3 * kPointerSize));
  __ test(ebx, Immediate(kSmiTagMask));
  __ j(zero, &call_to_object);
  __ cmp(ebx, Factory::null_value());
  __ j(equal, &use_global_receiver);
  __ cmp(ebx, Factory::undefined_value());
  __ j(equal, &use_global_receiver);

  // If given receiver is already a JavaScript object then there's no
  // reason for converting it.
  // We don't use IsObjectJSObjectType here because we jump on success.
  __ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset));
  __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
  __ sub(Operand(ecx), Immediate(FIRST_JS_OBJECT_TYPE));
  __ cmp(ecx, LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE);
  __ j(below_equal, &push_receiver);

  // Convert the receiver to an object.
  __ bind(&call_to_object);
  __ push(ebx);
  __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
  __ mov(ebx, Operand(eax));
  __ jmp(&push_receiver);

  // Use the current global receiver object as the receiver.
  __ bind(&use_global_receiver);
  const int kGlobalOffset =
      Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
  __ mov(ebx, FieldOperand(esi, kGlobalOffset));
  __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset));
  __ mov(ebx, FieldOperand(ebx, kGlobalOffset));
  __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));

  // Push the receiver.
  __ bind(&push_receiver);
  __ push(ebx);

  // Copy all arguments from the array to the stack.
  Label entry, loop;
  __ mov(eax, Operand(ebp, kIndexOffset));
  __ jmp(&entry);
  __ bind(&loop);
  __ mov(edx, Operand(ebp, 2 * kPointerSize));  // load arguments

  // Use inline caching to speed up access to arguments.
  Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
  __ call(ic, RelocInfo::CODE_TARGET);
  // It is important that we do not have a test instruction after the
  // call.  A test instruction after the call is used to indicate that
  // we have generated an inline version of the keyed load.  In this
  // case, we know that we are not generating a test instruction next.

  // Push the nth argument.
  __ push(eax);

  // Update the index on the stack and in register eax.
  __ mov(eax, Operand(ebp, kIndexOffset));
  __ add(Operand(eax), Immediate(1 << kSmiTagSize));
  __ mov(Operand(ebp, kIndexOffset), eax);

  __ bind(&entry);
  __ cmp(eax, Operand(ebp, kLimitOffset));
  __ j(not_equal, &loop);

  // Invoke the function.
  ParameterCount actual(eax);
  __ SmiUntag(eax);
  __ mov(edi, Operand(ebp, 4 * kPointerSize));
  __ InvokeFunction(edi, actual, CALL_FUNCTION);

  __ LeaveInternalFrame();
  __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
}


// Load the built-in Array function from the current context.
static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
  // Load the global context.
  __ mov(result, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)));
  __ mov(result, FieldOperand(result, GlobalObject::kGlobalContextOffset));
  // Load the Array function from the global context.
  __ mov(result,
         Operand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
}


// Number of empty elements to allocate for an empty array.
static const int kPreallocatedArrayElements = 4;


// Allocate an empty JSArray. The allocated array is put into the result
// register. If the parameter initial_capacity is larger than zero an elements
// backing store is allocated with this size and filled with the hole values.
// Otherwise the elements backing store is set to the empty FixedArray.
static void AllocateEmptyJSArray(MacroAssembler* masm,
                                 Register array_function,
                                 Register result,
                                 Register scratch1,
                                 Register scratch2,
                                 Register scratch3,
                                 int initial_capacity,
                                 Label* gc_required) {
  ASSERT(initial_capacity >= 0);

  // Load the initial map from the array function.
  __ mov(scratch1, FieldOperand(array_function,
                                JSFunction::kPrototypeOrInitialMapOffset));

  // Allocate the JSArray object together with space for a fixed array with the
  // requested elements.
  int size = JSArray::kSize;
  if (initial_capacity > 0) {
    size += FixedArray::SizeFor(initial_capacity);
  }
  __ AllocateInNewSpace(size,
                        result,
                        scratch2,
                        scratch3,
                        gc_required,
                        TAG_OBJECT);

  // Allocated the JSArray. Now initialize the fields except for the elements
  // array.
  // result: JSObject
  // scratch1: initial map
  // scratch2: start of next object
  __ mov(FieldOperand(result, JSObject::kMapOffset), scratch1);
  __ mov(FieldOperand(result, JSArray::kPropertiesOffset),
         Factory::empty_fixed_array());
  // Field JSArray::kElementsOffset is initialized later.
  __ mov(FieldOperand(result, JSArray::kLengthOffset), Immediate(0));

  // If no storage is requested for the elements array just set the empty
  // fixed array.
  if (initial_capacity == 0) {
    __ mov(FieldOperand(result, JSArray::kElementsOffset),
           Factory::empty_fixed_array());
    return;
  }

  // Calculate the location of the elements array and set elements array member
  // of the JSArray.
  // result: JSObject
  // scratch2: start of next object
  __ lea(scratch1, Operand(result, JSArray::kSize));
  __ mov(FieldOperand(result, JSArray::kElementsOffset), scratch1);

  // Initialize the FixedArray and fill it with holes. FixedArray length is
  // stored as a smi.
  // result: JSObject
  // scratch1: elements array
  // scratch2: start of next object
  __ mov(FieldOperand(scratch1, FixedArray::kMapOffset),
         Factory::fixed_array_map());
  __ mov(FieldOperand(scratch1, FixedArray::kLengthOffset),
         Immediate(Smi::FromInt(initial_capacity)));

  // Fill the FixedArray with the hole value. Inline the code if short.
  // Reconsider loop unfolding if kPreallocatedArrayElements gets changed.
  static const int kLoopUnfoldLimit = 4;
  ASSERT(kPreallocatedArrayElements <= kLoopUnfoldLimit);
  if (initial_capacity <= kLoopUnfoldLimit) {
    // Use a scratch register here to have only one reloc info when unfolding
    // the loop.
    __ mov(scratch3, Factory::the_hole_value());
    for (int i = 0; i < initial_capacity; i++) {
      __ mov(FieldOperand(scratch1,
                          FixedArray::kHeaderSize + i * kPointerSize),
             scratch3);
    }
  } else {
    Label loop, entry;
    __ jmp(&entry);
    __ bind(&loop);
    __ mov(Operand(scratch1, 0), Factory::the_hole_value());
    __ add(Operand(scratch1), Immediate(kPointerSize));
    __ bind(&entry);
    __ cmp(scratch1, Operand(scratch2));
    __ j(below, &loop);
  }
}


// Allocate a JSArray with the number of elements stored in a register. The
// register array_function holds the built-in Array function and the register
// array_size holds the size of the array as a smi. The allocated array is put
// into the result register and beginning and end of the FixedArray elements
// storage is put into registers elements_array and elements_array_end  (see
// below for when that is not the case). If the parameter fill_with_holes is
// true the allocated elements backing store is filled with the hole values
// otherwise it is left uninitialized. When the backing store is filled the
// register elements_array is scratched.
static void AllocateJSArray(MacroAssembler* masm,
                            Register array_function,  // Array function.
                            Register array_size,  // As a smi, cannot be 0.
                            Register result,
                            Register elements_array,
                            Register elements_array_end,
                            Register scratch,
                            bool fill_with_hole,
                            Label* gc_required) {
  ASSERT(scratch.is(edi));  // rep stos destination
  ASSERT(!fill_with_hole || array_size.is(ecx));  // rep stos count
  ASSERT(!fill_with_hole || !result.is(eax));  // result is never eax

  // Load the initial map from the array function.
  __ mov(elements_array,
         FieldOperand(array_function,
                      JSFunction::kPrototypeOrInitialMapOffset));

  // Allocate the JSArray object together with space for a FixedArray with the
  // requested elements.
  ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
  __ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize,
                        times_half_pointer_size,  // array_size is a smi.
                        array_size,
                        result,
                        elements_array_end,
                        scratch,
                        gc_required,
                        TAG_OBJECT);

  // Allocated the JSArray. Now initialize the fields except for the elements
  // array.
  // result: JSObject
  // elements_array: initial map
  // elements_array_end: start of next object
  // array_size: size of array (smi)
  __ mov(FieldOperand(result, JSObject::kMapOffset), elements_array);
  __ mov(elements_array, Factory::empty_fixed_array());
  __ mov(FieldOperand(result, JSArray::kPropertiesOffset), elements_array);
  // Field JSArray::kElementsOffset is initialized later.
  __ mov(FieldOperand(result, JSArray::kLengthOffset), array_size);

  // Calculate the location of the elements array and set elements array member
  // of the JSArray.
  // result: JSObject
  // elements_array_end: start of next object
  // array_size: size of array (smi)
  __ lea(elements_array, Operand(result, JSArray::kSize));
  __ mov(FieldOperand(result, JSArray::kElementsOffset), elements_array);

  // Initialize the fixed array. FixedArray length is stored as a smi.
  // result: JSObject
  // elements_array: elements array
  // elements_array_end: start of next object
  // array_size: size of array (smi)
  __ mov(FieldOperand(elements_array, FixedArray::kMapOffset),
         Factory::fixed_array_map());
  // For non-empty JSArrays the length of the FixedArray and the JSArray is the
  // same.
  __ mov(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size);

  // Fill the allocated FixedArray with the hole value if requested.
  // result: JSObject
  // elements_array: elements array
  if (fill_with_hole) {
    __ SmiUntag(array_size);
    __ lea(edi, Operand(elements_array,
                        FixedArray::kHeaderSize - kHeapObjectTag));
    __ mov(eax, Factory::the_hole_value());
    __ cld();
    // Do not use rep stos when filling less than kRepStosThreshold
    // words.
    const int kRepStosThreshold = 16;
    Label loop, entry, done;
    __ cmp(ecx, kRepStosThreshold);
    __ j(below, &loop);  // Note: ecx > 0.
    __ rep_stos();
    __ jmp(&done);
    __ bind(&loop);
    __ stos();
    __ bind(&entry);
    __ cmp(edi, Operand(elements_array_end));
    __ j(below, &loop);
    __ bind(&done);
  }
}


// Create a new array for the built-in Array function. This function allocates
// the JSArray object and the FixedArray elements array and initializes these.
// If the Array cannot be constructed in native code the runtime is called. This
// function assumes the following state:
//   edi: constructor (built-in Array function)
//   eax: argc
//   esp[0]: return address
//   esp[4]: last argument
// This function is used for both construct and normal calls of Array. Whether
// it is a construct call or not is indicated by the construct_call parameter.
// The only difference between handling a construct call and a normal call is
// that for a construct call the constructor function in edi needs to be
// preserved for entering the generic code. In both cases argc in eax needs to
// be preserved.
static void ArrayNativeCode(MacroAssembler* masm,
                            bool construct_call,
                            Label* call_generic_code) {
  Label argc_one_or_more, argc_two_or_more, prepare_generic_code_call,
        empty_array, not_empty_array;

  // Push the constructor and argc. No need to tag argc as a smi, as there will
  // be no garbage collection with this on the stack.
  int push_count = 0;
  if (construct_call) {
    push_count++;
    __ push(edi);
  }
  push_count++;
  __ push(eax);

  // Check for array construction with zero arguments.
  __ test(eax, Operand(eax));
  __ j(not_zero, &argc_one_or_more);

  __ bind(&empty_array);
  // Handle construction of an empty array.
  AllocateEmptyJSArray(masm,
                       edi,
                       eax,
                       ebx,
                       ecx,
                       edi,
                       kPreallocatedArrayElements,
                       &prepare_generic_code_call);
  __ IncrementCounter(&Counters::array_function_native, 1);
  __ pop(ebx);
  if (construct_call) {
    __ pop(edi);
  }
  __ ret(kPointerSize);

  // Check for one argument. Bail out if argument is not smi or if it is
  // negative.
  __ bind(&argc_one_or_more);
  __ cmp(eax, 1);
  __ j(not_equal, &argc_two_or_more);
  ASSERT(kSmiTag == 0);
  __ mov(ecx, Operand(esp, (push_count + 1) * kPointerSize));
  __ test(ecx, Operand(ecx));
  __ j(not_zero, &not_empty_array);

  // The single argument passed is zero, so we jump to the code above used to
  // handle the case of no arguments passed. To adapt the stack for that we move
  // the return address and the pushed constructor (if pushed) one stack slot up
  // thereby removing the passed argument. Argc is also on the stack - at the
  // bottom - and it needs to be changed from 1 to 0 to have the call into the
  // runtime system work in case a GC is required.
  for (int i = push_count; i > 0; i--) {
    __ mov(eax, Operand(esp, i * kPointerSize));
    __ mov(Operand(esp, (i + 1) * kPointerSize), eax);
  }
  __ add(Operand(esp), Immediate(2 * kPointerSize));  // Drop two stack slots.
  __ push(Immediate(0));  // Treat this as a call with argc of zero.
  __ jmp(&empty_array);

  __ bind(&not_empty_array);
  __ test(ecx, Immediate(kIntptrSignBit | kSmiTagMask));
  __ j(not_zero, &prepare_generic_code_call);

  // Handle construction of an empty array of a certain size. Get the size from
  // the stack and bail out if size is to large to actually allocate an elements
  // array.
  __ cmp(ecx, JSObject::kInitialMaxFastElementArray << kSmiTagSize);
  __ j(greater_equal, &prepare_generic_code_call);

  // edx: array_size (smi)
  // edi: constructor
  // esp[0]: argc (cannot be 0 here)
  // esp[4]: constructor (only if construct_call)
  // esp[8]: return address
  // esp[C]: argument
  AllocateJSArray(masm,
                  edi,
                  ecx,
                  ebx,
                  eax,
                  edx,
                  edi,
                  true,
                  &prepare_generic_code_call);
  __ IncrementCounter(&Counters::array_function_native, 1);
  __ mov(eax, ebx);
  __ pop(ebx);
  if (construct_call) {
    __ pop(edi);
  }
  __ ret(2 * kPointerSize);

  // Handle construction of an array from a list of arguments.
  __ bind(&argc_two_or_more);
  ASSERT(kSmiTag == 0);
  __ SmiTag(eax);  // Convet argc to a smi.
  // eax: array_size (smi)
  // edi: constructor
  // esp[0] : argc
  // esp[4]: constructor (only if construct_call)
  // esp[8] : return address
  // esp[C] : last argument
  AllocateJSArray(masm,
                  edi,
                  eax,
                  ebx,
                  ecx,
                  edx,
                  edi,
                  false,
                  &prepare_generic_code_call);
  __ IncrementCounter(&Counters::array_function_native, 1);
  __ mov(eax, ebx);
  __ pop(ebx);
  if (construct_call) {
    __ pop(edi);
  }
  __ push(eax);
  // eax: JSArray
  // ebx: argc
  // edx: elements_array_end (untagged)
  // esp[0]: JSArray
  // esp[4]: return address
  // esp[8]: last argument

  // Location of the last argument
  __ lea(edi, Operand(esp, 2 * kPointerSize));

  // Location of the first array element (Parameter fill_with_holes to
  // AllocateJSArrayis false, so the FixedArray is returned in ecx).
  __ lea(edx, Operand(ecx, FixedArray::kHeaderSize - kHeapObjectTag));

  // ebx: argc
  // edx: location of the first array element
  // edi: location of the last argument
  // esp[0]: JSArray
  // esp[4]: return address
  // esp[8]: last argument
  Label loop, entry;
  __ mov(ecx, ebx);
  __ jmp(&entry);
  __ bind(&loop);
  __ mov(eax, Operand(edi, ecx, times_pointer_size, 0));
  __ mov(Operand(edx, 0), eax);
  __ add(Operand(edx), Immediate(kPointerSize));
  __ bind(&entry);
  __ dec(ecx);
  __ j(greater_equal, &loop);

  // Remove caller arguments from the stack and return.
  // ebx: argc
  // esp[0]: JSArray
  // esp[4]: return address
  // esp[8]: last argument
  __ pop(eax);
  __ pop(ecx);
  __ lea(esp, Operand(esp, ebx, times_pointer_size, 1 * kPointerSize));
  __ push(ecx);
  __ ret(0);

  // Restore argc and constructor before running the generic code.
  __ bind(&prepare_generic_code_call);
  __ pop(eax);
  if (construct_call) {
    __ pop(edi);
  }
  __ jmp(call_generic_code);
}


void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- eax : argc
  //  -- esp[0] : return address
  //  -- esp[4] : last argument
  // -----------------------------------
  Label generic_array_code;

  // Get the Array function.
  GenerateLoadArrayFunction(masm, edi);

  if (FLAG_debug_code) {
    // Initial map for the builtin Array function shoud be a map.
    __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
    // Will both indicate a NULL and a Smi.
    __ test(ebx, Immediate(kSmiTagMask));
    __ Assert(not_zero, "Unexpected initial map for Array function");
    __ CmpObjectType(ebx, MAP_TYPE, ecx);
    __ Assert(equal, "Unexpected initial map for Array function");
  }

  // Run the native code for the Array function called as a normal function.
  ArrayNativeCode(masm, false, &generic_array_code);

  // Jump to the generic array code in case the specialized code cannot handle
  // the construction.
  __ bind(&generic_array_code);
  Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric);
  Handle<Code> array_code(code);
  __ jmp(array_code, RelocInfo::CODE_TARGET);
}


void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- eax : argc
  //  -- edi : constructor
  //  -- esp[0] : return address
  //  -- esp[4] : last argument
  // -----------------------------------
  Label generic_constructor;

  if (FLAG_debug_code) {
    // The array construct code is only set for the builtin Array function which
    // does always have a map.
    GenerateLoadArrayFunction(masm, ebx);
    __ cmp(edi, Operand(ebx));
    __ Assert(equal, "Unexpected Array function");
    // Initial map for the builtin Array function should be a map.
    __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
    // Will both indicate a NULL and a Smi.
    __ test(ebx, Immediate(kSmiTagMask));
    __ Assert(not_zero, "Unexpected initial map for Array function");
    __ CmpObjectType(ebx, MAP_TYPE, ecx);
    __ Assert(equal, "Unexpected initial map for Array function");
  }

  // Run the native code for the Array function called as constructor.
  ArrayNativeCode(masm, true, &generic_constructor);

  // Jump to the generic construct code in case the specialized code cannot
  // handle the construction.
  __ bind(&generic_constructor);
  Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
  Handle<Code> generic_construct_stub(code);
  __ jmp(generic_construct_stub, RelocInfo::CODE_TARGET);
}


static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
  __ push(ebp);
  __ mov(ebp, Operand(esp));

  // Store the arguments adaptor context sentinel.
  __ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));

  // Push the function on the stack.
  __ push(edi);

  // Preserve the number of arguments on the stack. Must preserve both
  // eax and ebx because these registers are used when copying the
  // arguments and the receiver.
  ASSERT(kSmiTagSize == 1);
  __ lea(ecx, Operand(eax, eax, times_1, kSmiTag));
  __ push(ecx);
}


static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
  // Retrieve the number of arguments from the stack.
  __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));

  // Leave the frame.
  __ leave();

  // Remove caller arguments from the stack.
  ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
  __ pop(ecx);
  __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));  // 1 ~ receiver
  __ push(ecx);
}


void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- eax : actual number of arguments
  //  -- ebx : expected number of arguments
  //  -- edx : code entry to call
  // -----------------------------------

  Label invoke, dont_adapt_arguments;
  __ IncrementCounter(&Counters::arguments_adaptors, 1);

  Label enough, too_few;
  __ cmp(eax, Operand(ebx));
  __ j(less, &too_few);
  __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
  __ j(equal, &dont_adapt_arguments);

  {  // Enough parameters: Actual >= expected.
    __ bind(&enough);
    EnterArgumentsAdaptorFrame(masm);

    // Copy receiver and all expected arguments.
    const int offset = StandardFrameConstants::kCallerSPOffset;
    __ lea(eax, Operand(ebp, eax, times_4, offset));
    __ mov(ecx, -1);  // account for receiver

    Label copy;
    __ bind(&copy);
    __ inc(ecx);
    __ push(Operand(eax, 0));
    __ sub(Operand(eax), Immediate(kPointerSize));
    __ cmp(ecx, Operand(ebx));
    __ j(less, &copy);
    __ jmp(&invoke);
  }

  {  // Too few parameters: Actual < expected.
    __ bind(&too_few);
    EnterArgumentsAdaptorFrame(masm);

    // Copy receiver and all actual arguments.
    const int offset = StandardFrameConstants::kCallerSPOffset;
    __ lea(edi, Operand(ebp, eax, times_4, offset));
    __ mov(ecx, -1);  // account for receiver

    Label copy;
    __ bind(&copy);
    __ inc(ecx);
    __ push(Operand(edi, 0));
    __ sub(Operand(edi), Immediate(kPointerSize));
    __ cmp(ecx, Operand(eax));
    __ j(less, &copy);

    // Fill remaining expected arguments with undefined values.
    Label fill;
    __ bind(&fill);
    __ inc(ecx);
    __ push(Immediate(Factory::undefined_value()));
    __ cmp(ecx, Operand(ebx));
    __ j(less, &fill);

    // Restore function pointer.
    __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
  }

  // Call the entry point.
  __ bind(&invoke);
  __ call(Operand(edx));

  // Leave frame and return.
  LeaveArgumentsAdaptorFrame(masm);
  __ ret(0);

  // -------------------------------------------
  // Dont adapt arguments.
  // -------------------------------------------
  __ bind(&dont_adapt_arguments);
  __ jmp(Operand(edx));
}


#undef __

} }  // namespace v8::internal

#endif  // V8_TARGET_ARCH_IA32