summaryrefslogtreecommitdiff
path: root/deps/v8/src/ia32/deoptimizer-ia32.cc
blob: 390f3a76a8f276f852a5e293c4bcbee9fefec9b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_IA32

#include "src/codegen.h"
#include "src/deoptimizer.h"
#include "src/full-codegen/full-codegen.h"
#include "src/ia32/frames-ia32.h"
#include "src/register-configuration.h"
#include "src/safepoint-table.h"

namespace v8 {
namespace internal {

const int Deoptimizer::table_entry_size_ = 10;


int Deoptimizer::patch_size() {
  return Assembler::kCallInstructionLength;
}


void Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(Handle<Code> code) {
  Isolate* isolate = code->GetIsolate();
  HandleScope scope(isolate);

  // Compute the size of relocation information needed for the code
  // patching in Deoptimizer::PatchCodeForDeoptimization below.
  int min_reloc_size = 0;
  int prev_pc_offset = 0;
  DeoptimizationInputData* deopt_data =
      DeoptimizationInputData::cast(code->deoptimization_data());
  for (int i = 0; i < deopt_data->DeoptCount(); i++) {
    int pc_offset = deopt_data->Pc(i)->value();
    if (pc_offset == -1) continue;
    pc_offset = pc_offset + 1;  // We will encode the pc offset after the call.
    DCHECK_GE(pc_offset, prev_pc_offset);
    int pc_delta = pc_offset - prev_pc_offset;
    // We use RUNTIME_ENTRY reloc info which has a size of 2 bytes
    // if encodable with small pc delta encoding and up to 6 bytes
    // otherwise.
    if (pc_delta <= RelocInfo::kMaxSmallPCDelta) {
      min_reloc_size += 2;
    } else {
      min_reloc_size += 6;
    }
    prev_pc_offset = pc_offset;
  }

  // If the relocation information is not big enough we create a new
  // relocation info object that is padded with comments to make it
  // big enough for lazy doptimization.
  int reloc_length = code->relocation_info()->length();
  if (min_reloc_size > reloc_length) {
    int comment_reloc_size = RelocInfo::kMinRelocCommentSize;
    // Padding needed.
    int min_padding = min_reloc_size - reloc_length;
    // Number of comments needed to take up at least that much space.
    int additional_comments =
        (min_padding + comment_reloc_size - 1) / comment_reloc_size;
    // Actual padding size.
    int padding = additional_comments * comment_reloc_size;
    // Allocate new relocation info and copy old relocation to the end
    // of the new relocation info array because relocation info is
    // written and read backwards.
    Factory* factory = isolate->factory();
    Handle<ByteArray> new_reloc =
        factory->NewByteArray(reloc_length + padding, TENURED);
    MemCopy(new_reloc->GetDataStartAddress() + padding,
            code->relocation_info()->GetDataStartAddress(), reloc_length);
    // Create a relocation writer to write the comments in the padding
    // space. Use position 0 for everything to ensure short encoding.
    RelocInfoWriter reloc_info_writer(
        new_reloc->GetDataStartAddress() + padding, 0);
    intptr_t comment_string
        = reinterpret_cast<intptr_t>(RelocInfo::kFillerCommentString);
    RelocInfo rinfo(isolate, 0, RelocInfo::COMMENT, comment_string, NULL);
    for (int i = 0; i < additional_comments; ++i) {
#ifdef DEBUG
      byte* pos_before = reloc_info_writer.pos();
#endif
      reloc_info_writer.Write(&rinfo);
      DCHECK(RelocInfo::kMinRelocCommentSize ==
             pos_before - reloc_info_writer.pos());
    }
    // Replace relocation information on the code object.
    code->set_relocation_info(*new_reloc);
  }
}


void Deoptimizer::PatchCodeForDeoptimization(Isolate* isolate, Code* code) {
  Address code_start_address = code->instruction_start();

  if (FLAG_zap_code_space) {
    // Fail hard and early if we enter this code object again.
    byte* pointer = code->FindCodeAgeSequence();
    if (pointer != NULL) {
      pointer += kNoCodeAgeSequenceLength;
    } else {
      pointer = code->instruction_start();
    }
    CodePatcher patcher(isolate, pointer, 1);
    patcher.masm()->int3();

    DeoptimizationInputData* data =
        DeoptimizationInputData::cast(code->deoptimization_data());
    int osr_offset = data->OsrPcOffset()->value();
    if (osr_offset > 0) {
      CodePatcher osr_patcher(isolate, code->instruction_start() + osr_offset,
                              1);
      osr_patcher.masm()->int3();
    }
  }

  // We will overwrite the code's relocation info in-place. Relocation info
  // is written backward. The relocation info is the payload of a byte
  // array.  Later on we will slide this to the start of the byte array and
  // create a filler object in the remaining space.
  ByteArray* reloc_info = code->relocation_info();
  Address reloc_end_address = reloc_info->address() + reloc_info->Size();
  RelocInfoWriter reloc_info_writer(reloc_end_address, code_start_address);

  // Since the call is a relative encoding, write new
  // reloc info.  We do not need any of the existing reloc info because the
  // existing code will not be used again (we zap it in debug builds).
  //
  // Emit call to lazy deoptimization at all lazy deopt points.
  DeoptimizationInputData* deopt_data =
      DeoptimizationInputData::cast(code->deoptimization_data());
#ifdef DEBUG
  Address prev_call_address = NULL;
#endif
  // For each LLazyBailout instruction insert a call to the corresponding
  // deoptimization entry.
  for (int i = 0; i < deopt_data->DeoptCount(); i++) {
    if (deopt_data->Pc(i)->value() == -1) continue;
    // Patch lazy deoptimization entry.
    Address call_address = code_start_address + deopt_data->Pc(i)->value();
    CodePatcher patcher(isolate, call_address, patch_size());
    Address deopt_entry = GetDeoptimizationEntry(isolate, i, LAZY);
    patcher.masm()->call(deopt_entry, RelocInfo::NONE32);
    // We use RUNTIME_ENTRY for deoptimization bailouts.
    RelocInfo rinfo(isolate, call_address + 1,  // 1 after the call opcode.
                    RelocInfo::RUNTIME_ENTRY,
                    reinterpret_cast<intptr_t>(deopt_entry), NULL);
    reloc_info_writer.Write(&rinfo);
    DCHECK_GE(reloc_info_writer.pos(),
              reloc_info->address() + ByteArray::kHeaderSize);
    DCHECK(prev_call_address == NULL ||
           call_address >= prev_call_address + patch_size());
    DCHECK(call_address + patch_size() <= code->instruction_end());
#ifdef DEBUG
    prev_call_address = call_address;
#endif
  }

  // Move the relocation info to the beginning of the byte array.
  const int new_reloc_length = reloc_end_address - reloc_info_writer.pos();
  MemMove(code->relocation_start(), reloc_info_writer.pos(), new_reloc_length);

  // Right trim the relocation info to free up remaining space.
  const int delta = reloc_info->length() - new_reloc_length;
  if (delta > 0) {
    isolate->heap()->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(
        reloc_info, delta);
  }
}


void Deoptimizer::SetPlatformCompiledStubRegisters(
    FrameDescription* output_frame, CodeStubDescriptor* descriptor) {
  intptr_t handler =
      reinterpret_cast<intptr_t>(descriptor->deoptimization_handler());
  int params = descriptor->GetHandlerParameterCount();
  output_frame->SetRegister(eax.code(), params);
  output_frame->SetRegister(ebx.code(), handler);
}


void Deoptimizer::CopyDoubleRegisters(FrameDescription* output_frame) {
  for (int i = 0; i < XMMRegister::kMaxNumRegisters; ++i) {
    double double_value = input_->GetDoubleRegister(i);
    output_frame->SetDoubleRegister(i, double_value);
  }
}

#define __ masm()->

void Deoptimizer::TableEntryGenerator::Generate() {
  GeneratePrologue();

  // Save all general purpose registers before messing with them.
  const int kNumberOfRegisters = Register::kNumRegisters;

  const int kDoubleRegsSize = kDoubleSize * XMMRegister::kMaxNumRegisters;
  __ sub(esp, Immediate(kDoubleRegsSize));
  const RegisterConfiguration* config = RegisterConfiguration::Crankshaft();
  for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    int code = config->GetAllocatableDoubleCode(i);
    XMMRegister xmm_reg = XMMRegister::from_code(code);
    int offset = code * kDoubleSize;
    __ movsd(Operand(esp, offset), xmm_reg);
  }

  __ pushad();

  ExternalReference c_entry_fp_address(Isolate::kCEntryFPAddress, isolate());
  __ mov(Operand::StaticVariable(c_entry_fp_address), ebp);

  const int kSavedRegistersAreaSize = kNumberOfRegisters * kPointerSize +
                                      kDoubleRegsSize;

  // Get the bailout id from the stack.
  __ mov(ebx, Operand(esp, kSavedRegistersAreaSize));

  // Get the address of the location in the code object
  // and compute the fp-to-sp delta in register edx.
  __ mov(ecx, Operand(esp, kSavedRegistersAreaSize + 1 * kPointerSize));
  __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 2 * kPointerSize));

  __ sub(edx, ebp);
  __ neg(edx);

  // Allocate a new deoptimizer object.
  __ PrepareCallCFunction(6, eax);
  __ mov(eax, Immediate(0));
  Label context_check;
  __ mov(edi, Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset));
  __ JumpIfSmi(edi, &context_check);
  __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
  __ bind(&context_check);
  __ mov(Operand(esp, 0 * kPointerSize), eax);  // Function.
  __ mov(Operand(esp, 1 * kPointerSize), Immediate(type()));  // Bailout type.
  __ mov(Operand(esp, 2 * kPointerSize), ebx);  // Bailout id.
  __ mov(Operand(esp, 3 * kPointerSize), ecx);  // Code address or 0.
  __ mov(Operand(esp, 4 * kPointerSize), edx);  // Fp-to-sp delta.
  __ mov(Operand(esp, 5 * kPointerSize),
         Immediate(ExternalReference::isolate_address(isolate())));
  {
    AllowExternalCallThatCantCauseGC scope(masm());
    __ CallCFunction(ExternalReference::new_deoptimizer_function(isolate()), 6);
  }

  // Preserve deoptimizer object in register eax and get the input
  // frame descriptor pointer.
  __ mov(ebx, Operand(eax, Deoptimizer::input_offset()));

  // Fill in the input registers.
  for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    __ pop(Operand(ebx, offset));
  }

  int double_regs_offset = FrameDescription::double_registers_offset();
  // Fill in the double input registers.
  for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    int code = config->GetAllocatableDoubleCode(i);
    int dst_offset = code * kDoubleSize + double_regs_offset;
    int src_offset = code * kDoubleSize;
    __ movsd(xmm0, Operand(esp, src_offset));
    __ movsd(Operand(ebx, dst_offset), xmm0);
  }

  // Clear FPU all exceptions.
  // TODO(ulan): Find out why the TOP register is not zero here in some cases,
  // and check that the generated code never deoptimizes with unbalanced stack.
  __ fnclex();

  // Remove the bailout id, return address and the double registers.
  __ add(esp, Immediate(kDoubleRegsSize + 2 * kPointerSize));

  // Compute a pointer to the unwinding limit in register ecx; that is
  // the first stack slot not part of the input frame.
  __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
  __ add(ecx, esp);

  // Unwind the stack down to - but not including - the unwinding
  // limit and copy the contents of the activation frame to the input
  // frame description.
  __ lea(edx, Operand(ebx, FrameDescription::frame_content_offset()));
  Label pop_loop_header;
  __ jmp(&pop_loop_header);
  Label pop_loop;
  __ bind(&pop_loop);
  __ pop(Operand(edx, 0));
  __ add(edx, Immediate(sizeof(uint32_t)));
  __ bind(&pop_loop_header);
  __ cmp(ecx, esp);
  __ j(not_equal, &pop_loop);

  // Compute the output frame in the deoptimizer.
  __ push(eax);
  __ PrepareCallCFunction(1, ebx);
  __ mov(Operand(esp, 0 * kPointerSize), eax);
  {
    AllowExternalCallThatCantCauseGC scope(masm());
    __ CallCFunction(
        ExternalReference::compute_output_frames_function(isolate()), 1);
  }
  __ pop(eax);

  __ mov(esp, Operand(eax, Deoptimizer::caller_frame_top_offset()));

  // Replace the current (input) frame with the output frames.
  Label outer_push_loop, inner_push_loop,
      outer_loop_header, inner_loop_header;
  // Outer loop state: eax = current FrameDescription**, edx = one past the
  // last FrameDescription**.
  __ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
  __ mov(eax, Operand(eax, Deoptimizer::output_offset()));
  __ lea(edx, Operand(eax, edx, times_4, 0));
  __ jmp(&outer_loop_header);
  __ bind(&outer_push_loop);
  // Inner loop state: ebx = current FrameDescription*, ecx = loop index.
  __ mov(ebx, Operand(eax, 0));
  __ mov(ecx, Operand(ebx, FrameDescription::frame_size_offset()));
  __ jmp(&inner_loop_header);
  __ bind(&inner_push_loop);
  __ sub(ecx, Immediate(sizeof(uint32_t)));
  __ push(Operand(ebx, ecx, times_1, FrameDescription::frame_content_offset()));
  __ bind(&inner_loop_header);
  __ test(ecx, ecx);
  __ j(not_zero, &inner_push_loop);
  __ add(eax, Immediate(kPointerSize));
  __ bind(&outer_loop_header);
  __ cmp(eax, edx);
  __ j(below, &outer_push_loop);

  // In case of a failed STUB, we have to restore the XMM registers.
  for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    int code = config->GetAllocatableDoubleCode(i);
    XMMRegister xmm_reg = XMMRegister::from_code(code);
    int src_offset = code * kDoubleSize + double_regs_offset;
    __ movsd(xmm_reg, Operand(ebx, src_offset));
  }

  // Push state, pc, and continuation from the last output frame.
  __ push(Operand(ebx, FrameDescription::state_offset()));
  __ push(Operand(ebx, FrameDescription::pc_offset()));
  __ push(Operand(ebx, FrameDescription::continuation_offset()));


  // Push the registers from the last output frame.
  for (int i = 0; i < kNumberOfRegisters; i++) {
    int offset = (i * kPointerSize) + FrameDescription::registers_offset();
    __ push(Operand(ebx, offset));
  }

  // Restore the registers from the stack.
  __ popad();

  // Return to the continuation point.
  __ ret(0);
}


void Deoptimizer::TableEntryGenerator::GeneratePrologue() {
  // Create a sequence of deoptimization entries.
  Label done;
  for (int i = 0; i < count(); i++) {
    int start = masm()->pc_offset();
    USE(start);
    __ push_imm32(i);
    __ jmp(&done);
    DCHECK(masm()->pc_offset() - start == table_entry_size_);
  }
  __ bind(&done);
}


void FrameDescription::SetCallerPc(unsigned offset, intptr_t value) {
  SetFrameSlot(offset, value);
}


void FrameDescription::SetCallerFp(unsigned offset, intptr_t value) {
  SetFrameSlot(offset, value);
}


void FrameDescription::SetCallerConstantPool(unsigned offset, intptr_t value) {
  // No embedded constant pool support.
  UNREACHABLE();
}


#undef __


}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_IA32