1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
|
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#if V8_TARGET_ARCH_MIPS64
#include "src/codegen.h"
#include "src/ic/ic.h"
#include "src/ic/ic-compiler.h"
#include "src/ic/stub-cache.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
#define __ ACCESS_MASM(masm)
static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type,
Label* global_object) {
// Register usage:
// type: holds the receiver instance type on entry.
__ Branch(global_object, eq, type, Operand(JS_GLOBAL_OBJECT_TYPE));
__ Branch(global_object, eq, type, Operand(JS_GLOBAL_PROXY_TYPE));
}
// Helper function used from LoadIC GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// result: Register for the result. It is only updated if a jump to the miss
// label is not done. Can be the same as elements or name clobbering
// one of these in the case of not jumping to the miss label.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
// The address returned from GenerateStringDictionaryProbes() in scratch2
// is used.
static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss,
Register elements, Register name,
Register result, Register scratch1,
Register scratch2) {
// Main use of the scratch registers.
// scratch1: Used as temporary and to hold the capacity of the property
// dictionary.
// scratch2: Used as temporary.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
name, scratch1, scratch2);
// If probing finds an entry check that the value is a normal
// property.
__ bind(&done); // scratch2 == elements + 4 * index.
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
__ ld(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
__ And(at, scratch1,
Operand(Smi::FromInt(PropertyDetails::TypeField::kMask)));
__ Branch(miss, ne, at, Operand(zero_reg));
// Get the value at the masked, scaled index and return.
__ ld(result,
FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize));
}
// Helper function used from StoreIC::GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// value: The value to store.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
// The address returned from GenerateStringDictionaryProbes() in scratch2
// is used.
static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss,
Register elements, Register name,
Register value, Register scratch1,
Register scratch2) {
// Main use of the scratch registers.
// scratch1: Used as temporary and to hold the capacity of the property
// dictionary.
// scratch2: Used as temporary.
Label done;
// Probe the dictionary.
NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements,
name, scratch1, scratch2);
// If probing finds an entry in the dictionary check that the value
// is a normal property that is not read only.
__ bind(&done); // scratch2 == elements + 4 * index.
const int kElementsStartOffset =
NameDictionary::kHeaderSize +
NameDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
const int kTypeAndReadOnlyMask =
(PropertyDetails::TypeField::kMask |
PropertyDetails::AttributesField::encode(READ_ONLY));
__ ld(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
__ And(at, scratch1, Operand(Smi::FromInt(kTypeAndReadOnlyMask)));
__ Branch(miss, ne, at, Operand(zero_reg));
// Store the value at the masked, scaled index and return.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ Daddu(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag));
__ sd(value, MemOperand(scratch2));
// Update the write barrier. Make sure not to clobber the value.
__ mov(scratch1, value);
__ RecordWrite(elements, scratch2, scratch1, kRAHasNotBeenSaved,
kDontSaveFPRegs);
}
// Checks the receiver for special cases (value type, slow case bits).
// Falls through for regular JS object.
static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
Register receiver, Register map,
Register scratch,
int interceptor_bit, Label* slow) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, slow);
// Get the map of the receiver.
__ ld(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check bit field.
__ lbu(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
__ And(at, scratch,
Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit)));
__ Branch(slow, ne, at, Operand(zero_reg));
// Check that the object is some kind of JS object EXCEPT JS Value type.
// In the case that the object is a value-wrapper object,
// we enter the runtime system to make sure that indexing into string
// objects work as intended.
DCHECK(JS_OBJECT_TYPE > JS_VALUE_TYPE);
__ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ Branch(slow, lt, scratch, Operand(JS_OBJECT_TYPE));
}
// Loads an indexed element from a fast case array.
static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver,
Register key, Register elements,
Register scratch1, Register scratch2,
Register result, Label* slow,
LanguageMode language_mode) {
// Register use:
//
// receiver - holds the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the the same as 'receiver' or 'key'.
// Unchanged on bailout so 'receiver' and 'key' can be safely
// used by further computation.
//
// Scratch registers:
//
// elements - holds the elements of the receiver and its prototypes.
//
// scratch1 - used to hold elements length, bit fields, base addresses.
//
// scratch2 - used to hold maps, prototypes, and the loaded value.
Label check_prototypes, check_next_prototype;
Label done, in_bounds, absent;
__ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ AssertFastElements(elements);
// Check that the key (index) is within bounds.
__ ld(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Branch(&in_bounds, lo, key, Operand(scratch1));
// Out-of-bounds. Check the prototype chain to see if we can just return
// 'undefined'.
// Negative keys can't take the fast OOB path.
__ Branch(slow, lt, key, Operand(zero_reg));
__ bind(&check_prototypes);
__ ld(scratch2, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ bind(&check_next_prototype);
__ ld(scratch2, FieldMemOperand(scratch2, Map::kPrototypeOffset));
// scratch2: current prototype
__ LoadRoot(at, Heap::kNullValueRootIndex);
__ Branch(&absent, eq, scratch2, Operand(at));
__ ld(elements, FieldMemOperand(scratch2, JSObject::kElementsOffset));
__ ld(scratch2, FieldMemOperand(scratch2, HeapObject::kMapOffset));
// elements: elements of current prototype
// scratch2: map of current prototype
__ lbu(scratch1, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
__ Branch(slow, lo, scratch1, Operand(JS_OBJECT_TYPE));
__ lbu(scratch1, FieldMemOperand(scratch2, Map::kBitFieldOffset));
__ And(at, scratch1, Operand((1 << Map::kIsAccessCheckNeeded) |
(1 << Map::kHasIndexedInterceptor)));
__ Branch(slow, ne, at, Operand(zero_reg));
__ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex);
__ Branch(slow, ne, elements, Operand(at));
__ Branch(&check_next_prototype);
__ bind(&absent);
if (is_strong(language_mode)) {
__ Branch(slow);
} else {
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ Branch(&done);
}
__ bind(&in_bounds);
// Fast case: Do the load.
__ Daddu(scratch1, elements,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// The key is a smi.
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ SmiScale(at, key, kPointerSizeLog2);
__ daddu(at, at, scratch1);
__ ld(scratch2, MemOperand(at));
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
// In case the loaded value is the_hole we have to check the prototype chain.
__ Branch(&check_prototypes, eq, scratch2, Operand(at));
__ Move(result, scratch2);
__ bind(&done);
}
// Checks whether a key is an array index string or a unique name.
// Falls through if a key is a unique name.
static void GenerateKeyNameCheck(MacroAssembler* masm, Register key,
Register map, Register hash,
Label* index_string, Label* not_unique) {
// The key is not a smi.
Label unique;
// Is it a name?
__ GetObjectType(key, map, hash);
__ Branch(not_unique, hi, hash, Operand(LAST_UNIQUE_NAME_TYPE));
STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE);
__ Branch(&unique, eq, hash, Operand(LAST_UNIQUE_NAME_TYPE));
// Is the string an array index, with cached numeric value?
__ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset));
__ And(at, hash, Operand(Name::kContainsCachedArrayIndexMask));
__ Branch(index_string, eq, at, Operand(zero_reg));
// Is the string internalized? We know it's a string, so a single
// bit test is enough.
// map: key map
__ lbu(hash, FieldMemOperand(map, Map::kInstanceTypeOffset));
STATIC_ASSERT(kInternalizedTag == 0);
__ And(at, hash, Operand(kIsNotInternalizedMask));
__ Branch(not_unique, ne, at, Operand(zero_reg));
__ bind(&unique);
}
void LoadIC::GenerateNormal(MacroAssembler* masm, LanguageMode language_mode) {
Register dictionary = a0;
DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister()));
DCHECK(!dictionary.is(LoadDescriptor::NameRegister()));
Label slow;
__ ld(dictionary, FieldMemOperand(LoadDescriptor::ReceiverRegister(),
JSObject::kPropertiesOffset));
GenerateDictionaryLoad(masm, &slow, dictionary,
LoadDescriptor::NameRegister(), v0, a3, a4);
__ Ret();
// Dictionary load failed, go slow (but don't miss).
__ bind(&slow);
GenerateRuntimeGetProperty(masm, language_mode);
}
// A register that isn't one of the parameters to the load ic.
static const Register LoadIC_TempRegister() { return a3; }
static void LoadIC_PushArgs(MacroAssembler* masm) {
Register receiver = LoadDescriptor::ReceiverRegister();
Register name = LoadDescriptor::NameRegister();
Register slot = LoadDescriptor::SlotRegister();
Register vector = LoadWithVectorDescriptor::VectorRegister();
__ Push(receiver, name, slot, vector);
}
void LoadIC::GenerateMiss(MacroAssembler* masm) {
// The return address is on the stack.
Isolate* isolate = masm->isolate();
DCHECK(!AreAliased(a4, a5, LoadWithVectorDescriptor::SlotRegister(),
LoadWithVectorDescriptor::VectorRegister()));
__ IncrementCounter(isolate->counters()->load_miss(), 1, a4, a5);
LoadIC_PushArgs(masm);
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kLoadIC_Miss);
}
void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm,
LanguageMode language_mode) {
// The return address is in ra.
__ mov(LoadIC_TempRegister(), LoadDescriptor::ReceiverRegister());
__ Push(LoadIC_TempRegister(), LoadDescriptor::NameRegister());
// Do tail-call to runtime routine.
__ TailCallRuntime(is_strong(language_mode) ? Runtime::kGetPropertyStrong
: Runtime::kGetProperty);
}
void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
// The return address is in ra.
Isolate* isolate = masm->isolate();
DCHECK(!AreAliased(a4, a5, LoadWithVectorDescriptor::SlotRegister(),
LoadWithVectorDescriptor::VectorRegister()));
__ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, a4, a5);
LoadIC_PushArgs(masm);
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kKeyedLoadIC_Miss);
}
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm,
LanguageMode language_mode) {
// The return address is in ra.
__ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister());
// Do tail-call to runtime routine.
__ TailCallRuntime(is_strong(language_mode) ? Runtime::kKeyedGetPropertyStrong
: Runtime::kKeyedGetProperty);
}
void KeyedLoadIC::GenerateMegamorphic(MacroAssembler* masm,
LanguageMode language_mode) {
// The return address is in ra.
Label slow, check_name, index_smi, index_name, property_array_property;
Label probe_dictionary, check_number_dictionary;
Register key = LoadDescriptor::NameRegister();
Register receiver = LoadDescriptor::ReceiverRegister();
DCHECK(key.is(a2));
DCHECK(receiver.is(a1));
Isolate* isolate = masm->isolate();
// Check that the key is a smi.
__ JumpIfNotSmi(key, &check_name);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from below
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3,
Map::kHasIndexedInterceptor, &slow);
// Check the receiver's map to see if it has fast elements.
__ CheckFastElements(a0, a3, &check_number_dictionary);
GenerateFastArrayLoad(masm, receiver, key, a0, a3, a4, v0, &slow,
language_mode);
__ IncrementCounter(isolate->counters()->keyed_load_generic_smi(), 1, a4, a3);
__ Ret();
__ bind(&check_number_dictionary);
__ ld(a4, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ ld(a3, FieldMemOperand(a4, JSObject::kMapOffset));
// Check whether the elements is a number dictionary.
// a3: elements map
// a4: elements
__ LoadRoot(at, Heap::kHashTableMapRootIndex);
__ Branch(&slow, ne, a3, Operand(at));
__ dsra32(a0, key, 0);
__ LoadFromNumberDictionary(&slow, a4, key, v0, a0, a3, a5);
__ Ret();
// Slow case, key and receiver still in a2 and a1.
__ bind(&slow);
__ IncrementCounter(isolate->counters()->keyed_load_generic_slow(), 1, a4,
a3);
GenerateRuntimeGetProperty(masm, language_mode);
__ bind(&check_name);
GenerateKeyNameCheck(masm, key, a0, a3, &index_name, &slow);
GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3,
Map::kHasNamedInterceptor, &slow);
// If the receiver is a fast-case object, check the stub cache. Otherwise
// probe the dictionary.
__ ld(a3, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ ld(a4, FieldMemOperand(a3, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHashTableMapRootIndex);
__ Branch(&probe_dictionary, eq, a4, Operand(at));
// The handlers in the stub cache expect a vector and slot. Since we won't
// change the IC from any downstream misses, a dummy vector can be used.
Register vector = LoadWithVectorDescriptor::VectorRegister();
Register slot = LoadWithVectorDescriptor::SlotRegister();
DCHECK(!AreAliased(vector, slot, a4, a5, a6, t1));
Handle<TypeFeedbackVector> dummy_vector =
TypeFeedbackVector::DummyVector(masm->isolate());
int slot_index = dummy_vector->GetIndex(
FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedLoadICSlot));
__ LoadRoot(vector, Heap::kDummyVectorRootIndex);
__ li(slot, Operand(Smi::FromInt(slot_index)));
Code::Flags flags = Code::RemoveTypeAndHolderFromFlags(
Code::ComputeHandlerFlags(Code::LOAD_IC));
masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, flags,
receiver, key, a4, a5, a6, t1);
// Cache miss.
GenerateMiss(masm);
// Do a quick inline probe of the receiver's dictionary, if it
// exists.
__ bind(&probe_dictionary);
// a3: elements
__ ld(a0, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
GenerateGlobalInstanceTypeCheck(masm, a0, &slow);
// Load the property to v0.
GenerateDictionaryLoad(masm, &slow, a3, key, v0, a5, a4);
__ IncrementCounter(isolate->counters()->keyed_load_generic_symbol(), 1, a4,
a3);
__ Ret();
__ bind(&index_name);
__ IndexFromHash(a3, key);
// Now jump to the place where smi keys are handled.
__ Branch(&index_smi);
}
static void KeyedStoreGenerateMegamorphicHelper(
MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow,
KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length,
Register value, Register key, Register receiver, Register receiver_map,
Register elements_map, Register elements) {
Label transition_smi_elements;
Label finish_object_store, non_double_value, transition_double_elements;
Label fast_double_without_map_check;
// Fast case: Do the store, could be either Object or double.
__ bind(fast_object);
Register scratch = a4;
Register scratch2 = t0;
Register address = a5;
DCHECK(!AreAliased(value, key, receiver, receiver_map, elements_map, elements,
scratch, scratch2, address));
if (check_map == kCheckMap) {
__ ld(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ Branch(fast_double, ne, elements_map,
Operand(masm->isolate()->factory()->fixed_array_map()));
}
// HOLECHECK: guards "A[i] = V"
// We have to go to the runtime if the current value is the hole because
// there may be a callback on the element.
Label holecheck_passed1;
__ Daddu(address, elements, FixedArray::kHeaderSize - kHeapObjectTag);
__ SmiScale(at, key, kPointerSizeLog2);
__ daddu(address, address, at);
__ ld(scratch, MemOperand(address));
__ Branch(&holecheck_passed1, ne, scratch,
Operand(masm->isolate()->factory()->the_hole_value()));
__ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch, slow);
__ bind(&holecheck_passed1);
// Smi stores don't require further checks.
Label non_smi_value;
__ JumpIfNotSmi(value, &non_smi_value);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Daddu(scratch, key, Operand(Smi::FromInt(1)));
__ sd(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
// It's irrelevant whether array is smi-only or not when writing a smi.
__ Daddu(address, elements,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ SmiScale(scratch, key, kPointerSizeLog2);
__ Daddu(address, address, scratch);
__ sd(value, MemOperand(address));
__ Ret();
__ bind(&non_smi_value);
// Escape to elements kind transition case.
__ CheckFastObjectElements(receiver_map, scratch, &transition_smi_elements);
// Fast elements array, store the value to the elements backing store.
__ bind(&finish_object_store);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Daddu(scratch, key, Operand(Smi::FromInt(1)));
__ sd(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
__ Daddu(address, elements,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ SmiScale(scratch, key, kPointerSizeLog2);
__ Daddu(address, address, scratch);
__ sd(value, MemOperand(address));
// Update write barrier for the elements array address.
__ mov(scratch, value); // Preserve the value which is returned.
__ RecordWrite(elements, address, scratch, kRAHasNotBeenSaved,
kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
__ Ret();
__ bind(fast_double);
if (check_map == kCheckMap) {
// Check for fast double array case. If this fails, call through to the
// runtime.
__ LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex);
__ Branch(slow, ne, elements_map, Operand(at));
}
// HOLECHECK: guards "A[i] double hole?"
// We have to see if the double version of the hole is present. If so
// go to the runtime.
__ Daddu(address, elements,
Operand(FixedDoubleArray::kHeaderSize + Register::kExponentOffset -
kHeapObjectTag));
__ SmiScale(at, key, kPointerSizeLog2);
__ daddu(address, address, at);
__ lw(scratch, MemOperand(address));
__ Branch(&fast_double_without_map_check, ne, scratch,
Operand(static_cast<int32_t>(kHoleNanUpper32)));
__ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch, slow);
__ bind(&fast_double_without_map_check);
__ StoreNumberToDoubleElements(value, key, elements, scratch, scratch2,
&transition_double_elements);
if (increment_length == kIncrementLength) {
// Add 1 to receiver->length.
__ Daddu(scratch, key, Operand(Smi::FromInt(1)));
__ sd(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset));
}
__ Ret();
__ bind(&transition_smi_elements);
// Transition the array appropriately depending on the value type.
__ ld(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
__ Branch(&non_double_value, ne, scratch, Operand(at));
// Value is a double. Transition FAST_SMI_ELEMENTS ->
// FAST_DOUBLE_ELEMENTS and complete the store.
__ LoadTransitionedArrayMapConditional(
FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, scratch, slow);
AllocationSiteMode mode =
AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS);
ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value,
receiver_map, mode, slow);
__ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&fast_double_without_map_check);
__ bind(&non_double_value);
// Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS,
receiver_map, scratch, slow);
mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
masm, receiver, key, value, receiver_map, mode, slow);
__ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
__ bind(&transition_double_elements);
// Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a
// HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and
// transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS
__ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS,
receiver_map, scratch, slow);
mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS);
ElementsTransitionGenerator::GenerateDoubleToObject(
masm, receiver, key, value, receiver_map, mode, slow);
__ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ jmp(&finish_object_store);
}
void KeyedStoreIC::GenerateMegamorphic(MacroAssembler* masm,
LanguageMode language_mode) {
// ---------- S t a t e --------------
// -- a0 : value
// -- a1 : key
// -- a2 : receiver
// -- ra : return address
// -----------------------------------
Label slow, fast_object, fast_object_grow;
Label fast_double, fast_double_grow;
Label array, extra, check_if_double_array, maybe_name_key, miss;
// Register usage.
Register value = StoreDescriptor::ValueRegister();
Register key = StoreDescriptor::NameRegister();
Register receiver = StoreDescriptor::ReceiverRegister();
DCHECK(value.is(a0));
Register receiver_map = a3;
Register elements_map = a6;
Register elements = a7; // Elements array of the receiver.
// a4 and a5 are used as general scratch registers.
// Check that the key is a smi.
__ JumpIfNotSmi(key, &maybe_name_key);
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, &slow);
// Get the map of the object.
__ ld(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check that the receiver does not require access checks and is not observed.
// The generic stub does not perform map checks or handle observed objects.
__ lbu(a4, FieldMemOperand(receiver_map, Map::kBitFieldOffset));
__ And(a4, a4,
Operand(1 << Map::kIsAccessCheckNeeded | 1 << Map::kIsObserved));
__ Branch(&slow, ne, a4, Operand(zero_reg));
// Check if the object is a JS array or not.
__ lbu(a4, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset));
__ Branch(&array, eq, a4, Operand(JS_ARRAY_TYPE));
// Check that the object is some kind of JSObject.
__ Branch(&slow, lt, a4, Operand(FIRST_JS_OBJECT_TYPE));
// Object case: Check key against length in the elements array.
__ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check array bounds. Both the key and the length of FixedArray are smis.
__ ld(a4, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Branch(&fast_object, lo, key, Operand(a4));
// Slow case, handle jump to runtime.
__ bind(&slow);
// Entry registers are intact.
// a0: value.
// a1: key.
// a2: receiver.
PropertyICCompiler::GenerateRuntimeSetProperty(masm, language_mode);
// Never returns to here.
__ bind(&maybe_name_key);
__ ld(a4, FieldMemOperand(key, HeapObject::kMapOffset));
__ lb(a4, FieldMemOperand(a4, Map::kInstanceTypeOffset));
__ JumpIfNotUniqueNameInstanceType(a4, &slow);
// The handlers in the stub cache expect a vector and slot. Since we won't
// change the IC from any downstream misses, a dummy vector can be used.
Register vector = VectorStoreICDescriptor::VectorRegister();
Register slot = VectorStoreICDescriptor::SlotRegister();
DCHECK(!AreAliased(vector, slot, a5, a6, a7, t0));
Handle<TypeFeedbackVector> dummy_vector =
TypeFeedbackVector::DummyVector(masm->isolate());
int slot_index = dummy_vector->GetIndex(
FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedStoreICSlot));
__ LoadRoot(vector, Heap::kDummyVectorRootIndex);
__ li(slot, Operand(Smi::FromInt(slot_index)));
Code::Flags flags = Code::RemoveTypeAndHolderFromFlags(
Code::ComputeHandlerFlags(Code::STORE_IC));
masm->isolate()->stub_cache()->GenerateProbe(masm, Code::STORE_IC, flags,
receiver, key, a5, a6, a7, t0);
// Cache miss.
__ Branch(&miss);
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
__ bind(&extra);
// Condition code from comparing key and array length is still available.
// Only support writing to array[array.length].
__ Branch(&slow, ne, key, Operand(a4));
// Check for room in the elements backing store.
// Both the key and the length of FixedArray are smis.
__ ld(a4, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ Branch(&slow, hs, key, Operand(a4));
__ ld(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset));
__ Branch(&check_if_double_array, ne, elements_map,
Heap::kFixedArrayMapRootIndex);
__ jmp(&fast_object_grow);
__ bind(&check_if_double_array);
__ Branch(&slow, ne, elements_map, Heap::kFixedDoubleArrayMapRootIndex);
__ jmp(&fast_double_grow);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode (and writable); if it
// is the length is always a smi.
__ bind(&array);
__ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check the key against the length in the array.
__ ld(a4, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ Branch(&extra, hs, key, Operand(a4));
KeyedStoreGenerateMegamorphicHelper(
masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength,
value, key, receiver, receiver_map, elements_map, elements);
KeyedStoreGenerateMegamorphicHelper(masm, &fast_object_grow,
&fast_double_grow, &slow, kDontCheckMap,
kIncrementLength, value, key, receiver,
receiver_map, elements_map, elements);
__ bind(&miss);
GenerateMiss(masm);
}
static void StoreIC_PushArgs(MacroAssembler* masm) {
__ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
StoreDescriptor::ValueRegister(),
VectorStoreICDescriptor::SlotRegister(),
VectorStoreICDescriptor::VectorRegister());
}
void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
StoreIC_PushArgs(masm);
__ TailCallRuntime(Runtime::kKeyedStoreIC_Miss);
}
void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
Register receiver = StoreDescriptor::ReceiverRegister();
Register name = StoreDescriptor::NameRegister();
DCHECK(receiver.is(a1));
DCHECK(name.is(a2));
DCHECK(StoreDescriptor::ValueRegister().is(a0));
// Get the receiver from the stack and probe the stub cache.
Code::Flags flags = Code::RemoveTypeAndHolderFromFlags(
Code::ComputeHandlerFlags(Code::STORE_IC));
masm->isolate()->stub_cache()->GenerateProbe(masm, Code::STORE_IC, flags,
receiver, name, a3, a4, a5, a6);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void StoreIC::GenerateMiss(MacroAssembler* masm) {
StoreIC_PushArgs(masm);
// Perform tail call to the entry.
__ TailCallRuntime(Runtime::kStoreIC_Miss);
}
void StoreIC::GenerateNormal(MacroAssembler* masm) {
Label miss;
Register receiver = StoreDescriptor::ReceiverRegister();
Register name = StoreDescriptor::NameRegister();
Register value = StoreDescriptor::ValueRegister();
Register dictionary = a5;
DCHECK(!AreAliased(
value, receiver, name, VectorStoreICDescriptor::VectorRegister(),
VectorStoreICDescriptor::SlotRegister(), dictionary, a6, a7));
__ ld(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
GenerateDictionaryStore(masm, &miss, dictionary, name, value, a6, a7);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->store_normal_hit(), 1, a6, a7);
__ Ret();
__ bind(&miss);
__ IncrementCounter(counters->store_normal_miss(), 1, a6, a7);
GenerateMiss(masm);
}
#undef __
Condition CompareIC::ComputeCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return eq;
case Token::LT:
return lt;
case Token::GT:
return gt;
case Token::LTE:
return le;
case Token::GTE:
return ge;
default:
UNREACHABLE();
return kNoCondition;
}
}
bool CompareIC::HasInlinedSmiCode(Address address) {
// The address of the instruction following the call.
Address andi_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a andi at, rx, #yyy, nothing
// was inlined.
Instr instr = Assembler::instr_at(andi_instruction_address);
return Assembler::IsAndImmediate(instr) &&
Assembler::GetRt(instr) == static_cast<uint32_t>(zero_reg.code());
}
void PatchInlinedSmiCode(Isolate* isolate, Address address,
InlinedSmiCheck check) {
Address andi_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a andi at, rx, #yyy, nothing
// was inlined.
Instr instr = Assembler::instr_at(andi_instruction_address);
if (!(Assembler::IsAndImmediate(instr) &&
Assembler::GetRt(instr) == static_cast<uint32_t>(zero_reg.code()))) {
return;
}
// The delta to the start of the map check instruction and the
// condition code uses at the patched jump.
int delta = Assembler::GetImmediate16(instr);
delta += Assembler::GetRs(instr) * kImm16Mask;
// If the delta is 0 the instruction is andi at, zero_reg, #0 which also
// signals that nothing was inlined.
if (delta == 0) {
return;
}
if (FLAG_trace_ic) {
PrintF("[ patching ic at %p, andi=%p, delta=%d\n", address,
andi_instruction_address, delta);
}
Address patch_address =
andi_instruction_address - delta * Instruction::kInstrSize;
Instr instr_at_patch = Assembler::instr_at(patch_address);
// This is patching a conditional "jump if not smi/jump if smi" site.
// Enabling by changing from
// andi at, rx, 0
// Branch <target>, eq, at, Operand(zero_reg)
// to:
// andi at, rx, #kSmiTagMask
// Branch <target>, ne, at, Operand(zero_reg)
// and vice-versa to be disabled again.
CodePatcher patcher(isolate, patch_address, 2);
Register reg = Register::from_code(Assembler::GetRs(instr_at_patch));
if (check == ENABLE_INLINED_SMI_CHECK) {
DCHECK(Assembler::IsAndImmediate(instr_at_patch));
DCHECK_EQ(0u, Assembler::GetImmediate16(instr_at_patch));
patcher.masm()->andi(at, reg, kSmiTagMask);
} else {
DCHECK_EQ(check, DISABLE_INLINED_SMI_CHECK);
DCHECK(Assembler::IsAndImmediate(instr_at_patch));
patcher.masm()->andi(at, reg, 0);
}
Instr branch_instr =
Assembler::instr_at(patch_address + Instruction::kInstrSize);
DCHECK(Assembler::IsBranch(branch_instr));
uint32_t opcode = Assembler::GetOpcodeField(branch_instr);
// Currently only the 'eq' and 'ne' cond values are supported and the simple
// branch instructions and their r6 variants (with opcode being the branch
// type). There are some special cases (see Assembler::IsBranch()) so
// extending this would be tricky.
DCHECK(opcode == BEQ || // BEQ
opcode == BNE || // BNE
opcode == POP10 || // BEQC
opcode == POP30 || // BNEC
opcode == POP66 || // BEQZC
opcode == POP76); // BNEZC
switch (opcode) {
case BEQ:
opcode = BNE; // change BEQ to BNE.
break;
case POP10:
opcode = POP30; // change BEQC to BNEC.
break;
case POP66:
opcode = POP76; // change BEQZC to BNEZC.
break;
case BNE:
opcode = BEQ; // change BNE to BEQ.
break;
case POP30:
opcode = POP10; // change BNEC to BEQC.
break;
case POP76:
opcode = POP66; // change BNEZC to BEQZC.
break;
default:
UNIMPLEMENTED();
}
patcher.ChangeBranchCondition(branch_instr, opcode);
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_MIPS64
|