1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS
#include "src/codegen.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/interface-descriptors.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(StubCache* stub_cache, MacroAssembler* masm,
StubCache::Table table, Register receiver, Register name,
// The offset is scaled by 4, based on
// kCacheIndexShift, which is two bits
Register offset, Register scratch, Register scratch2,
Register offset_scratch) {
ExternalReference key_offset(stub_cache->key_reference(table));
ExternalReference value_offset(stub_cache->value_reference(table));
ExternalReference map_offset(stub_cache->map_reference(table));
uint32_t key_off_addr = reinterpret_cast<uint32_t>(key_offset.address());
uint32_t value_off_addr = reinterpret_cast<uint32_t>(value_offset.address());
uint32_t map_off_addr = reinterpret_cast<uint32_t>(map_offset.address());
// Check the relative positions of the address fields.
DCHECK(value_off_addr > key_off_addr);
DCHECK((value_off_addr - key_off_addr) % 4 == 0);
DCHECK((value_off_addr - key_off_addr) < (256 * 4));
DCHECK(map_off_addr > key_off_addr);
DCHECK((map_off_addr - key_off_addr) % 4 == 0);
DCHECK((map_off_addr - key_off_addr) < (256 * 4));
Label miss;
Register base_addr = scratch;
scratch = no_reg;
// Multiply by 3 because there are 3 fields per entry (name, code, map).
__ Lsa(offset_scratch, offset, offset, 1);
// Calculate the base address of the entry.
__ li(base_addr, Operand(key_offset));
__ Addu(base_addr, base_addr, offset_scratch);
// Check that the key in the entry matches the name.
__ lw(at, MemOperand(base_addr, 0));
__ Branch(&miss, ne, name, Operand(at));
// Check the map matches.
__ lw(at, MemOperand(base_addr, map_off_addr - key_off_addr));
__ lw(scratch2, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ Branch(&miss, ne, at, Operand(scratch2));
// Get the code entry from the cache.
Register code = scratch2;
scratch2 = no_reg;
__ lw(code, MemOperand(base_addr, value_off_addr - key_off_addr));
#ifdef DEBUG
if (FLAG_test_secondary_stub_cache && table == StubCache::kPrimary) {
__ jmp(&miss);
} else if (FLAG_test_primary_stub_cache && table == StubCache::kSecondary) {
__ jmp(&miss);
}
#endif
// Jump to the first instruction in the code stub.
__ Addu(at, code, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(at);
// Miss: fall through.
__ bind(&miss);
}
void StubCache::GenerateProbe(MacroAssembler* masm, Register receiver,
Register name, Register scratch, Register extra,
Register extra2, Register extra3) {
Label miss;
// Make sure that code is valid. The multiplying code relies on the
// entry size being 12.
DCHECK(sizeof(Entry) == 12);
// Make sure that there are no register conflicts.
DCHECK(!AreAliased(receiver, name, scratch, extra, extra2, extra3));
// Check register validity.
DCHECK(!scratch.is(no_reg));
DCHECK(!extra.is(no_reg));
DCHECK(!extra2.is(no_reg));
DCHECK(!extra3.is(no_reg));
#ifdef DEBUG
// If vector-based ics are in use, ensure that scratch, extra, extra2 and
// extra3 don't conflict with the vector and slot registers, which need
// to be preserved for a handler call or miss.
if (IC::ICUseVector(ic_kind_)) {
Register vector, slot;
if (ic_kind_ == Code::STORE_IC || ic_kind_ == Code::KEYED_STORE_IC) {
vector = StoreWithVectorDescriptor::VectorRegister();
slot = StoreWithVectorDescriptor::SlotRegister();
} else {
DCHECK(ic_kind_ == Code::LOAD_IC || ic_kind_ == Code::KEYED_LOAD_IC);
vector = LoadWithVectorDescriptor::VectorRegister();
slot = LoadWithVectorDescriptor::SlotRegister();
}
DCHECK(!AreAliased(vector, slot, scratch, extra, extra2, extra3));
}
#endif
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->megamorphic_stub_cache_probes(), 1, extra2,
extra3);
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Get the map of the receiver and compute the hash.
__ lw(scratch, FieldMemOperand(name, Name::kHashFieldOffset));
__ lw(at, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ Addu(scratch, scratch, at);
__ Xor(scratch, scratch, Operand(kPrimaryMagic));
__ And(scratch, scratch,
Operand((kPrimaryTableSize - 1) << kCacheIndexShift));
// Probe the primary table.
ProbeTable(this, masm, kPrimary, receiver, name, scratch, extra, extra2,
extra3);
// Primary miss: Compute hash for secondary probe.
__ Subu(scratch, scratch, name);
__ Addu(scratch, scratch, Operand(kSecondaryMagic));
__ And(scratch, scratch,
Operand((kSecondaryTableSize - 1) << kCacheIndexShift));
// Probe the secondary table.
ProbeTable(this, masm, kSecondary, receiver, name, scratch, extra, extra2,
extra3);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
__ IncrementCounter(counters->megamorphic_stub_cache_misses(), 1, extra2,
extra3);
}
#undef __
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS
|