1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
|
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/interpreter/bytecode-array-writer.h"
#include "src/api/api-inl.h"
#include "src/heap/local-factory-inl.h"
#include "src/interpreter/bytecode-jump-table.h"
#include "src/interpreter/bytecode-label.h"
#include "src/interpreter/bytecode-node.h"
#include "src/interpreter/bytecode-register.h"
#include "src/interpreter/bytecode-source-info.h"
#include "src/interpreter/constant-array-builder.h"
#include "src/interpreter/handler-table-builder.h"
#include "src/objects/objects-inl.h"
namespace v8 {
namespace internal {
namespace interpreter {
STATIC_CONST_MEMBER_DEFINITION const size_t
BytecodeArrayWriter::kMaxSizeOfPackedBytecode;
BytecodeArrayWriter::BytecodeArrayWriter(
Zone* zone, ConstantArrayBuilder* constant_array_builder,
SourcePositionTableBuilder::RecordingMode source_position_mode)
: bytecodes_(zone),
unbound_jumps_(0),
source_position_table_builder_(zone, source_position_mode),
constant_array_builder_(constant_array_builder),
last_bytecode_(Bytecode::kIllegal),
last_bytecode_offset_(0),
last_bytecode_had_source_info_(false),
elide_noneffectful_bytecodes_(FLAG_ignition_elide_noneffectful_bytecodes),
exit_seen_in_block_(false) {
bytecodes_.reserve(512); // Derived via experimentation.
}
template <typename LocalIsolate>
Handle<BytecodeArray> BytecodeArrayWriter::ToBytecodeArray(
LocalIsolate* isolate, int register_count, int parameter_count,
Handle<ByteArray> handler_table) {
DCHECK_EQ(0, unbound_jumps_);
int bytecode_size = static_cast<int>(bytecodes()->size());
int frame_size = register_count * kSystemPointerSize;
Handle<FixedArray> constant_pool =
constant_array_builder()->ToFixedArray(isolate);
Handle<BytecodeArray> bytecode_array = isolate->factory()->NewBytecodeArray(
bytecode_size, &bytecodes()->front(), frame_size, parameter_count,
constant_pool);
bytecode_array->set_handler_table(*handler_table);
return bytecode_array;
}
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
Handle<BytecodeArray> BytecodeArrayWriter::ToBytecodeArray(
Isolate* isolate, int register_count, int parameter_count,
Handle<ByteArray> handler_table);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
Handle<BytecodeArray> BytecodeArrayWriter::ToBytecodeArray(
LocalIsolate* isolate, int register_count, int parameter_count,
Handle<ByteArray> handler_table);
template <typename LocalIsolate>
Handle<ByteArray> BytecodeArrayWriter::ToSourcePositionTable(
LocalIsolate* isolate) {
DCHECK(!source_position_table_builder_.Lazy());
Handle<ByteArray> source_position_table =
source_position_table_builder_.Omit()
? isolate->factory()->empty_byte_array()
: source_position_table_builder_.ToSourcePositionTable(isolate);
return source_position_table;
}
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
Handle<ByteArray> BytecodeArrayWriter::ToSourcePositionTable(
Isolate* isolate);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
Handle<ByteArray> BytecodeArrayWriter::ToSourcePositionTable(
LocalIsolate* isolate);
#ifdef DEBUG
int BytecodeArrayWriter::CheckBytecodeMatches(BytecodeArray bytecode) {
int mismatches = false;
int bytecode_size = static_cast<int>(bytecodes()->size());
const byte* bytecode_ptr = &bytecodes()->front();
if (bytecode_size != bytecode.length()) mismatches = true;
// If there's a mismatch only in the length of the bytecode (very unlikely)
// then the first mismatch will be the first extra bytecode.
int first_mismatch = std::min(bytecode_size, bytecode.length());
for (int i = 0; i < first_mismatch; ++i) {
if (bytecode_ptr[i] != bytecode.get(i)) {
mismatches = true;
first_mismatch = i;
break;
}
}
if (mismatches) {
return first_mismatch;
}
return -1;
}
#endif
void BytecodeArrayWriter::Write(BytecodeNode* node) {
DCHECK(!Bytecodes::IsJump(node->bytecode()));
if (exit_seen_in_block_) return; // Don't emit dead code.
UpdateExitSeenInBlock(node->bytecode());
MaybeElideLastBytecode(node->bytecode(), node->source_info().is_valid());
UpdateSourcePositionTable(node);
EmitBytecode(node);
}
void BytecodeArrayWriter::WriteJump(BytecodeNode* node, BytecodeLabel* label) {
DCHECK(Bytecodes::IsForwardJump(node->bytecode()));
if (exit_seen_in_block_) return; // Don't emit dead code.
UpdateExitSeenInBlock(node->bytecode());
MaybeElideLastBytecode(node->bytecode(), node->source_info().is_valid());
UpdateSourcePositionTable(node);
EmitJump(node, label);
}
void BytecodeArrayWriter::WriteJumpLoop(BytecodeNode* node,
BytecodeLoopHeader* loop_header) {
DCHECK_EQ(node->bytecode(), Bytecode::kJumpLoop);
if (exit_seen_in_block_) return; // Don't emit dead code.
UpdateExitSeenInBlock(node->bytecode());
MaybeElideLastBytecode(node->bytecode(), node->source_info().is_valid());
UpdateSourcePositionTable(node);
EmitJumpLoop(node, loop_header);
}
void BytecodeArrayWriter::WriteSwitch(BytecodeNode* node,
BytecodeJumpTable* jump_table) {
DCHECK(Bytecodes::IsSwitch(node->bytecode()));
if (exit_seen_in_block_) return; // Don't emit dead code.
UpdateExitSeenInBlock(node->bytecode());
MaybeElideLastBytecode(node->bytecode(), node->source_info().is_valid());
UpdateSourcePositionTable(node);
EmitSwitch(node, jump_table);
}
void BytecodeArrayWriter::BindLabel(BytecodeLabel* label) {
DCHECK(label->has_referrer_jump());
size_t current_offset = bytecodes()->size();
// Update the jump instruction's location.
PatchJump(current_offset, label->jump_offset());
label->bind();
StartBasicBlock();
}
void BytecodeArrayWriter::BindLoopHeader(BytecodeLoopHeader* loop_header) {
size_t current_offset = bytecodes()->size();
loop_header->bind_to(current_offset);
StartBasicBlock();
}
void BytecodeArrayWriter::BindJumpTableEntry(BytecodeJumpTable* jump_table,
int case_value) {
DCHECK(!jump_table->is_bound(case_value));
size_t current_offset = bytecodes()->size();
size_t relative_jump = current_offset - jump_table->switch_bytecode_offset();
constant_array_builder()->SetJumpTableSmi(
jump_table->ConstantPoolEntryFor(case_value),
Smi::FromInt(static_cast<int>(relative_jump)));
jump_table->mark_bound(case_value);
StartBasicBlock();
}
void BytecodeArrayWriter::BindHandlerTarget(
HandlerTableBuilder* handler_table_builder, int handler_id) {
size_t current_offset = bytecodes()->size();
StartBasicBlock();
handler_table_builder->SetHandlerTarget(handler_id, current_offset);
}
void BytecodeArrayWriter::BindTryRegionStart(
HandlerTableBuilder* handler_table_builder, int handler_id) {
size_t current_offset = bytecodes()->size();
// Try blocks don't have to be in a separate basic block, but we do have to
// invalidate the bytecode to avoid eliding it and changing the offset.
InvalidateLastBytecode();
handler_table_builder->SetTryRegionStart(handler_id, current_offset);
}
void BytecodeArrayWriter::BindTryRegionEnd(
HandlerTableBuilder* handler_table_builder, int handler_id) {
// Try blocks don't have to be in a separate basic block, but we do have to
// invalidate the bytecode to avoid eliding it and changing the offset.
InvalidateLastBytecode();
size_t current_offset = bytecodes()->size();
handler_table_builder->SetTryRegionEnd(handler_id, current_offset);
}
void BytecodeArrayWriter::SetFunctionEntrySourcePosition(int position) {
bool is_statement = false;
source_position_table_builder_.AddPosition(
kFunctionEntryBytecodeOffset, SourcePosition(position), is_statement);
}
void BytecodeArrayWriter::StartBasicBlock() {
InvalidateLastBytecode();
exit_seen_in_block_ = false;
}
void BytecodeArrayWriter::UpdateSourcePositionTable(
const BytecodeNode* const node) {
int bytecode_offset = static_cast<int>(bytecodes()->size());
const BytecodeSourceInfo& source_info = node->source_info();
if (source_info.is_valid()) {
source_position_table_builder()->AddPosition(
bytecode_offset, SourcePosition(source_info.source_position()),
source_info.is_statement());
}
}
void BytecodeArrayWriter::UpdateExitSeenInBlock(Bytecode bytecode) {
switch (bytecode) {
case Bytecode::kReturn:
case Bytecode::kThrow:
case Bytecode::kReThrow:
case Bytecode::kAbort:
case Bytecode::kJump:
case Bytecode::kJumpConstant:
case Bytecode::kSuspendGenerator:
exit_seen_in_block_ = true;
break;
default:
break;
}
}
void BytecodeArrayWriter::MaybeElideLastBytecode(Bytecode next_bytecode,
bool has_source_info) {
if (!elide_noneffectful_bytecodes_) return;
// If the last bytecode loaded the accumulator without any external effect,
// and the next bytecode clobbers this load without reading the accumulator,
// then the previous bytecode can be elided as it has no effect.
if (Bytecodes::IsAccumulatorLoadWithoutEffects(last_bytecode_) &&
Bytecodes::GetImplicitRegisterUse(next_bytecode) ==
ImplicitRegisterUse::kWriteAccumulator &&
(!last_bytecode_had_source_info_ || !has_source_info)) {
DCHECK_GT(bytecodes()->size(), last_bytecode_offset_);
bytecodes()->resize(last_bytecode_offset_);
// If the last bytecode had source info we will transfer the source info
// to this bytecode.
has_source_info |= last_bytecode_had_source_info_;
}
last_bytecode_ = next_bytecode;
last_bytecode_had_source_info_ = has_source_info;
last_bytecode_offset_ = bytecodes()->size();
}
void BytecodeArrayWriter::InvalidateLastBytecode() {
last_bytecode_ = Bytecode::kIllegal;
}
void BytecodeArrayWriter::EmitBytecode(const BytecodeNode* const node) {
DCHECK_NE(node->bytecode(), Bytecode::kIllegal);
Bytecode bytecode = node->bytecode();
OperandScale operand_scale = node->operand_scale();
if (operand_scale != OperandScale::kSingle) {
Bytecode prefix = Bytecodes::OperandScaleToPrefixBytecode(operand_scale);
bytecodes()->push_back(Bytecodes::ToByte(prefix));
}
bytecodes()->push_back(Bytecodes::ToByte(bytecode));
const uint32_t* const operands = node->operands();
const int operand_count = node->operand_count();
const OperandSize* operand_sizes =
Bytecodes::GetOperandSizes(bytecode, operand_scale);
for (int i = 0; i < operand_count; ++i) {
switch (operand_sizes[i]) {
case OperandSize::kNone:
UNREACHABLE();
break;
case OperandSize::kByte:
bytecodes()->push_back(static_cast<uint8_t>(operands[i]));
break;
case OperandSize::kShort: {
uint16_t operand = static_cast<uint16_t>(operands[i]);
const uint8_t* raw_operand = reinterpret_cast<const uint8_t*>(&operand);
bytecodes()->push_back(raw_operand[0]);
bytecodes()->push_back(raw_operand[1]);
break;
}
case OperandSize::kQuad: {
const uint8_t* raw_operand =
reinterpret_cast<const uint8_t*>(&operands[i]);
bytecodes()->push_back(raw_operand[0]);
bytecodes()->push_back(raw_operand[1]);
bytecodes()->push_back(raw_operand[2]);
bytecodes()->push_back(raw_operand[3]);
break;
}
}
}
}
// static
Bytecode GetJumpWithConstantOperand(Bytecode jump_bytecode) {
switch (jump_bytecode) {
case Bytecode::kJump:
return Bytecode::kJumpConstant;
case Bytecode::kJumpIfTrue:
return Bytecode::kJumpIfTrueConstant;
case Bytecode::kJumpIfFalse:
return Bytecode::kJumpIfFalseConstant;
case Bytecode::kJumpIfToBooleanTrue:
return Bytecode::kJumpIfToBooleanTrueConstant;
case Bytecode::kJumpIfToBooleanFalse:
return Bytecode::kJumpIfToBooleanFalseConstant;
case Bytecode::kJumpIfNull:
return Bytecode::kJumpIfNullConstant;
case Bytecode::kJumpIfNotNull:
return Bytecode::kJumpIfNotNullConstant;
case Bytecode::kJumpIfUndefined:
return Bytecode::kJumpIfUndefinedConstant;
case Bytecode::kJumpIfNotUndefined:
return Bytecode::kJumpIfNotUndefinedConstant;
case Bytecode::kJumpIfUndefinedOrNull:
return Bytecode::kJumpIfUndefinedOrNullConstant;
case Bytecode::kJumpIfJSReceiver:
return Bytecode::kJumpIfJSReceiverConstant;
default:
UNREACHABLE();
}
}
void BytecodeArrayWriter::PatchJumpWith8BitOperand(size_t jump_location,
int delta) {
Bytecode jump_bytecode = Bytecodes::FromByte(bytecodes()->at(jump_location));
DCHECK(Bytecodes::IsForwardJump(jump_bytecode));
DCHECK(Bytecodes::IsJumpImmediate(jump_bytecode));
DCHECK_EQ(Bytecodes::GetOperandType(jump_bytecode, 0), OperandType::kUImm);
DCHECK_GT(delta, 0);
size_t operand_location = jump_location + 1;
DCHECK_EQ(bytecodes()->at(operand_location), k8BitJumpPlaceholder);
if (Bytecodes::ScaleForUnsignedOperand(delta) == OperandScale::kSingle) {
// The jump fits within the range of an UImm8 operand, so cancel
// the reservation and jump directly.
constant_array_builder()->DiscardReservedEntry(OperandSize::kByte);
bytecodes()->at(operand_location) = static_cast<uint8_t>(delta);
} else {
// The jump does not fit within the range of an UImm8 operand, so
// commit reservation putting the offset into the constant pool,
// and update the jump instruction and operand.
size_t entry = constant_array_builder()->CommitReservedEntry(
OperandSize::kByte, Smi::FromInt(delta));
DCHECK_EQ(Bytecodes::SizeForUnsignedOperand(static_cast<uint32_t>(entry)),
OperandSize::kByte);
jump_bytecode = GetJumpWithConstantOperand(jump_bytecode);
bytecodes()->at(jump_location) = Bytecodes::ToByte(jump_bytecode);
bytecodes()->at(operand_location) = static_cast<uint8_t>(entry);
}
}
void BytecodeArrayWriter::PatchJumpWith16BitOperand(size_t jump_location,
int delta) {
Bytecode jump_bytecode = Bytecodes::FromByte(bytecodes()->at(jump_location));
DCHECK(Bytecodes::IsForwardJump(jump_bytecode));
DCHECK(Bytecodes::IsJumpImmediate(jump_bytecode));
DCHECK_EQ(Bytecodes::GetOperandType(jump_bytecode, 0), OperandType::kUImm);
DCHECK_GT(delta, 0);
size_t operand_location = jump_location + 1;
uint8_t operand_bytes[2];
if (Bytecodes::ScaleForUnsignedOperand(delta) <= OperandScale::kDouble) {
// The jump fits within the range of an Imm16 operand, so cancel
// the reservation and jump directly.
constant_array_builder()->DiscardReservedEntry(OperandSize::kShort);
base::WriteUnalignedValue<uint16_t>(
reinterpret_cast<Address>(operand_bytes), static_cast<uint16_t>(delta));
} else {
// The jump does not fit within the range of an Imm16 operand, so
// commit reservation putting the offset into the constant pool,
// and update the jump instruction and operand.
size_t entry = constant_array_builder()->CommitReservedEntry(
OperandSize::kShort, Smi::FromInt(delta));
jump_bytecode = GetJumpWithConstantOperand(jump_bytecode);
bytecodes()->at(jump_location) = Bytecodes::ToByte(jump_bytecode);
base::WriteUnalignedValue<uint16_t>(
reinterpret_cast<Address>(operand_bytes), static_cast<uint16_t>(entry));
}
DCHECK(bytecodes()->at(operand_location) == k8BitJumpPlaceholder &&
bytecodes()->at(operand_location + 1) == k8BitJumpPlaceholder);
bytecodes()->at(operand_location++) = operand_bytes[0];
bytecodes()->at(operand_location) = operand_bytes[1];
}
void BytecodeArrayWriter::PatchJumpWith32BitOperand(size_t jump_location,
int delta) {
DCHECK(Bytecodes::IsJumpImmediate(
Bytecodes::FromByte(bytecodes()->at(jump_location))));
constant_array_builder()->DiscardReservedEntry(OperandSize::kQuad);
uint8_t operand_bytes[4];
base::WriteUnalignedValue<uint32_t>(reinterpret_cast<Address>(operand_bytes),
static_cast<uint32_t>(delta));
size_t operand_location = jump_location + 1;
DCHECK(bytecodes()->at(operand_location) == k8BitJumpPlaceholder &&
bytecodes()->at(operand_location + 1) == k8BitJumpPlaceholder &&
bytecodes()->at(operand_location + 2) == k8BitJumpPlaceholder &&
bytecodes()->at(operand_location + 3) == k8BitJumpPlaceholder);
bytecodes()->at(operand_location++) = operand_bytes[0];
bytecodes()->at(operand_location++) = operand_bytes[1];
bytecodes()->at(operand_location++) = operand_bytes[2];
bytecodes()->at(operand_location) = operand_bytes[3];
}
void BytecodeArrayWriter::PatchJump(size_t jump_target, size_t jump_location) {
Bytecode jump_bytecode = Bytecodes::FromByte(bytecodes()->at(jump_location));
int delta = static_cast<int>(jump_target - jump_location);
int prefix_offset = 0;
OperandScale operand_scale = OperandScale::kSingle;
if (Bytecodes::IsPrefixScalingBytecode(jump_bytecode)) {
// If a prefix scaling bytecode is emitted the target offset is one
// less than the case of no prefix scaling bytecode.
delta -= 1;
prefix_offset = 1;
operand_scale = Bytecodes::PrefixBytecodeToOperandScale(jump_bytecode);
jump_bytecode =
Bytecodes::FromByte(bytecodes()->at(jump_location + prefix_offset));
}
DCHECK(Bytecodes::IsJump(jump_bytecode));
switch (operand_scale) {
case OperandScale::kSingle:
PatchJumpWith8BitOperand(jump_location, delta);
break;
case OperandScale::kDouble:
PatchJumpWith16BitOperand(jump_location + prefix_offset, delta);
break;
case OperandScale::kQuadruple:
PatchJumpWith32BitOperand(jump_location + prefix_offset, delta);
break;
default:
UNREACHABLE();
}
unbound_jumps_--;
}
void BytecodeArrayWriter::EmitJumpLoop(BytecodeNode* node,
BytecodeLoopHeader* loop_header) {
DCHECK_EQ(node->bytecode(), Bytecode::kJumpLoop);
DCHECK_EQ(0u, node->operand(0));
size_t current_offset = bytecodes()->size();
CHECK_GE(current_offset, loop_header->offset());
CHECK_LE(current_offset, static_cast<size_t>(kMaxUInt32));
// Label has been bound already so this is a backwards jump.
uint32_t delta =
static_cast<uint32_t>(current_offset - loop_header->offset());
OperandScale operand_scale = Bytecodes::ScaleForUnsignedOperand(delta);
if (operand_scale > OperandScale::kSingle) {
// Adjust for scaling byte prefix for wide jump offset.
delta += 1;
}
node->update_operand0(delta);
EmitBytecode(node);
}
void BytecodeArrayWriter::EmitJump(BytecodeNode* node, BytecodeLabel* label) {
DCHECK(Bytecodes::IsForwardJump(node->bytecode()));
DCHECK_EQ(0u, node->operand(0));
size_t current_offset = bytecodes()->size();
// The label has not yet been bound so this is a forward reference
// that will be patched when the label is bound. We create a
// reservation in the constant pool so the jump can be patched
// when the label is bound. The reservation means the maximum size
// of the operand for the constant is known and the jump can
// be emitted into the bytecode stream with space for the operand.
unbound_jumps_++;
label->set_referrer(current_offset);
OperandSize reserved_operand_size =
constant_array_builder()->CreateReservedEntry();
DCHECK_NE(Bytecode::kJumpLoop, node->bytecode());
switch (reserved_operand_size) {
case OperandSize::kNone:
UNREACHABLE();
case OperandSize::kByte:
node->update_operand0(k8BitJumpPlaceholder);
break;
case OperandSize::kShort:
node->update_operand0(k16BitJumpPlaceholder);
break;
case OperandSize::kQuad:
node->update_operand0(k32BitJumpPlaceholder);
break;
}
EmitBytecode(node);
}
void BytecodeArrayWriter::EmitSwitch(BytecodeNode* node,
BytecodeJumpTable* jump_table) {
DCHECK(Bytecodes::IsSwitch(node->bytecode()));
size_t current_offset = bytecodes()->size();
if (node->operand_scale() > OperandScale::kSingle) {
// Adjust for scaling byte prefix.
current_offset += 1;
}
jump_table->set_switch_bytecode_offset(current_offset);
EmitBytecode(node);
}
} // namespace interpreter
} // namespace internal
} // namespace v8
|