summaryrefslogtreecommitdiff
path: root/deps/v8/src/ia32/codegen-ia32.cc
blob: 366359f5438c6617094ac436d6c3cb21a0f721f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/ia32/codegen-ia32.h"

#if V8_TARGET_ARCH_IA32

#include "src/codegen.h"
#include "src/heap/heap.h"
#include "src/macro-assembler.h"

namespace v8 {
namespace internal {


// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.

void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
  masm->EnterFrame(StackFrame::INTERNAL);
  DCHECK(!masm->has_frame());
  masm->set_has_frame(true);
}


void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
  masm->LeaveFrame(StackFrame::INTERNAL);
  DCHECK(masm->has_frame());
  masm->set_has_frame(false);
}


#define __ masm.


UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
  size_t actual_size;
  // Allocate buffer in executable space.
  byte* buffer =
      static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
  if (buffer == nullptr) return nullptr;
  MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
                      CodeObjectRequired::kNo);
  // esp[1 * kPointerSize]: raw double input
  // esp[0 * kPointerSize]: return address
  // Move double input into registers.
  {
    __ movsd(xmm0, Operand(esp, 1 * kPointerSize));
    __ sqrtsd(xmm0, xmm0);
    __ movsd(Operand(esp, 1 * kPointerSize), xmm0);
    // Load result into floating point register as return value.
    __ fld_d(Operand(esp, 1 * kPointerSize));
    __ Ret();
  }

  CodeDesc desc;
  masm.GetCode(isolate, &desc);
  DCHECK(!RelocInfo::RequiresRelocation(isolate, desc));

  Assembler::FlushICache(isolate, buffer, actual_size);
  base::OS::ProtectCode(buffer, actual_size);
  return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
}


// Helper functions for CreateMemMoveFunction.
#undef __
#define __ ACCESS_MASM(masm)

enum Direction { FORWARD, BACKWARD };
enum Alignment { MOVE_ALIGNED, MOVE_UNALIGNED };

// Expects registers:
// esi - source, aligned if alignment == ALIGNED
// edi - destination, always aligned
// ecx - count (copy size in bytes)
// edx - loop count (number of 64 byte chunks)
void MemMoveEmitMainLoop(MacroAssembler* masm,
                         Label* move_last_15,
                         Direction direction,
                         Alignment alignment) {
  Register src = esi;
  Register dst = edi;
  Register count = ecx;
  Register loop_count = edx;
  Label loop, move_last_31, move_last_63;
  __ cmp(loop_count, 0);
  __ j(equal, &move_last_63);
  __ bind(&loop);
  // Main loop. Copy in 64 byte chunks.
  if (direction == BACKWARD) __ sub(src, Immediate(0x40));
  __ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0x00));
  __ movdq(alignment == MOVE_ALIGNED, xmm1, Operand(src, 0x10));
  __ movdq(alignment == MOVE_ALIGNED, xmm2, Operand(src, 0x20));
  __ movdq(alignment == MOVE_ALIGNED, xmm3, Operand(src, 0x30));
  if (direction == FORWARD) __ add(src, Immediate(0x40));
  if (direction == BACKWARD) __ sub(dst, Immediate(0x40));
  __ movdqa(Operand(dst, 0x00), xmm0);
  __ movdqa(Operand(dst, 0x10), xmm1);
  __ movdqa(Operand(dst, 0x20), xmm2);
  __ movdqa(Operand(dst, 0x30), xmm3);
  if (direction == FORWARD) __ add(dst, Immediate(0x40));
  __ dec(loop_count);
  __ j(not_zero, &loop);
  // At most 63 bytes left to copy.
  __ bind(&move_last_63);
  __ test(count, Immediate(0x20));
  __ j(zero, &move_last_31);
  if (direction == BACKWARD) __ sub(src, Immediate(0x20));
  __ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0x00));
  __ movdq(alignment == MOVE_ALIGNED, xmm1, Operand(src, 0x10));
  if (direction == FORWARD) __ add(src, Immediate(0x20));
  if (direction == BACKWARD) __ sub(dst, Immediate(0x20));
  __ movdqa(Operand(dst, 0x00), xmm0);
  __ movdqa(Operand(dst, 0x10), xmm1);
  if (direction == FORWARD) __ add(dst, Immediate(0x20));
  // At most 31 bytes left to copy.
  __ bind(&move_last_31);
  __ test(count, Immediate(0x10));
  __ j(zero, move_last_15);
  if (direction == BACKWARD) __ sub(src, Immediate(0x10));
  __ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0));
  if (direction == FORWARD) __ add(src, Immediate(0x10));
  if (direction == BACKWARD) __ sub(dst, Immediate(0x10));
  __ movdqa(Operand(dst, 0), xmm0);
  if (direction == FORWARD) __ add(dst, Immediate(0x10));
}


void MemMoveEmitPopAndReturn(MacroAssembler* masm) {
  __ pop(esi);
  __ pop(edi);
  __ ret(0);
}


#undef __
#define __ masm.


class LabelConverter {
 public:
  explicit LabelConverter(byte* buffer) : buffer_(buffer) {}
  int32_t address(Label* l) const {
    return reinterpret_cast<int32_t>(buffer_) + l->pos();
  }
 private:
  byte* buffer_;
};


MemMoveFunction CreateMemMoveFunction(Isolate* isolate) {
  size_t actual_size;
  // Allocate buffer in executable space.
  byte* buffer =
      static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
  if (buffer == nullptr) return nullptr;
  MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
                      CodeObjectRequired::kNo);
  LabelConverter conv(buffer);

  // Generated code is put into a fixed, unmovable buffer, and not into
  // the V8 heap. We can't, and don't, refer to any relocatable addresses
  // (e.g. the JavaScript nan-object).

  // 32-bit C declaration function calls pass arguments on stack.

  // Stack layout:
  // esp[12]: Third argument, size.
  // esp[8]: Second argument, source pointer.
  // esp[4]: First argument, destination pointer.
  // esp[0]: return address

  const int kDestinationOffset = 1 * kPointerSize;
  const int kSourceOffset = 2 * kPointerSize;
  const int kSizeOffset = 3 * kPointerSize;

  // When copying up to this many bytes, use special "small" handlers.
  const size_t kSmallCopySize = 8;
  // When copying up to this many bytes, use special "medium" handlers.
  const size_t kMediumCopySize = 63;
  // When non-overlapping region of src and dst is less than this,
  // use a more careful implementation (slightly slower).
  const size_t kMinMoveDistance = 16;
  // Note that these values are dictated by the implementation below,
  // do not just change them and hope things will work!

  int stack_offset = 0;  // Update if we change the stack height.

  Label backward, backward_much_overlap;
  Label forward_much_overlap, small_size, medium_size, pop_and_return;
  __ push(edi);
  __ push(esi);
  stack_offset += 2 * kPointerSize;
  Register dst = edi;
  Register src = esi;
  Register count = ecx;
  Register loop_count = edx;
  __ mov(dst, Operand(esp, stack_offset + kDestinationOffset));
  __ mov(src, Operand(esp, stack_offset + kSourceOffset));
  __ mov(count, Operand(esp, stack_offset + kSizeOffset));

  __ cmp(dst, src);
  __ j(equal, &pop_and_return);

  __ prefetch(Operand(src, 0), 1);
  __ cmp(count, kSmallCopySize);
  __ j(below_equal, &small_size);
  __ cmp(count, kMediumCopySize);
  __ j(below_equal, &medium_size);
  __ cmp(dst, src);
  __ j(above, &backward);

  {
    // |dst| is a lower address than |src|. Copy front-to-back.
    Label unaligned_source, move_last_15, skip_last_move;
    __ mov(eax, src);
    __ sub(eax, dst);
    __ cmp(eax, kMinMoveDistance);
    __ j(below, &forward_much_overlap);
    // Copy first 16 bytes.
    __ movdqu(xmm0, Operand(src, 0));
    __ movdqu(Operand(dst, 0), xmm0);
    // Determine distance to alignment: 16 - (dst & 0xF).
    __ mov(edx, dst);
    __ and_(edx, 0xF);
    __ neg(edx);
    __ add(edx, Immediate(16));
    __ add(dst, edx);
    __ add(src, edx);
    __ sub(count, edx);
    // dst is now aligned. Main copy loop.
    __ mov(loop_count, count);
    __ shr(loop_count, 6);
    // Check if src is also aligned.
    __ test(src, Immediate(0xF));
    __ j(not_zero, &unaligned_source);
    // Copy loop for aligned source and destination.
    MemMoveEmitMainLoop(&masm, &move_last_15, FORWARD, MOVE_ALIGNED);
    // At most 15 bytes to copy. Copy 16 bytes at end of string.
    __ bind(&move_last_15);
    __ and_(count, 0xF);
    __ j(zero, &skip_last_move, Label::kNear);
    __ movdqu(xmm0, Operand(src, count, times_1, -0x10));
    __ movdqu(Operand(dst, count, times_1, -0x10), xmm0);
    __ bind(&skip_last_move);
    MemMoveEmitPopAndReturn(&masm);

    // Copy loop for unaligned source and aligned destination.
    __ bind(&unaligned_source);
    MemMoveEmitMainLoop(&masm, &move_last_15, FORWARD, MOVE_UNALIGNED);
    __ jmp(&move_last_15);

    // Less than kMinMoveDistance offset between dst and src.
    Label loop_until_aligned, last_15_much_overlap;
    __ bind(&loop_until_aligned);
    __ mov_b(eax, Operand(src, 0));
    __ inc(src);
    __ mov_b(Operand(dst, 0), eax);
    __ inc(dst);
    __ dec(count);
    __ bind(&forward_much_overlap);  // Entry point into this block.
    __ test(dst, Immediate(0xF));
    __ j(not_zero, &loop_until_aligned);
    // dst is now aligned, src can't be. Main copy loop.
    __ mov(loop_count, count);
    __ shr(loop_count, 6);
    MemMoveEmitMainLoop(&masm, &last_15_much_overlap,
                        FORWARD, MOVE_UNALIGNED);
    __ bind(&last_15_much_overlap);
    __ and_(count, 0xF);
    __ j(zero, &pop_and_return);
    __ cmp(count, kSmallCopySize);
    __ j(below_equal, &small_size);
    __ jmp(&medium_size);
  }

  {
    // |dst| is a higher address than |src|. Copy backwards.
    Label unaligned_source, move_first_15, skip_last_move;
    __ bind(&backward);
    // |dst| and |src| always point to the end of what's left to copy.
    __ add(dst, count);
    __ add(src, count);
    __ mov(eax, dst);
    __ sub(eax, src);
    __ cmp(eax, kMinMoveDistance);
    __ j(below, &backward_much_overlap);
    // Copy last 16 bytes.
    __ movdqu(xmm0, Operand(src, -0x10));
    __ movdqu(Operand(dst, -0x10), xmm0);
    // Find distance to alignment: dst & 0xF
    __ mov(edx, dst);
    __ and_(edx, 0xF);
    __ sub(dst, edx);
    __ sub(src, edx);
    __ sub(count, edx);
    // dst is now aligned. Main copy loop.
    __ mov(loop_count, count);
    __ shr(loop_count, 6);
    // Check if src is also aligned.
    __ test(src, Immediate(0xF));
    __ j(not_zero, &unaligned_source);
    // Copy loop for aligned source and destination.
    MemMoveEmitMainLoop(&masm, &move_first_15, BACKWARD, MOVE_ALIGNED);
    // At most 15 bytes to copy. Copy 16 bytes at beginning of string.
    __ bind(&move_first_15);
    __ and_(count, 0xF);
    __ j(zero, &skip_last_move, Label::kNear);
    __ sub(src, count);
    __ sub(dst, count);
    __ movdqu(xmm0, Operand(src, 0));
    __ movdqu(Operand(dst, 0), xmm0);
    __ bind(&skip_last_move);
    MemMoveEmitPopAndReturn(&masm);

    // Copy loop for unaligned source and aligned destination.
    __ bind(&unaligned_source);
    MemMoveEmitMainLoop(&masm, &move_first_15, BACKWARD, MOVE_UNALIGNED);
    __ jmp(&move_first_15);

    // Less than kMinMoveDistance offset between dst and src.
    Label loop_until_aligned, first_15_much_overlap;
    __ bind(&loop_until_aligned);
    __ dec(src);
    __ dec(dst);
    __ mov_b(eax, Operand(src, 0));
    __ mov_b(Operand(dst, 0), eax);
    __ dec(count);
    __ bind(&backward_much_overlap);  // Entry point into this block.
    __ test(dst, Immediate(0xF));
    __ j(not_zero, &loop_until_aligned);
    // dst is now aligned, src can't be. Main copy loop.
    __ mov(loop_count, count);
    __ shr(loop_count, 6);
    MemMoveEmitMainLoop(&masm, &first_15_much_overlap,
                        BACKWARD, MOVE_UNALIGNED);
    __ bind(&first_15_much_overlap);
    __ and_(count, 0xF);
    __ j(zero, &pop_and_return);
    // Small/medium handlers expect dst/src to point to the beginning.
    __ sub(dst, count);
    __ sub(src, count);
    __ cmp(count, kSmallCopySize);
    __ j(below_equal, &small_size);
    __ jmp(&medium_size);
  }
  {
    // Special handlers for 9 <= copy_size < 64. No assumptions about
    // alignment or move distance, so all reads must be unaligned and
    // must happen before any writes.
    Label medium_handlers, f9_16, f17_32, f33_48, f49_63;

    __ bind(&f9_16);
    __ movsd(xmm0, Operand(src, 0));
    __ movsd(xmm1, Operand(src, count, times_1, -8));
    __ movsd(Operand(dst, 0), xmm0);
    __ movsd(Operand(dst, count, times_1, -8), xmm1);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f17_32);
    __ movdqu(xmm0, Operand(src, 0));
    __ movdqu(xmm1, Operand(src, count, times_1, -0x10));
    __ movdqu(Operand(dst, 0x00), xmm0);
    __ movdqu(Operand(dst, count, times_1, -0x10), xmm1);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f33_48);
    __ movdqu(xmm0, Operand(src, 0x00));
    __ movdqu(xmm1, Operand(src, 0x10));
    __ movdqu(xmm2, Operand(src, count, times_1, -0x10));
    __ movdqu(Operand(dst, 0x00), xmm0);
    __ movdqu(Operand(dst, 0x10), xmm1);
    __ movdqu(Operand(dst, count, times_1, -0x10), xmm2);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f49_63);
    __ movdqu(xmm0, Operand(src, 0x00));
    __ movdqu(xmm1, Operand(src, 0x10));
    __ movdqu(xmm2, Operand(src, 0x20));
    __ movdqu(xmm3, Operand(src, count, times_1, -0x10));
    __ movdqu(Operand(dst, 0x00), xmm0);
    __ movdqu(Operand(dst, 0x10), xmm1);
    __ movdqu(Operand(dst, 0x20), xmm2);
    __ movdqu(Operand(dst, count, times_1, -0x10), xmm3);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&medium_handlers);
    __ dd(conv.address(&f9_16));
    __ dd(conv.address(&f17_32));
    __ dd(conv.address(&f33_48));
    __ dd(conv.address(&f49_63));

    __ bind(&medium_size);  // Entry point into this block.
    __ mov(eax, count);
    __ dec(eax);
    __ shr(eax, 4);
    if (FLAG_debug_code) {
      Label ok;
      __ cmp(eax, 3);
      __ j(below_equal, &ok);
      __ int3();
      __ bind(&ok);
    }
    __ mov(eax, Operand(eax, times_4, conv.address(&medium_handlers)));
    __ jmp(eax);
  }
  {
    // Specialized copiers for copy_size <= 8 bytes.
    Label small_handlers, f0, f1, f2, f3, f4, f5_8;
    __ bind(&f0);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f1);
    __ mov_b(eax, Operand(src, 0));
    __ mov_b(Operand(dst, 0), eax);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f2);
    __ mov_w(eax, Operand(src, 0));
    __ mov_w(Operand(dst, 0), eax);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f3);
    __ mov_w(eax, Operand(src, 0));
    __ mov_b(edx, Operand(src, 2));
    __ mov_w(Operand(dst, 0), eax);
    __ mov_b(Operand(dst, 2), edx);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f4);
    __ mov(eax, Operand(src, 0));
    __ mov(Operand(dst, 0), eax);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&f5_8);
    __ mov(eax, Operand(src, 0));
    __ mov(edx, Operand(src, count, times_1, -4));
    __ mov(Operand(dst, 0), eax);
    __ mov(Operand(dst, count, times_1, -4), edx);
    MemMoveEmitPopAndReturn(&masm);

    __ bind(&small_handlers);
    __ dd(conv.address(&f0));
    __ dd(conv.address(&f1));
    __ dd(conv.address(&f2));
    __ dd(conv.address(&f3));
    __ dd(conv.address(&f4));
    __ dd(conv.address(&f5_8));
    __ dd(conv.address(&f5_8));
    __ dd(conv.address(&f5_8));
    __ dd(conv.address(&f5_8));

    __ bind(&small_size);  // Entry point into this block.
    if (FLAG_debug_code) {
      Label ok;
      __ cmp(count, 8);
      __ j(below_equal, &ok);
      __ int3();
      __ bind(&ok);
    }
    __ mov(eax, Operand(count, times_4, conv.address(&small_handlers)));
    __ jmp(eax);
  }

  __ bind(&pop_and_return);
  MemMoveEmitPopAndReturn(&masm);

  CodeDesc desc;
  masm.GetCode(isolate, &desc);
  DCHECK(!RelocInfo::RequiresRelocation(isolate, desc));
  Assembler::FlushICache(isolate, buffer, actual_size);
  base::OS::ProtectCode(buffer, actual_size);
  // TODO(jkummerow): It would be nice to register this code creation event
  // with the PROFILE / GDBJIT system.
  return FUNCTION_CAST<MemMoveFunction>(buffer);
}


#undef __

// -------------------------------------------------------------------------
// Code generators

#define __ ACCESS_MASM(masm)

void StringCharLoadGenerator::Generate(MacroAssembler* masm,
                                       Factory* factory,
                                       Register string,
                                       Register index,
                                       Register result,
                                       Label* call_runtime) {
  Label indirect_string_loaded;
  __ bind(&indirect_string_loaded);

  // Fetch the instance type of the receiver into result register.
  __ mov(result, FieldOperand(string, HeapObject::kMapOffset));
  __ movzx_b(result, FieldOperand(result, Map::kInstanceTypeOffset));

  // We need special handling for indirect strings.
  Label check_sequential;
  __ test(result, Immediate(kIsIndirectStringMask));
  __ j(zero, &check_sequential, Label::kNear);

  // Dispatch on the indirect string shape: slice or cons.
  Label cons_string, thin_string;
  __ and_(result, Immediate(kStringRepresentationMask));
  __ cmp(result, Immediate(kConsStringTag));
  __ j(equal, &cons_string, Label::kNear);
  __ cmp(result, Immediate(kThinStringTag));
  __ j(equal, &thin_string, Label::kNear);

  // Handle slices.
  __ mov(result, FieldOperand(string, SlicedString::kOffsetOffset));
  __ SmiUntag(result);
  __ add(index, result);
  __ mov(string, FieldOperand(string, SlicedString::kParentOffset));
  __ jmp(&indirect_string_loaded);

  // Handle thin strings.
  __ bind(&thin_string);
  __ mov(string, FieldOperand(string, ThinString::kActualOffset));
  __ jmp(&indirect_string_loaded);

  // Handle cons strings.
  // Check whether the right hand side is the empty string (i.e. if
  // this is really a flat string in a cons string). If that is not
  // the case we would rather go to the runtime system now to flatten
  // the string.
  __ bind(&cons_string);
  __ cmp(FieldOperand(string, ConsString::kSecondOffset),
         Immediate(factory->empty_string()));
  __ j(not_equal, call_runtime);
  __ mov(string, FieldOperand(string, ConsString::kFirstOffset));
  __ jmp(&indirect_string_loaded);

  // Distinguish sequential and external strings. Only these two string
  // representations can reach here (slices and flat cons strings have been
  // reduced to the underlying sequential or external string).
  Label seq_string;
  __ bind(&check_sequential);
  STATIC_ASSERT(kSeqStringTag == 0);
  __ test(result, Immediate(kStringRepresentationMask));
  __ j(zero, &seq_string, Label::kNear);

  // Handle external strings.
  Label one_byte_external, done;
  if (FLAG_debug_code) {
    // Assert that we do not have a cons or slice (indirect strings) here.
    // Sequential strings have already been ruled out.
    __ test(result, Immediate(kIsIndirectStringMask));
    __ Assert(zero, kExternalStringExpectedButNotFound);
  }
  // Rule out short external strings.
  STATIC_ASSERT(kShortExternalStringTag != 0);
  __ test_b(result, Immediate(kShortExternalStringMask));
  __ j(not_zero, call_runtime);
  // Check encoding.
  STATIC_ASSERT(kTwoByteStringTag == 0);
  __ test_b(result, Immediate(kStringEncodingMask));
  __ mov(result, FieldOperand(string, ExternalString::kResourceDataOffset));
  __ j(not_equal, &one_byte_external, Label::kNear);
  // Two-byte string.
  __ movzx_w(result, Operand(result, index, times_2, 0));
  __ jmp(&done, Label::kNear);
  __ bind(&one_byte_external);
  // One-byte string.
  __ movzx_b(result, Operand(result, index, times_1, 0));
  __ jmp(&done, Label::kNear);

  // Dispatch on the encoding: one-byte or two-byte.
  Label one_byte;
  __ bind(&seq_string);
  STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
  STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
  __ test(result, Immediate(kStringEncodingMask));
  __ j(not_zero, &one_byte, Label::kNear);

  // Two-byte string.
  // Load the two-byte character code into the result register.
  __ movzx_w(result, FieldOperand(string,
                                  index,
                                  times_2,
                                  SeqTwoByteString::kHeaderSize));
  __ jmp(&done, Label::kNear);

  // One-byte string.
  // Load the byte into the result register.
  __ bind(&one_byte);
  __ movzx_b(result, FieldOperand(string,
                                  index,
                                  times_1,
                                  SeqOneByteString::kHeaderSize));
  __ bind(&done);
}

#undef __


CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
  USE(isolate);
  DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
  CodePatcher patcher(isolate, young_sequence_.start(),
                      young_sequence_.length());
  patcher.masm()->push(ebp);
  patcher.masm()->mov(ebp, esp);
  patcher.masm()->push(esi);
  patcher.masm()->push(edi);
}


#ifdef DEBUG
bool CodeAgingHelper::IsOld(byte* candidate) const {
  return *candidate == kCallOpcode;
}
#endif


bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
  bool result = isolate->code_aging_helper()->IsYoung(sequence);
  DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
  return result;
}

Code::Age Code::GetCodeAge(Isolate* isolate, byte* sequence) {
  if (IsYoungSequence(isolate, sequence)) return kNoAgeCodeAge;

  sequence++;  // Skip the kCallOpcode byte
  Address target_address = sequence + *reinterpret_cast<int*>(sequence) +
                           Assembler::kCallTargetAddressOffset;
  Code* stub = GetCodeFromTargetAddress(target_address);
  return GetAgeOfCodeAgeStub(stub);
}

void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence,
                                Code::Age age) {
  uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
  if (age == kNoAgeCodeAge) {
    isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
    Assembler::FlushICache(isolate, sequence, young_length);
  } else {
    Code* stub = GetCodeAgeStub(isolate, age);
    CodePatcher patcher(isolate, sequence, young_length);
    patcher.masm()->call(stub->instruction_start(), RelocInfo::NONE32);
  }
}


}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_IA32