summaryrefslogtreecommitdiff
path: root/deps/v8/src/maglev/maglev-regalloc.cc
blob: 3bb45ba267f24f7cf7ad983fa8f77e06c63b1348 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
// Copyright 2022 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/maglev/maglev-regalloc.h"

#include <sstream>
#include <type_traits>

#include "src/base/bits.h"
#include "src/base/logging.h"
#include "src/codegen/machine-type.h"
#include "src/codegen/register.h"
#include "src/codegen/reglist.h"
#include "src/compiler/backend/instruction.h"
#include "src/heap/parked-scope.h"
#include "src/maglev/maglev-code-gen-state.h"
#include "src/maglev/maglev-compilation-info.h"
#include "src/maglev/maglev-compilation-unit.h"
#include "src/maglev/maglev-graph-labeller.h"
#include "src/maglev/maglev-graph-printer.h"
#include "src/maglev/maglev-graph-processor.h"
#include "src/maglev/maglev-graph.h"
#include "src/maglev/maglev-interpreter-frame-state.h"
#include "src/maglev/maglev-ir-inl.h"
#include "src/maglev/maglev-ir.h"
#include "src/maglev/maglev-regalloc-data.h"
#include "src/zone/zone-containers.h"

#ifdef V8_TARGET_ARCH_ARM64
#include "src/codegen/arm64/register-arm64.h"
#elif V8_TARGET_ARCH_X64
#include "src/codegen/x64/register-x64.h"
#else
#error "Maglev does not supported this architecture."
#endif

namespace v8 {
namespace internal {

namespace maglev {

namespace {

constexpr RegisterStateFlags initialized_node{true, false};
constexpr RegisterStateFlags initialized_merge{true, true};

using BlockReverseIterator = std::vector<BasicBlock>::reverse_iterator;

// A target is a fallthrough of a control node if its ID is the next ID
// after the control node.
//
// TODO(leszeks): Consider using the block iterator instead.
bool IsTargetOfNodeFallthrough(ControlNode* node, BasicBlock* target) {
  return node->id() + 1 == target->first_id();
}

ControlNode* NearestPostDominatingHole(ControlNode* node) {
  // Conditional control nodes don't cause holes themselves. So, the nearest
  // post-dominating hole is the conditional control node's next post-dominating
  // hole.
  if (node->Is<BranchControlNode>()) {
    return node->next_post_dominating_hole();
  }

  // If the node is a Jump, it may be a hole, but only if it is not a
  // fallthrough (jump to the immediately next block). Otherwise, it will point
  // to the nearest post-dominating hole in its own "next" field.
  if (Jump* jump = node->TryCast<Jump>()) {
    if (IsTargetOfNodeFallthrough(jump, jump->target())) {
      return jump->next_post_dominating_hole();
    }
  }

  // If the node is a Switch, it can only have a hole if there is no
  // fallthrough.
  if (Switch* _switch = node->TryCast<Switch>()) {
    if (_switch->has_fallthrough()) {
      return _switch->next_post_dominating_hole();
    }
  }

  return node;
}

ControlNode* HighestPostDominatingHole(ControlNode* first,
                                       ControlNode* second) {
  // Either find the merge-point of both branches, or the highest reachable
  // control-node of the longest branch after the last node of the shortest
  // branch.

  // As long as there's no merge-point.
  while (first != second) {
    // Walk the highest branch to find where it goes.
    if (first->id() > second->id()) std::swap(first, second);

    // If the first branch terminates or jumps back, we've found highest
    // reachable control-node of the longest branch (the second control
    // node).
    if (first->Is<TerminalControlNode>() || first->Is<JumpLoop>()) {
      return second;
    }

    // Continue one step along the highest branch. This may cross over the
    // lowest branch in case it returns or loops. If labelled blocks are
    // involved such swapping of which branch is the highest branch can
    // occur multiple times until a return/jumploop/merge is discovered.
    first = first->next_post_dominating_hole();
  }

  // Once the branches merged, we've found the gap-chain that's relevant
  // for the control node.
  return first;
}

template <size_t kSize>
ControlNode* HighestPostDominatingHole(
    base::SmallVector<ControlNode*, kSize>& holes) {
  // Sort them from highest to shortest.
  std::sort(holes.begin(), holes.end(),
            [](ControlNode* first, ControlNode* second) {
              return first->id() > second->id();
            });
  DCHECK_GT(holes.size(), 1);
  // Find the highest post dominating hole.
  ControlNode* post_dominating_hole = holes.back();
  holes.pop_back();
  while (holes.size() > 0) {
    ControlNode* next_hole = holes.back();
    holes.pop_back();
    post_dominating_hole =
        HighestPostDominatingHole(post_dominating_hole, next_hole);
  }
  return post_dominating_hole;
}

bool IsLiveAtTarget(ValueNode* node, ControlNode* source, BasicBlock* target) {
  DCHECK_NOT_NULL(node);
  DCHECK(!node->is_dead());

  // If we're looping, a value can only be live if it was live before the loop.
  if (target->control_node()->id() <= source->id()) {
    // Gap moves may already be inserted in the target, so skip over those.
    return node->id() < target->FirstNonGapMoveId();
  }

  // Drop all values on resumable loop headers.
  if (target->has_state() && target->state()->is_resumable_loop()) return false;

  // TODO(verwaest): This should be true but isn't because we don't yet
  // eliminate dead code.
  // DCHECK_GT(node->next_use, source->id());
  // TODO(verwaest): Since we don't support deopt yet we can only deal with
  // direct branches. Add support for holes.
  return node->live_range().end >= target->first_id();
}

// TODO(dmercadier): this function should never clear any registers, since dead
// registers should always have been cleared:
//  - Nodes without uses have their output registers cleared right after their
//    allocation by `FreeRegistersUsedBy(node)`.
//  - Once the last use of a Node has been processed, its register is freed (by
//    UpdateUse, called from Assigned***Input, called by AssignInputs).
// Thus, this function should DCHECK that all of the registers are live at
// target, rather than clearing the ones that aren't.
template <typename RegisterT>
void ClearDeadFallthroughRegisters(RegisterFrameState<RegisterT>& registers,
                                   ConditionalControlNode* control_node,
                                   BasicBlock* target) {
  RegListBase<RegisterT> list = registers.used();
  while (list != registers.empty()) {
    RegisterT reg = list.PopFirst();
    ValueNode* node = registers.GetValue(reg);
    if (!IsLiveAtTarget(node, control_node, target)) {
      registers.FreeRegistersUsedBy(node);
      // Update the registers we're visiting to avoid revisiting this node.
      list.clear(registers.free());
    }
  }
}

bool IsDeadNodeToSkip(Node* node) {
  return node->Is<ValueNode>() && node->Cast<ValueNode>()->is_dead() &&
         !node->properties().is_required_when_unused();
}
}  // namespace

StraightForwardRegisterAllocator::StraightForwardRegisterAllocator(
    MaglevCompilationInfo* compilation_info, Graph* graph)
    : compilation_info_(compilation_info), graph_(graph) {
  ComputePostDominatingHoles();
  AllocateRegisters();
  uint32_t tagged_stack_slots = tagged_.top;
  uint32_t untagged_stack_slots = untagged_.top;
#ifdef V8_TARGET_ARCH_ARM64
  // Due to alignment constraints, we add one untagged slot if
  // stack_slots + fixed_slot_count is odd.
  static_assert(StandardFrameConstants::kFixedSlotCount % 2 == 1);
  if ((tagged_stack_slots + untagged_stack_slots) % 2 == 0) {
    untagged_stack_slots++;
  }
#endif  // V8_TARGET_ARCH_ARM64
  graph_->set_tagged_stack_slots(tagged_stack_slots);
  graph_->set_untagged_stack_slots(untagged_stack_slots);
}

StraightForwardRegisterAllocator::~StraightForwardRegisterAllocator() = default;

// Compute, for all forward control nodes (i.e. excluding Return and JumpLoop) a
// tree of post-dominating control flow holes.
//
// Control flow which interrupts linear control flow fallthrough for basic
// blocks is considered to introduce a control flow "hole".
//
//                   A──────┐                │
//                   │ Jump │                │
//                   └──┬───┘                │
//                  {   │  B──────┐          │
//     Control flow {   │  │ Jump │          │ Linear control flow
//     hole after A {   │  └─┬────┘          │
//                  {   ▼    ▼ Fallthrough   │
//                     C──────┐              │
//                     │Return│              │
//                     └──────┘              ▼
//
// It is interesting, for each such hole, to know what the next hole will be
// that we will unconditionally reach on our way to an exit node. Such
// subsequent holes are in "post-dominators" of the current block.
//
// As an example, consider the following CFG, with the annotated holes. The
// post-dominating hole tree is the transitive closure of the post-dominator
// tree, up to nodes which are holes (in this example, A, D, F and H).
//
//                       CFG               Immediate       Post-dominating
//                                      post-dominators          holes
//                   A──────┐
//                   │ Jump │               A                 A
//                   └──┬───┘               │                 │
//                  {   │  B──────┐         │                 │
//     Control flow {   │  │ Jump │         │   B             │       B
//     hole after A {   │  └─┬────┘         │   │             │       │
//                  {   ▼    ▼              │   │             │       │
//                     C──────┐             │   │             │       │
//                     │Branch│             └►C◄┘             │   C   │
//                     └┬────┬┘               │               │   │   │
//                      ▼    │                │               │   │   │
//                   D──────┐│                │               │   │   │
//                   │ Jump ││              D │               │ D │   │
//                   └──┬───┘▼              │ │               │ │ │   │
//                  {   │  E──────┐         │ │               │ │ │   │
//     Control flow {   │  │ Jump │         │ │ E             │ │ │ E │
//     hole after D {   │  └─┬────┘         │ │ │             │ │ │ │ │
//                  {   ▼    ▼              │ │ │             │ │ │ │ │
//                     F──────┐             │ ▼ │             │ │ ▼ │ │
//                     │ Jump │             └►F◄┘             └─┴►F◄┴─┘
//                     └─────┬┘               │                   │
//                  {        │  G──────┐      │                   │
//     Control flow {        │  │ Jump │      │ G                 │ G
//     hole after F {        │  └─┬────┘      │ │                 │ │
//                  {        ▼    ▼           │ │                 │ │
//                          H──────┐          ▼ │                 ▼ │
//                          │Return│          H◄┘                 H◄┘
//                          └──────┘
//
// Since we only care about forward control, loop jumps are treated the same as
// returns -- they terminate the post-dominating hole chain.
//
void StraightForwardRegisterAllocator::ComputePostDominatingHoles() {
  // For all blocks, find the list of jumps that jump over code unreachable from
  // the block. Such a list of jumps terminates in return or jumploop.
  for (BasicBlock* block : base::Reversed(*graph_)) {
    ControlNode* control = block->control_node();
    if (auto node = control->TryCast<UnconditionalControlNode>()) {
      // If the current control node is a jump, prepend it to the list of jumps
      // at the target.
      control->set_next_post_dominating_hole(
          NearestPostDominatingHole(node->target()->control_node()));
    } else if (auto node = control->TryCast<BranchControlNode>()) {
      ControlNode* first =
          NearestPostDominatingHole(node->if_true()->control_node());
      ControlNode* second =
          NearestPostDominatingHole(node->if_false()->control_node());
      control->set_next_post_dominating_hole(
          HighestPostDominatingHole(first, second));
    } else if (auto node = control->TryCast<Switch>()) {
      int num_targets = node->size() + (node->has_fallthrough() ? 1 : 0);
      if (num_targets == 1) {
        // If we have a single target, the next post dominating hole
        // is the same one as the target.
        DCHECK(!node->has_fallthrough());
        control->set_next_post_dominating_hole(NearestPostDominatingHole(
            node->targets()[0].block_ptr()->control_node()));
        continue;
      }
      // Calculate the post dominating hole for each target.
      base::SmallVector<ControlNode*, 16> holes(num_targets);
      for (int i = 0; i < node->size(); i++) {
        holes[i] = NearestPostDominatingHole(
            node->targets()[i].block_ptr()->control_node());
      }
      if (node->has_fallthrough()) {
        holes[node->size()] =
            NearestPostDominatingHole(node->fallthrough()->control_node());
      }
      control->set_next_post_dominating_hole(HighestPostDominatingHole(holes));
    }
  }
}

void StraightForwardRegisterAllocator::PrintLiveRegs() const {
  bool first = true;
  auto print = [&](auto reg, ValueNode* node) {
    if (first) {
      first = false;
    } else {
      printing_visitor_->os() << ", ";
    }
    printing_visitor_->os() << reg << "=v" << node->id();
  };
  general_registers_.ForEachUsedRegister(print);
  double_registers_.ForEachUsedRegister(print);
}

void StraightForwardRegisterAllocator::AllocateRegisters() {
  if (v8_flags.trace_maglev_regalloc) {
    printing_visitor_.reset(new MaglevPrintingVisitor(
        compilation_info_->graph_labeller(), std::cout));
    printing_visitor_->PreProcessGraph(graph_);
  }

  for (const auto& [ref, constant] : graph_->constants()) {
    constant->SetConstantLocation();
    USE(ref);
  }
  for (const auto& [index, constant] : graph_->root()) {
    constant->SetConstantLocation();
    USE(index);
  }
  for (const auto& [value, constant] : graph_->smi()) {
    constant->SetConstantLocation();
    USE(value);
  }
  for (const auto& [value, constant] : graph_->int32()) {
    constant->SetConstantLocation();
    USE(value);
  }
  for (const auto& [value, constant] : graph_->float64()) {
    constant->SetConstantLocation();
    USE(value);
  }
  for (const auto& [address, constant] : graph_->external_references()) {
    constant->SetConstantLocation();
    USE(address);
  }

  for (block_it_ = graph_->begin(); block_it_ != graph_->end(); ++block_it_) {
    BasicBlock* block = *block_it_;
    current_node_ = nullptr;

    // Restore mergepoint state.
    if (block->has_state()) {
      if (block->state()->is_exception_handler()) {
        // Exceptions start from a blank state of register values.
        ClearRegisterValues();
      } else if (block->state()->is_resumable_loop() &&
                 block->state()->predecessor_count() <= 1) {
        // Loops that are only reachable through JumpLoop start from a blank
        // state of register values.
        // This should actually only support predecessor_count == 1, but we
        // currently don't eliminate resumable loop headers (and subsequent code
        // until the next resume) that end up being unreachable from JumpLoop.
        ClearRegisterValues();
      } else {
        InitializeRegisterValues(block->state()->register_state());
      }
    } else if (block->is_edge_split_block()) {
      InitializeRegisterValues(block->edge_split_block_register_state());
    }

    if (v8_flags.trace_maglev_regalloc) {
      printing_visitor_->PreProcessBasicBlock(block);
      printing_visitor_->os() << "live regs: ";
      PrintLiveRegs();

      ControlNode* control = NearestPostDominatingHole(block->control_node());
      if (!control->Is<JumpLoop>()) {
        printing_visitor_->os() << "\n[holes:";
        while (true) {
          if (control->Is<Jump>()) {
            BasicBlock* target = control->Cast<Jump>()->target();
            printing_visitor_->os()
                << " " << control->id() << "-" << target->first_id();
            control = control->next_post_dominating_hole();
            DCHECK_NOT_NULL(control);
            continue;
          } else if (control->Is<Switch>()) {
            Switch* _switch = control->Cast<Switch>();
            DCHECK(!_switch->has_fallthrough());
            DCHECK_GE(_switch->size(), 1);
            BasicBlock* first_target = _switch->targets()[0].block_ptr();
            printing_visitor_->os()
                << " " << control->id() << "-" << first_target->first_id();
            control = control->next_post_dominating_hole();
            DCHECK_NOT_NULL(control);
            continue;
          } else if (control->Is<Return>()) {
            printing_visitor_->os() << " " << control->id() << ".";
            break;
          } else if (control->Is<Deopt>() || control->Is<Abort>()) {
            printing_visitor_->os() << " " << control->id() << "✖️";
            break;
          } else if (control->Is<JumpLoop>()) {
            printing_visitor_->os() << " " << control->id() << "↰";
            break;
          }
          UNREACHABLE();
        }
        printing_visitor_->os() << "]";
      }
      printing_visitor_->os() << std::endl;
    }

    // Activate phis.
    if (block->has_phi()) {
      // Firstly, make the phi live, and try to assign it to an input
      // location.
      for (Phi* phi : *block->phis()) {
        // Ignore dead phis.
        // TODO(leszeks): We should remove dead phis entirely and turn this
        // into a DCHECK.
        if (!phi->has_valid_live_range()) continue;
        phi->SetNoSpill();
        TryAllocateToInput(phi);
      }
      if (block->is_exception_handler_block()) {
        // If we are in exception handler block, then we find the ExceptionPhi
        // (the first one by default) that is marked with the
        // virtual_accumulator and force kReturnRegister0. This corresponds to
        // the exception message object.
        Phi::List::Iterator phi_it = block->phis()->begin();
        Phi* phi = *phi_it;
        DCHECK_EQ(phi->input_count(), 0);
        if (phi->owner() == interpreter::Register::virtual_accumulator() &&
            !phi->is_dead()) {
          phi->result().SetAllocated(ForceAllocate(kReturnRegister0, phi));
          if (v8_flags.trace_maglev_regalloc) {
            printing_visitor_->Process(phi, ProcessingState(block_it_));
            printing_visitor_->os() << "phi (exception message object) "
                                    << phi->result().operand() << std::endl;
          }
        }
        // The receiver is the next phi after the accumulator (or the first phi
        // if there is no accumulator).
        if (phi->owner() == interpreter::Register::virtual_accumulator()) {
          ++phi_it;
          phi = *phi_it;
        }
        DCHECK(phi->owner().is_receiver());
        // The receiver is a special case for a fairly silly reason:
        // OptimizedFrame::Summarize requires the receiver (and the function)
        // to be in a stack slot, since its value must be available even
        // though we're not deoptimizing (and thus register states are not
        // available).
        //
        // TODO(leszeks):
        // For inlined functions / nested graph generation, this a) doesn't
        // work (there's no receiver stack slot); and b) isn't necessary
        // (Summarize only looks at noninlined functions).
        phi->Spill(compiler::AllocatedOperand(
            compiler::AllocatedOperand::STACK_SLOT,
            MachineRepresentation::kTagged,
            (StandardFrameConstants::kExpressionsOffset -
             UnoptimizedFrameConstants::kRegisterFileFromFp) /
                    kSystemPointerSize +
                interpreter::Register::receiver().index()));
        phi->result().SetAllocated(phi->spill_slot());
      }
      // Secondly try to assign the phi to a free register.
      for (Phi* phi : *block->phis()) {
        // Ignore dead phis.
        // TODO(leszeks): We should remove dead phis entirely and turn this into
        // a DCHECK.
        if (!phi->has_valid_live_range()) continue;
        if (phi->result().operand().IsAllocated()) continue;
        if (phi->value_representation() == ValueRepresentation::kFloat64) {
          // We'll use a double register.
          if (!double_registers_.UnblockedFreeIsEmpty()) {
            compiler::AllocatedOperand allocation =
                double_registers_.AllocateRegister(phi, phi->hint());
            phi->result().SetAllocated(allocation);
            SetLoopPhiRegisterHint(phi, allocation.GetDoubleRegister());
            if (v8_flags.trace_maglev_regalloc) {
              printing_visitor_->Process(phi, ProcessingState(block_it_));
              printing_visitor_->os()
                  << "phi (new reg) " << phi->result().operand() << std::endl;
            }
          }
        } else {
          // We'll use a general purpose register for this Phi.
          if (!general_registers_.UnblockedFreeIsEmpty()) {
            compiler::AllocatedOperand allocation =
                general_registers_.AllocateRegister(phi, phi->hint());
            phi->result().SetAllocated(allocation);
            SetLoopPhiRegisterHint(phi, allocation.GetRegister());
            if (v8_flags.trace_maglev_regalloc) {
              printing_visitor_->Process(phi, ProcessingState(block_it_));
              printing_visitor_->os()
                  << "phi (new reg) " << phi->result().operand() << std::endl;
            }
          }
        }
      }
      // Finally just use a stack slot.
      for (Phi* phi : *block->phis()) {
        // Ignore dead phis.
        // TODO(leszeks): We should remove dead phis entirely and turn this into
        // a DCHECK.
        if (!phi->has_valid_live_range()) continue;
        if (phi->result().operand().IsAllocated()) continue;
        AllocateSpillSlot(phi);
        // TODO(verwaest): Will this be used at all?
        phi->result().SetAllocated(phi->spill_slot());
        if (v8_flags.trace_maglev_regalloc) {
          printing_visitor_->Process(phi, ProcessingState(block_it_));
          printing_visitor_->os()
              << "phi (stack) " << phi->result().operand() << std::endl;
        }
      }

      if (v8_flags.trace_maglev_regalloc) {
        printing_visitor_->os() << "live regs: ";
        PrintLiveRegs();
        printing_visitor_->os() << std::endl;
      }
      general_registers_.clear_blocked();
      double_registers_.clear_blocked();
    }
    VerifyRegisterState();

    node_it_ = block->nodes().begin();
    for (; node_it_ != block->nodes().end();) {
      Node* node = *node_it_;

      if (IsDeadNodeToSkip(node)) {
        // We remove unused pure nodes.
        if (v8_flags.trace_maglev_regalloc) {
          printing_visitor_->os()
              << "Removing unused node "
              << PrintNodeLabel(graph_labeller(), node) << "\n";
        }

        if (!node->Is<Identity>()) {
          // Updating the uses of the inputs in order to free dead input
          // registers. We don't do this for Identity nodes, because they were
          // skipped during use marking, and their inputs are thus not aware
          // that they were used by this node.
          DCHECK(!node->properties().can_deopt());
          node->ForAllInputsInRegallocAssignmentOrder(
              [&](NodeBase::InputAllocationPolicy, Input* input) {
                UpdateUse(input);
              });
        }

        node_it_ = block->nodes().RemoveAt(node_it_);
        continue;
      }

      AllocateNode(node);
      ++node_it_;
    }
    AllocateControlNode(block->control_node(), block);
  }
}

void StraightForwardRegisterAllocator::FreeRegistersUsedBy(ValueNode* node) {
  if (node->use_double_register()) {
    double_registers_.FreeRegistersUsedBy(node);
  } else {
    general_registers_.FreeRegistersUsedBy(node);
  }
}

void StraightForwardRegisterAllocator::UpdateUse(
    ValueNode* node, InputLocation* input_location) {
  if (v8_flags.trace_maglev_regalloc) {
    printing_visitor_->os()
        << "Using " << PrintNodeLabel(graph_labeller(), node) << "...\n";
  }

  DCHECK(!node->is_dead());

  // Update the next use.
  node->set_next_use(input_location->next_use_id());

  if (!node->is_dead()) return;

  if (v8_flags.trace_maglev_regalloc) {
    printing_visitor_->os()
        << "  freeing " << PrintNodeLabel(graph_labeller(), node) << "\n";
  }

  // If a value is dead, make sure it's cleared.
  FreeRegistersUsedBy(node);

  // If the stack slot is a local slot, free it so it can be reused.
  if (node->is_spilled()) {
    compiler::AllocatedOperand slot = node->spill_slot();
    if (slot.index() > 0) {
      SpillSlots& slots =
          slot.representation() == MachineRepresentation::kTagged ? tagged_
                                                                  : untagged_;
      DCHECK_IMPLIES(
          slots.free_slots.size() > 0,
          slots.free_slots.back().freed_at_position <= node->live_range().end);
      slots.free_slots.emplace_back(slot.index(), node->live_range().end);
    }
  }
}

void StraightForwardRegisterAllocator::AllocateEagerDeopt(
    const EagerDeoptInfo& deopt_info) {
  detail::DeepForEachInput(
      &deopt_info, [&](ValueNode* node, InputLocation* input) {
        // We might have dropped this node without spilling it. Spill it now.
        if (!node->has_register() && !node->is_loadable()) {
          Spill(node);
        }
        input->InjectLocation(node->allocation());
        UpdateUse(node, input);
      });
}

void StraightForwardRegisterAllocator::AllocateLazyDeopt(
    const LazyDeoptInfo& deopt_info) {
  detail::DeepForEachInput(&deopt_info,
                           [&](ValueNode* node, InputLocation* input) {
                             // Lazy deopts always need spilling, and should
                             // always be loaded from their loadable slot.
                             Spill(node);
                             input->InjectLocation(node->loadable_slot());
                             UpdateUse(node, input);
                           });
}

#ifdef DEBUG
namespace {
#define GET_NODE_RESULT_REGISTER_T(RegisterT, AssignedRegisterT) \
  RegisterT GetNodeResult##RegisterT(Node* node) {               \
    ValueNode* value_node = node->TryCast<ValueNode>();          \
    if (!value_node) return RegisterT::no_reg();                 \
    if (!value_node->result().operand().Is##RegisterT()) {       \
      return RegisterT::no_reg();                                \
    }                                                            \
    return value_node->result().AssignedRegisterT();             \
  }
GET_NODE_RESULT_REGISTER_T(Register, AssignedGeneralRegister)
GET_NODE_RESULT_REGISTER_T(DoubleRegister, AssignedDoubleRegister)
#undef GET_NODE_RESULT_REGISTER_T
}  // namespace
#endif  // DEBUG

void StraightForwardRegisterAllocator::AllocateNode(Node* node) {
  // We shouldn't be visiting any gap moves during allocation, we should only
  // have inserted gap moves in past visits.
  DCHECK(!node->Is<GapMove>());
  DCHECK(!node->Is<ConstantGapMove>());

  current_node_ = node;
  if (v8_flags.trace_maglev_regalloc) {
    printing_visitor_->os()
        << "Allocating " << PrintNodeLabel(graph_labeller(), node)
        << " inputs...\n";
  }
  AssignInputs(node);
  VerifyInputs(node);

  if (node->properties().is_call()) SpillAndClearRegisters();

  // Allocate node output.
  if (node->Is<ValueNode>()) {
    if (v8_flags.trace_maglev_regalloc) {
      printing_visitor_->os() << "Allocating result...\n";
    }
    AllocateNodeResult(node->Cast<ValueNode>());
  }

  // Eager deopts might happen after the node result has been set, so allocate
  // them after result allocation.
  if (node->properties().can_eager_deopt()) {
    if (v8_flags.trace_maglev_regalloc) {
      printing_visitor_->os() << "Allocating eager deopt inputs...\n";
    }
    AllocateEagerDeopt(*node->eager_deopt_info());
  }

  // Lazy deopts are semantically after the node, so allocate them last.
  if (node->properties().can_lazy_deopt()) {
    if (v8_flags.trace_maglev_regalloc) {
      printing_visitor_->os() << "Allocating lazy deopt inputs...\n";
    }
    // Ensure all values live from a throwing node across its catch block are
    // spilled so they can properly be merged after the catch block.
    if (node->properties().can_throw()) {
      ExceptionHandlerInfo* info = node->exception_handler_info();
      if (info->HasExceptionHandler() && !node->properties().is_call()) {
        BasicBlock* block = info->catch_block.block_ptr();
        auto spill = [&](auto reg, ValueNode* node) {
          if (node->live_range().end < block->first_id()) return;
          Spill(node);
        };
        general_registers_.ForEachUsedRegister(spill);
        double_registers_.ForEachUsedRegister(spill);
      }
    }
    AllocateLazyDeopt(*node->lazy_deopt_info());
  }

  if (node->properties().needs_register_snapshot()) SaveRegisterSnapshot(node);

  if (v8_flags.trace_maglev_regalloc) {
    printing_visitor_->Process(node, ProcessingState(block_it_));
    printing_visitor_->os() << "live regs: ";
    PrintLiveRegs();
    printing_visitor_->os() << "\n";
  }

  // Result register should not be in temporaries.
  DCHECK_IMPLIES(GetNodeResultRegister(node) != Register::no_reg(),
                 !node->general_temporaries().has(GetNodeResultRegister(node)));
  DCHECK_IMPLIES(
      GetNodeResultDoubleRegister(node) != DoubleRegister::no_reg(),
      !node->double_temporaries().has(GetNodeResultDoubleRegister(node)));

  // All the temporaries should be free by the end.
  DCHECK_EQ(general_registers_.free() | node->general_temporaries(),
            general_registers_.free());
  DCHECK_EQ(double_registers_.free() | node->double_temporaries(),
            double_registers_.free());
  general_registers_.clear_blocked();
  double_registers_.clear_blocked();
  VerifyRegisterState();
}

template <typename RegisterT>
void StraightForwardRegisterAllocator::DropRegisterValueAtEnd(RegisterT reg) {
  RegisterFrameState<RegisterT>& list = GetRegisterFrameState<RegisterT>();
  list.unblock(reg);
  if (!list.free().has(reg)) {
    ValueNode* node = list.GetValue(reg);
    // If the register is not live after the current node, just remove its
    // value.
    if (IsCurrentNodeLastUseOf(node)) {
      node->RemoveRegister(reg);
    } else {
      DropRegisterValue(list, reg);
    }
    list.AddToFree(reg);
  }
}

void StraightForwardRegisterAllocator::AllocateNodeResult(ValueNode* node) {
  DCHECK(!node->Is<Phi>());

  node->SetNoSpill();

  compiler::UnallocatedOperand operand =
      compiler::UnallocatedOperand::cast(node->result().operand());

  if (operand.basic_policy() == compiler::UnallocatedOperand::FIXED_SLOT) {
    DCHECK(node->Is<InitialValue>());
    DCHECK_LT(operand.fixed_slot_index(), 0);
    // Set the stack slot to exactly where the value is.
    compiler::AllocatedOperand location(compiler::AllocatedOperand::STACK_SLOT,
                                        node->GetMachineRepresentation(),
                                        operand.fixed_slot_index());
    node->result().SetAllocated(location);
    node->Spill(location);
    return;
  }

  switch (operand.extended_policy()) {
    case compiler::UnallocatedOperand::FIXED_REGISTER: {
      Register r = Register::from_code(operand.fixed_register_index());
      DropRegisterValueAtEnd(r);
      node->result().SetAllocated(ForceAllocate(r, node));
      break;
    }

    case compiler::UnallocatedOperand::MUST_HAVE_REGISTER:
      node->result().SetAllocated(AllocateRegisterAtEnd(node));
      break;

    case compiler::UnallocatedOperand::SAME_AS_INPUT: {
      Input& input = node->input(operand.input_index());
      node->result().SetAllocated(ForceAllocate(input, node));
      // Clear any hint that (probably) comes from this constraint.
      if (node->has_hint()) input.node()->ClearHint();
      break;
    }

    case compiler::UnallocatedOperand::FIXED_FP_REGISTER: {
      DoubleRegister r =
          DoubleRegister::from_code(operand.fixed_register_index());
      DropRegisterValueAtEnd(r);
      node->result().SetAllocated(ForceAllocate(r, node));
      break;
    }

    case compiler::UnallocatedOperand::NONE:
      DCHECK(IsConstantNode(node->opcode()));
      break;

    case compiler::UnallocatedOperand::MUST_HAVE_SLOT:
    case compiler::UnallocatedOperand::REGISTER_OR_SLOT:
    case compiler::UnallocatedOperand::REGISTER_OR_SLOT_OR_CONSTANT:
      UNREACHABLE();
  }

  // Immediately kill the register use if the node doesn't have a valid
  // live-range.
  // TODO(verwaest): Remove once we can avoid allocating such registers.
  if (!node->has_valid_live_range() &&
      node->result().operand().IsAnyRegister()) {
    DCHECK(node->has_register());
    FreeRegistersUsedBy(node);
    DCHECK(!node->has_register());
    DCHECK(node->is_dead());
  }
}

template <typename RegisterT>
void StraightForwardRegisterAllocator::DropRegisterValue(
    RegisterFrameState<RegisterT>& registers, RegisterT reg) {
  // The register should not already be free.
  DCHECK(!registers.free().has(reg));

  ValueNode* node = registers.GetValue(reg);

  if (v8_flags.trace_maglev_regalloc) {
    printing_visitor_->os() << "  dropping " << reg << " value "
                            << PrintNodeLabel(graph_labeller(), node) << "\n";
  }

  MachineRepresentation mach_repr = node->GetMachineRepresentation();

  // Remove the register from the node's list.
  node->RemoveRegister(reg);
  // Return if the removed value already has another register or is loadable
  // from memory.
  if (node->has_register() || node->is_loadable()) return;
  // Try to move the value to another register. Do so without blocking that
  // register, as we may still want to use it elsewhere.
  if (!registers.UnblockedFreeIsEmpty()) {
    RegisterT target_reg = registers.unblocked_free().first();
    RegisterT hint_reg = node->GetRegisterHint<RegisterT>();
    if (hint_reg.is_valid() && registers.unblocked_free().has(hint_reg)) {
      target_reg = hint_reg;
    }
    registers.RemoveFromFree(target_reg);
    registers.SetValueWithoutBlocking(target_reg, node);
    // Emit a gapmove.
    compiler::AllocatedOperand source(compiler::LocationOperand::REGISTER,
                                      mach_repr, reg.code());
    compiler::AllocatedOperand target(compiler::LocationOperand::REGISTER,
                                      mach_repr, target_reg.code());
    AddMoveBeforeCurrentNode(node, source, target);
    return;
  }

  // If all else fails, spill the value.
  Spill(node);
}

void StraightForwardRegisterAllocator::DropRegisterValue(Register reg) {
  DropRegisterValue<Register>(general_registers_, reg);
}

void StraightForwardRegisterAllocator::DropRegisterValue(DoubleRegister reg) {
  DropRegisterValue<DoubleRegister>(double_registers_, reg);
}

void StraightForwardRegisterAllocator::InitializeBranchTargetPhis(
    int predecessor_id, BasicBlock* target) {
  DCHECK(!target->is_edge_split_block());

  if (!target->has_phi()) return;

  // Phi moves are emitted by resolving all phi moves as a single parallel move,
  // which means we shouldn't update register state as we go (as if we were
  // emitting a series of serialised moves) but rather take 'old' register
  // state as the phi input.
  Phi::List* phis = target->phis();
  for (Phi* phi : *phis) {
    // Ignore dead phis.
    // TODO(leszeks): We should remove dead phis entirely and turn this into a
    // DCHECK.
    if (!phi->has_valid_live_range()) continue;

    Input& input = phi->input(predecessor_id);
    input.InjectLocation(input.node()->allocation());
  }
}

void StraightForwardRegisterAllocator::InitializeConditionalBranchTarget(
    ConditionalControlNode* control_node, BasicBlock* target) {
  DCHECK(!target->has_phi());

  if (target->has_state()) {
    // Not a fall-through branch, copy the state over.
    return InitializeBranchTargetRegisterValues(control_node, target);
  }
  if (target->is_edge_split_block()) {
    return InitializeEmptyBlockRegisterValues(control_node, target);
  }

  // Clear dead fall-through registers.
  DCHECK_EQ(control_node->id() + 1, target->first_id());
  ClearDeadFallthroughRegisters<Register>(general_registers_, control_node,
                                          target);
  ClearDeadFallthroughRegisters<DoubleRegister>(double_registers_, control_node,
                                                target);
}

void StraightForwardRegisterAllocator::AllocateControlNode(ControlNode* node,
                                                           BasicBlock* block) {
  current_node_ = node;

  // Control nodes can't lazy deopt at the moment.
  DCHECK(!node->properties().can_lazy_deopt());

  if (node->Is<JumpToInlined>() || node->Is<Abort>()) {
    // Do nothing.
    DCHECK(node->general_temporaries().is_empty());
    DCHECK(node->double_temporaries().is_empty());
    DCHECK_EQ(node->num_temporaries_needed<Register>(), 0);
    DCHECK_EQ(node->num_temporaries_needed<DoubleRegister>(), 0);
    DCHECK_EQ(node->input_count(), 0);
    // Either there are no special properties, or there's a call but it doesn't
    // matter because we'll abort anyway.
    DCHECK_IMPLIES(
        node->properties() != OpProperties(0),
        node->properties() == OpProperties::Call() && node->Is<Abort>());

    if (v8_flags.trace_maglev_regalloc) {
      printing_visitor_->Process(node, ProcessingState(block_it_));
    }
  } else if (node->Is<Deopt>()) {
    // No temporaries.
    DCHECK(node->general_temporaries().is_empty());
    DCHECK(node->double_temporaries().is_empty());
    DCHECK_EQ(node->num_temporaries_needed<Register>(), 0);
    DCHECK_EQ(node->num_temporaries_needed<DoubleRegister>(), 0);
    DCHECK_EQ(node->input_count(), 0);
    DCHECK_EQ(node->properties(), OpProperties::EagerDeopt());

    AllocateEagerDeopt(*node->eager_deopt_info());

    if (v8_flags.trace_maglev_regalloc) {
      printing_visitor_->Process(node, ProcessingState(block_it_));
    }
  } else if (auto unconditional = node->TryCast<UnconditionalControlNode>()) {
    // No temporaries.
    DCHECK(node->general_temporaries().is_empty());
    DCHECK(node->double_temporaries().is_empty());
    DCHECK_EQ(node->num_temporaries_needed<Register>(), 0);
    DCHECK_EQ(node->num_temporaries_needed<DoubleRegister>(), 0);
    DCHECK_EQ(node->input_count(), 0);
    DCHECK(!node->properties().can_eager_deopt());
    DCHECK(!node->properties().can_lazy_deopt());
    DCHECK(!node->properties().needs_register_snapshot());
    DCHECK(!node->properties().is_call());

    auto predecessor_id = block->predecessor_id();
    auto target = unconditional->target();

    InitializeBranchTargetPhis(predecessor_id, target);
    MergeRegisterValues(unconditional, target, predecessor_id);
    if (target->has_phi()) {
      for (Phi* phi : *target->phis()) {
        UpdateUse(&phi->input(predecessor_id));
      }
    }

    // For JumpLoops, now update the uses of any node used in, but not defined
    // in the loop. This makes sure that such nodes' lifetimes are extended to
    // the entire body of the loop. This must be after phi initialisation so
    // that value dropping in the phi initialisation doesn't think these
    // extended lifetime nodes are dead.
    if (auto jump_loop = node->TryCast<JumpLoop>()) {
      for (Input& input : jump_loop->used_nodes()) {
        if (!input.node()->has_register() && !input.node()->is_loadable()) {
          // If the value isn't loadable by the end of a loop (this can happen
          // e.g. when a deferred throw doesn't spill it, and an exception
          // handler drops the value)
          Spill(input.node());
        }
        UpdateUse(&input);
      }
    }

    if (v8_flags.trace_maglev_regalloc) {
      printing_visitor_->Process(node, ProcessingState(block_it_));
    }
  } else {
    DCHECK(node->Is<ConditionalControlNode>() || node->Is<Return>());
    AssignInputs(node);
    VerifyInputs(node);

    DCHECK(!node->properties().can_eager_deopt());
    DCHECK(!node->properties().can_lazy_deopt());

    if (node->properties().is_call()) SpillAndClearRegisters();

    DCHECK(!node->properties().needs_register_snapshot());

    DCHECK_EQ(general_registers_.free() | node->general_temporaries(),
              general_registers_.free());
    DCHECK_EQ(double_registers_.free() | node->double_temporaries(),
              double_registers_.free());

    general_registers_.clear_blocked();
    double_registers_.clear_blocked();
    VerifyRegisterState();

    if (v8_flags.trace_maglev_regalloc) {
      printing_visitor_->Process(node, ProcessingState(block_it_));
    }

    // Finally, initialize the merge states of branch targets, including the
    // fallthrough, with the final state after all allocation
    if (auto conditional = node->TryCast<BranchControlNode>()) {
      InitializeConditionalBranchTarget(conditional, conditional->if_true());
      InitializeConditionalBranchTarget(conditional, conditional->if_false());
    } else if (Switch* control_node = node->TryCast<Switch>()) {
      const BasicBlockRef* targets = control_node->targets();
      for (int i = 0; i < control_node->size(); i++) {
        InitializeConditionalBranchTarget(control_node, targets[i].block_ptr());
      }
      if (control_node->has_fallthrough()) {
        InitializeConditionalBranchTarget(control_node,
                                          control_node->fallthrough());
      }
    }
  }

  VerifyRegisterState();
}

template <typename RegisterT>
void StraightForwardRegisterAllocator::SetLoopPhiRegisterHint(Phi* phi,
                                                              RegisterT reg) {
  compiler::UnallocatedOperand hint(
      std::is_same_v<RegisterT, Register>
          ? compiler::UnallocatedOperand::FIXED_REGISTER
          : compiler::UnallocatedOperand::FIXED_FP_REGISTER,
      reg.code(), kNoVreg);
  for (Input& input : *phi) {
    if (input.node()->id() > phi->id()) {
      input.node()->SetHint(hint);
    }
  }
}

void StraightForwardRegisterAllocator::TryAllocateToInput(Phi* phi) {
  // Try allocate phis to a register used by any of the inputs.
  for (Input& input : *phi) {
    if (input.operand().IsRegister()) {
      // We assume Phi nodes only point to tagged values, and so they use a
      // general register.
      Register reg = input.AssignedGeneralRegister();
      if (general_registers_.unblocked_free().has(reg)) {
        phi->result().SetAllocated(ForceAllocate(reg, phi));
        SetLoopPhiRegisterHint(phi, reg);
        DCHECK_EQ(general_registers_.GetValue(reg), phi);
        if (v8_flags.trace_maglev_regalloc) {
          printing_visitor_->Process(phi, ProcessingState(block_it_));
          printing_visitor_->os()
              << "phi (reuse) " << input.operand() << std::endl;
        }
        return;
      }
    }
  }
}

void StraightForwardRegisterAllocator::AddMoveBeforeCurrentNode(
    ValueNode* node, compiler::InstructionOperand source,
    compiler::AllocatedOperand target) {
  Node* gap_move;
  if (source.IsConstant()) {
    DCHECK(IsConstantNode(node->opcode()));
    if (v8_flags.trace_maglev_regalloc) {
      printing_visitor_->os()
          << "  constant gap move: " << target << " ← "
          << PrintNodeLabel(graph_labeller(), node) << std::endl;
    }
    gap_move =
        Node::New<ConstantGapMove>(compilation_info_->zone(), {}, node, target);
  } else {
    if (v8_flags.trace_maglev_regalloc) {
      printing_visitor_->os() << "  gap move: " << target << " ← "
                              << PrintNodeLabel(graph_labeller(), node) << ":"
                              << source << std::endl;
    }
    gap_move =
        Node::New<GapMove>(compilation_info_->zone(), {},
                           compiler::AllocatedOperand::cast(source), target);
  }
  if (compilation_info_->has_graph_labeller()) {
    graph_labeller()->RegisterNode(gap_move);
  }
  if (*node_it_ == nullptr) {
    DCHECK(current_node_->Is<ControlNode>());
    // We're at the control node, so append instead.
    (*block_it_)->nodes().Add(gap_move);
    node_it_ = (*block_it_)->nodes().end();
  } else {
    DCHECK_NE(node_it_, (*block_it_)->nodes().end());
    // We should not add any gap move before a GetSecondReturnedValue.
    DCHECK_NE(node_it_->opcode(), Opcode::kGetSecondReturnedValue);
    node_it_.InsertBefore(gap_move);
  }
}

void StraightForwardRegisterAllocator::Spill(ValueNode* node) {
  if (node->is_loadable()) return;
  AllocateSpillSlot(node);
  if (v8_flags.trace_maglev_regalloc) {
    printing_visitor_->os()
        << "  spill: " << node->spill_slot() << " ← "
        << PrintNodeLabel(graph_labeller(), node) << std::endl;
  }
}

void StraightForwardRegisterAllocator::AssignFixedInput(Input& input) {
  compiler::UnallocatedOperand operand =
      compiler::UnallocatedOperand::cast(input.operand());
  ValueNode* node = input.node();
  compiler::InstructionOperand location = node->allocation();

  switch (operand.extended_policy()) {
    case compiler::UnallocatedOperand::MUST_HAVE_REGISTER:
      // Allocated in AssignArbitraryRegisterInput.
      if (v8_flags.trace_maglev_regalloc) {
        printing_visitor_->os()
            << "- " << PrintNodeLabel(graph_labeller(), input.node())
            << " has arbitrary register\n";
      }
      return;

    case compiler::UnallocatedOperand::REGISTER_OR_SLOT_OR_CONSTANT:
      // Allocated in AssignAnyInput.
      if (v8_flags.trace_maglev_regalloc) {
        printing_visitor_->os()
            << "- " << PrintNodeLabel(graph_labeller(), input.node())
            << " has arbitrary location\n";
      }
      return;

    case compiler::UnallocatedOperand::FIXED_REGISTER: {
      Register reg = Register::from_code(operand.fixed_register_index());
      input.SetAllocated(ForceAllocate(reg, node));
      break;
    }

    case compiler::UnallocatedOperand::FIXED_FP_REGISTER: {
      DoubleRegister reg =
          DoubleRegister::from_code(operand.fixed_register_index());
      input.SetAllocated(ForceAllocate(reg, node));
      break;
    }

    case compiler::UnallocatedOperand::REGISTER_OR_SLOT:
    case compiler::UnallocatedOperand::SAME_AS_INPUT:
    case compiler::UnallocatedOperand::NONE:
    case compiler::UnallocatedOperand::MUST_HAVE_SLOT:
      UNREACHABLE();
  }
  if (v8_flags.trace_maglev_regalloc) {
    printing_visitor_->os()
        << "- " << PrintNodeLabel(graph_labeller(), input.node())
        << " in forced " << input.operand() << "\n";
  }

  compiler::AllocatedOperand allocated =
      compiler::AllocatedOperand::cast(input.operand());
  if (location != allocated) {
    AddMoveBeforeCurrentNode(node, location, allocated);
  }
  UpdateUse(&input);
  // Clear any hint that (probably) comes from this fixed use.
  input.node()->ClearHint();
}

void StraightForwardRegisterAllocator::MarkAsClobbered(
    ValueNode* node, const compiler::AllocatedOperand& location) {
  if (node->use_double_register()) {
    DoubleRegister reg = location.GetDoubleRegister();
    DCHECK(double_registers_.is_blocked(reg));
    DropRegisterValue(reg);
    double_registers_.AddToFree(reg);
  } else {
    Register reg = location.GetRegister();
    DCHECK(general_registers_.is_blocked(reg));
    DropRegisterValue(reg);
    general_registers_.AddToFree(reg);
  }
}

namespace {

#ifdef DEBUG
bool IsInRegisterLocation(ValueNode* node,
                          compiler::InstructionOperand location) {
  DCHECK(location.IsAnyRegister());
  compiler::AllocatedOperand allocation =
      compiler::AllocatedOperand::cast(location);
  DCHECK_IMPLIES(node->use_double_register(), allocation.IsDoubleRegister());
  DCHECK_IMPLIES(!node->use_double_register(), allocation.IsRegister());
  if (node->use_double_register()) {
    return node->is_in_register(allocation.GetDoubleRegister());
  } else {
    return node->is_in_register(allocation.GetRegister());
  }
}
#endif  // DEBUG

bool SameAsInput(ValueNode* node, Input& input) {
  auto operand = compiler::UnallocatedOperand::cast(node->result().operand());
  return operand.HasSameAsInputPolicy() &&
         &input == &node->input(operand.input_index());
}

compiler::InstructionOperand InputHint(NodeBase* node, Input& input) {
  ValueNode* value_node = node->TryCast<ValueNode>();
  if (!value_node) return input.node()->hint();
  DCHECK(value_node->result().operand().IsUnallocated());
  if (SameAsInput(value_node, input)) {
    return value_node->hint();
  } else {
    return input.node()->hint();
  }
}

}  // namespace

void StraightForwardRegisterAllocator::AssignArbitraryRegisterInput(
    NodeBase* result_node, Input& input) {
  // Already assigned in AssignFixedInput
  if (!input.operand().IsUnallocated()) return;

  compiler::UnallocatedOperand operand =
      compiler::UnallocatedOperand::cast(input.operand());
  if (operand.extended_policy() ==
      compiler::UnallocatedOperand::REGISTER_OR_SLOT_OR_CONSTANT) {
    // Allocated in AssignAnyInput.
    return;
  }

  DCHECK_EQ(operand.extended_policy(),
            compiler::UnallocatedOperand::MUST_HAVE_REGISTER);

  ValueNode* node = input.node();
  bool is_clobbered = input.Cloberred();

  compiler::AllocatedOperand location = ([&] {
    compiler::InstructionOperand existing_register_location;
    auto hint = InputHint(result_node, input);
    if (is_clobbered) {
      // For clobbered inputs, we want to pick a different register than
      // non-clobbered inputs, so that we don't clobber those.
      existing_register_location =
          node->use_double_register()
              ? double_registers_.TryChooseUnblockedInputRegister(node)
              : general_registers_.TryChooseUnblockedInputRegister(node);
    } else {
      ValueNode* value_node = result_node->TryCast<ValueNode>();
      // Only use the hint if it helps with the result's allocation due to
      // same-as-input policy. Otherwise this doesn't affect regalloc.
      auto result_hint = value_node && SameAsInput(value_node, input)
                             ? value_node->hint()
                             : compiler::InstructionOperand();
      existing_register_location =
          node->use_double_register()
              ? double_registers_.TryChooseInputRegister(node, result_hint)
              : general_registers_.TryChooseInputRegister(node, result_hint);
    }

    // Reuse an existing register if possible.
    if (existing_register_location.IsAnyLocationOperand()) {
      if (v8_flags.trace_maglev_regalloc) {
        printing_visitor_->os()
            << "- " << PrintNodeLabel(graph_labeller(), input.node()) << " in "
            << (is_clobbered ? "clobbered " : "") << existing_register_location
            << "\n";
      }
      return compiler::AllocatedOperand::cast(existing_register_location);
    }

    // Otherwise, allocate a register for the node and load it in from there.
    compiler::InstructionOperand existing_location = node->allocation();
    compiler::AllocatedOperand allocation = AllocateRegister(node, hint);
    DCHECK_NE(existing_location, allocation);
    AddMoveBeforeCurrentNode(node, existing_location, allocation);

    if (v8_flags.trace_maglev_regalloc) {
      printing_visitor_->os()
          << "- " << PrintNodeLabel(graph_labeller(), input.node()) << " in "
          << (is_clobbered ? "clobbered " : "") << allocation << " ← "
          << node->allocation() << "\n";
    }
    return allocation;
  })();

  input.SetAllocated(location);

  UpdateUse(&input);
  // Only need to mark the location as clobbered if the node wasn't already
  // killed by UpdateUse.
  if (is_clobbered && !node->is_dead()) {
    MarkAsClobbered(node, location);
  }
  // Clobbered inputs should no longer be in the allocated location, as far as
  // the register allocator is concerned. This will happen either via
  // clobbering, or via this being the last use.
  DCHECK_IMPLIES(is_clobbered, !IsInRegisterLocation(node, location));
}

void StraightForwardRegisterAllocator::AssignAnyInput(Input& input) {
  // Already assigned in AssignFixedInput or AssignArbitraryRegisterInput.
  if (!input.operand().IsUnallocated()) return;

  DCHECK_EQ(
      compiler::UnallocatedOperand::cast(input.operand()).extended_policy(),
      compiler::UnallocatedOperand::REGISTER_OR_SLOT_OR_CONSTANT);

  ValueNode* node = input.node();
  compiler::InstructionOperand location = node->allocation();

  input.InjectLocation(location);
  if (location.IsAnyRegister()) {
    compiler::AllocatedOperand allocation =
        compiler::AllocatedOperand::cast(location);
    if (allocation.IsDoubleRegister()) {
      double_registers_.block(allocation.GetDoubleRegister());
    } else {
      general_registers_.block(allocation.GetRegister());
    }
  }
  if (v8_flags.trace_maglev_regalloc) {
    printing_visitor_->os()
        << "- " << PrintNodeLabel(graph_labeller(), input.node())
        << " in original " << location << "\n";
  }
  UpdateUse(&input);
}

void StraightForwardRegisterAllocator::AssignInputs(NodeBase* node) {
  // We allocate arbitrary register inputs after fixed inputs, since the fixed
  // inputs may clobber the arbitrarily chosen ones. Finally we assign the
  // location for the remaining inputs. Since inputs can alias a node, one of
  // the inputs could be assigned a register in AssignArbitraryRegisterInput
  // (and respectivelly its node location), therefore we wait until all
  // registers are allocated before assigning any location for these inputs.
  // TODO(dmercadier): consider using `ForAllInputsInRegallocAssignmentOrder` to
  // iterate the inputs. Since UseMarkingProcessor uses this helper to iterate
  // inputs, and it has to iterate them in the same order as this function,
  // using the iteration helper in both places would be better.
  for (Input& input : *node) AssignFixedInput(input);
  AssignFixedTemporaries(node);
  for (Input& input : *node) AssignArbitraryRegisterInput(node, input);
  AssignArbitraryTemporaries(node);
  for (Input& input : *node) AssignAnyInput(input);
}

void StraightForwardRegisterAllocator::VerifyInputs(NodeBase* node) {
#ifdef DEBUG
  for (Input& input : *node) {
    if (input.operand().IsRegister()) {
      Register reg =
          compiler::AllocatedOperand::cast(input.operand()).GetRegister();
      if (general_registers_.GetValueMaybeFreeButBlocked(reg) != input.node()) {
        FATAL("Input node n%d is not in expected register %s",
              graph_labeller()->NodeId(input.node()), RegisterName(reg));
      }
    } else if (input.operand().IsDoubleRegister()) {
      DoubleRegister reg =
          compiler::AllocatedOperand::cast(input.operand()).GetDoubleRegister();
      if (double_registers_.GetValueMaybeFreeButBlocked(reg) != input.node()) {
        FATAL("Input node n%d is not in expected register %s",
              graph_labeller()->NodeId(input.node()), RegisterName(reg));
      }
    } else {
      if (input.operand() != input.node()->allocation()) {
        std::stringstream ss;
        ss << input.operand();
        FATAL("Input node n%d is not in operand %s",
              graph_labeller()->NodeId(input.node()), ss.str().c_str());
      }
    }
  }
#endif
}

void StraightForwardRegisterAllocator::VerifyRegisterState() {
#ifdef DEBUG
  // We shouldn't have any blocked registers by now.
  DCHECK(general_registers_.blocked().is_empty());
  DCHECK(double_registers_.blocked().is_empty());

  auto NodeNameForFatal = [&](ValueNode* node) {
    std::stringstream ss;
    if (compilation_info_->has_graph_labeller()) {
      ss << PrintNodeLabel(compilation_info_->graph_labeller(), node);
    } else {
      ss << "<" << node << ">";
    }
    return ss.str();
  };

  for (Register reg : general_registers_.used()) {
    ValueNode* node = general_registers_.GetValue(reg);
    if (!node->is_in_register(reg)) {
      FATAL("Node %s doesn't think it is in register %s",
            NodeNameForFatal(node).c_str(), RegisterName(reg));
    }
  }
  for (DoubleRegister reg : double_registers_.used()) {
    ValueNode* node = double_registers_.GetValue(reg);
    if (!node->is_in_register(reg)) {
      FATAL("Node %s doesn't think it is in register %s",
            NodeNameForFatal(node).c_str(), RegisterName(reg));
    }
  }

  auto ValidateValueNode = [this, NodeNameForFatal](ValueNode* node) {
    if (node->use_double_register()) {
      for (DoubleRegister reg : node->result_registers<DoubleRegister>()) {
        if (double_registers_.unblocked_free().has(reg)) {
          FATAL("Node %s thinks it's in register %s but it's free",
                NodeNameForFatal(node).c_str(), RegisterName(reg));
        } else if (double_registers_.GetValue(reg) != node) {
          FATAL("Node %s thinks it's in register %s but it contains %s",
                NodeNameForFatal(node).c_str(), RegisterName(reg),
                NodeNameForFatal(double_registers_.GetValue(reg)).c_str());
        }
      }
    } else {
      for (Register reg : node->result_registers<Register>()) {
        if (general_registers_.unblocked_free().has(reg)) {
          FATAL("Node %s thinks it's in register %s but it's free",
                NodeNameForFatal(node).c_str(), RegisterName(reg));
        } else if (general_registers_.GetValue(reg) != node) {
          FATAL("Node %s thinks it's in register %s but it contains %s",
                NodeNameForFatal(node).c_str(), RegisterName(reg),
                NodeNameForFatal(general_registers_.GetValue(reg)).c_str());
        }
      }
    }
  };

  for (BasicBlock* block : *graph_) {
    if (block->has_phi()) {
      for (Phi* phi : *block->phis()) {
        // Ignore dead phis.
        // TODO(leszeks): We should remove dead phis entirely and turn this into
        // a DCHECK.
        if (!phi->has_valid_live_range()) continue;
        ValidateValueNode(phi);
      }
    }
    for (Node* node : block->nodes()) {
      if (IsDeadNodeToSkip(node)) continue;
      if (ValueNode* value_node = node->TryCast<ValueNode>()) {
        ValidateValueNode(value_node);
      }
    }
  }

#endif
}

void StraightForwardRegisterAllocator::SpillRegisters() {
  auto spill = [&](auto reg, ValueNode* node) { Spill(node); };
  general_registers_.ForEachUsedRegister(spill);
  double_registers_.ForEachUsedRegister(spill);
}

template <typename RegisterT>
void StraightForwardRegisterAllocator::SpillAndClearRegisters(
    RegisterFrameState<RegisterT>& registers) {
  while (registers.used() != registers.empty()) {
    RegisterT reg = registers.used().first();
    ValueNode* node = registers.GetValue(reg);
    if (v8_flags.trace_maglev_regalloc) {
      printing_visitor_->os() << "  clearing registers with "
                              << PrintNodeLabel(graph_labeller(), node) << "\n";
    }
    Spill(node);
    registers.FreeRegistersUsedBy(node);
    DCHECK(!registers.used().has(reg));
  }
}

void StraightForwardRegisterAllocator::SpillAndClearRegisters() {
  SpillAndClearRegisters(general_registers_);
  SpillAndClearRegisters(double_registers_);
}

void StraightForwardRegisterAllocator::SaveRegisterSnapshot(NodeBase* node) {
  RegisterSnapshot snapshot;
  general_registers_.ForEachUsedRegister([&](Register reg, ValueNode* node) {
    if (node->properties().value_representation() ==
        ValueRepresentation::kTagged) {
      snapshot.live_tagged_registers.set(reg);
    }
  });
  snapshot.live_registers = general_registers_.used();
  snapshot.live_double_registers = double_registers_.used();
  // If a value node, then the result register is removed from the snapshot.
  if (ValueNode* value_node = node->TryCast<ValueNode>()) {
    if (value_node->use_double_register()) {
      snapshot.live_double_registers.clear(
          ToDoubleRegister(value_node->result()));
    } else {
      Register reg = ToRegister(value_node->result());
      snapshot.live_registers.clear(reg);
      snapshot.live_tagged_registers.clear(reg);
    }
  }
  node->set_register_snapshot(snapshot);
}

void StraightForwardRegisterAllocator::AllocateSpillSlot(ValueNode* node) {
  DCHECK(!node->is_loadable());
  uint32_t free_slot;
  bool is_tagged = (node->properties().value_representation() ==
                    ValueRepresentation::kTagged);
  // TODO(v8:7700): We will need a new class of SpillSlots for doubles in 32-bit
  // architectures.
  SpillSlots& slots = is_tagged ? tagged_ : untagged_;
  MachineRepresentation representation = node->GetMachineRepresentation();
  if (!v8_flags.maglev_reuse_stack_slots || slots.free_slots.empty()) {
    free_slot = slots.top++;
  } else {
    NodeIdT start = node->live_range().start;
    auto it =
        std::upper_bound(slots.free_slots.begin(), slots.free_slots.end(),
                         start, [](NodeIdT s, const SpillSlotInfo& slot_info) {
                           return slot_info.freed_at_position >= s;
                         });
    if (it != slots.free_slots.begin()) {
      // {it} points to the first invalid slot. Decrement it to get to the last
      // valid slot freed before {start}.
      --it;
      free_slot = it->slot_index;
      slots.free_slots.erase(it);
    } else {
      free_slot = slots.top++;
    }
  }
  node->Spill(compiler::AllocatedOperand(compiler::AllocatedOperand::STACK_SLOT,
                                         representation, free_slot));
}

template <typename RegisterT>
RegisterT StraightForwardRegisterAllocator::PickRegisterToFree(
    RegListBase<RegisterT> reserved) {
  RegisterFrameState<RegisterT>& registers = GetRegisterFrameState<RegisterT>();
  if (v8_flags.trace_maglev_regalloc) {
    printing_visitor_->os() << "  need to free a register... ";
  }
  int furthest_use = 0;
  RegisterT best = RegisterT::no_reg();
  for (RegisterT reg : (registers.used() - reserved)) {
    ValueNode* value = registers.GetValue(reg);

    // The cheapest register to clear is a register containing a value that's
    // contained in another register as well. Since we found the register while
    // looping over unblocked registers, we can simply use this register.
    if (value->num_registers() > 1) {
      best = reg;
      break;
    }
    int use = value->next_use();
    if (use > furthest_use) {
      furthest_use = use;
      best = reg;
    }
  }
  if (v8_flags.trace_maglev_regalloc) {
    printing_visitor_->os()
        << "  chose " << best << " with next use " << furthest_use << "\n";
  }
  return best;
}

template <typename RegisterT>
RegisterT StraightForwardRegisterAllocator::FreeUnblockedRegister(
    RegListBase<RegisterT> reserved) {
  RegisterFrameState<RegisterT>& registers = GetRegisterFrameState<RegisterT>();
  RegisterT best =
      PickRegisterToFree<RegisterT>(registers.blocked() | reserved);
  DCHECK(best.is_valid());
  DCHECK(!registers.is_blocked(best));
  DropRegisterValue(registers, best);
  registers.AddToFree(best);
  return best;
}

compiler::AllocatedOperand StraightForwardRegisterAllocator::AllocateRegister(
    ValueNode* node, const compiler::InstructionOperand& hint) {
  compiler::InstructionOperand allocation;
  if (node->use_double_register()) {
    if (double_registers_.UnblockedFreeIsEmpty()) {
      FreeUnblockedRegister<DoubleRegister>();
    }
    return double_registers_.AllocateRegister(node, hint);
  } else {
    if (general_registers_.UnblockedFreeIsEmpty()) {
      FreeUnblockedRegister<Register>();
    }
    return general_registers_.AllocateRegister(node, hint);
  }
}

namespace {
template <typename RegisterT>
static RegisterT GetRegisterHint(const compiler::InstructionOperand& hint) {
  if (hint.IsInvalid()) return RegisterT::no_reg();
  DCHECK(hint.IsUnallocated());
  return RegisterT::from_code(
      compiler::UnallocatedOperand::cast(hint).fixed_register_index());
}

}  // namespace

bool StraightForwardRegisterAllocator::IsCurrentNodeLastUseOf(ValueNode* node) {
  return node->live_range().end == current_node_->id();
}

template <typename RegisterT>
void StraightForwardRegisterAllocator::EnsureFreeRegisterAtEnd(
    const compiler::InstructionOperand& hint) {
  RegisterFrameState<RegisterT>& registers = GetRegisterFrameState<RegisterT>();
  // If we still have free registers, pick one of those.
  if (!registers.unblocked_free().is_empty()) return;

  // If the current node is a last use of an input, pick a register containing
  // the input. Prefer the hint register if available.
  RegisterT hint_reg = GetRegisterHint<RegisterT>(hint);
  if (!registers.free().has(hint_reg) && registers.blocked().has(hint_reg) &&
      IsCurrentNodeLastUseOf(registers.GetValue(hint_reg))) {
    DropRegisterValueAtEnd(hint_reg);
    return;
  }
  // Only search in the used-blocked list, since we don't want to assign the
  // result register to a temporary (free + blocked).
  for (RegisterT reg : (registers.blocked() - registers.free())) {
    if (IsCurrentNodeLastUseOf(registers.GetValue(reg))) {
      DropRegisterValueAtEnd(reg);
      return;
    }
  }

  // Pick any input-blocked register based on regular heuristics.
  RegisterT reg = hint.IsInvalid()
                      ? PickRegisterToFree<RegisterT>(registers.empty())
                      : GetRegisterHint<RegisterT>(hint);
  DropRegisterValueAtEnd(reg);
}

compiler::AllocatedOperand
StraightForwardRegisterAllocator::AllocateRegisterAtEnd(ValueNode* node) {
  if (node->use_double_register()) {
    EnsureFreeRegisterAtEnd<DoubleRegister>(node->hint());
    return double_registers_.AllocateRegister(node, node->hint());
  } else {
    EnsureFreeRegisterAtEnd<Register>(node->hint());
    return general_registers_.AllocateRegister(node, node->hint());
  }
}

template <typename RegisterT>
compiler::AllocatedOperand StraightForwardRegisterAllocator::ForceAllocate(
    RegisterFrameState<RegisterT>& registers, RegisterT reg, ValueNode* node) {
  DCHECK(!registers.is_blocked(reg));
  if (v8_flags.trace_maglev_regalloc) {
    printing_visitor_->os()
        << "  forcing " << reg << " to "
        << PrintNodeLabel(graph_labeller(), node) << "...\n";
  }
  if (registers.free().has(reg)) {
    // If it's already free, remove it from the free list.
    registers.RemoveFromFree(reg);
  } else if (registers.GetValue(reg) == node) {
    registers.block(reg);
    return compiler::AllocatedOperand(compiler::LocationOperand::REGISTER,
                                      node->GetMachineRepresentation(),
                                      reg.code());
  } else {
    DCHECK(!registers.is_blocked(reg));
    DropRegisterValue(registers, reg);
  }
#ifdef DEBUG
  DCHECK(!registers.free().has(reg));
#endif
  registers.unblock(reg);
  registers.SetValue(reg, node);
  return compiler::AllocatedOperand(compiler::LocationOperand::REGISTER,
                                    node->GetMachineRepresentation(),
                                    reg.code());
}

compiler::AllocatedOperand StraightForwardRegisterAllocator::ForceAllocate(
    Register reg, ValueNode* node) {
  DCHECK(!node->use_double_register());
  return ForceAllocate<Register>(general_registers_, reg, node);
}

compiler::AllocatedOperand StraightForwardRegisterAllocator::ForceAllocate(
    DoubleRegister reg, ValueNode* node) {
  DCHECK(node->use_double_register());
  return ForceAllocate<DoubleRegister>(double_registers_, reg, node);
}

compiler::AllocatedOperand StraightForwardRegisterAllocator::ForceAllocate(
    const Input& input, ValueNode* node) {
  if (input.IsDoubleRegister()) {
    DoubleRegister reg = input.AssignedDoubleRegister();
    DropRegisterValueAtEnd(reg);
    return ForceAllocate(reg, node);
  } else {
    Register reg = input.AssignedGeneralRegister();
    DropRegisterValueAtEnd(reg);
    return ForceAllocate(reg, node);
  }
}

namespace {
template <typename RegisterT>
compiler::AllocatedOperand OperandForNodeRegister(ValueNode* node,
                                                  RegisterT reg) {
  return compiler::AllocatedOperand(compiler::LocationOperand::REGISTER,
                                    node->GetMachineRepresentation(),
                                    reg.code());
}
}  // namespace

template <typename RegisterT>
compiler::InstructionOperand
RegisterFrameState<RegisterT>::TryChooseInputRegister(
    ValueNode* node, const compiler::InstructionOperand& hint) {
  RegTList result_registers = node->result_registers<RegisterT>();
  if (result_registers.is_empty()) return compiler::InstructionOperand();

  // Prefer to return an existing blocked register.
  RegTList blocked_result_registers = result_registers & blocked_;
  if (!blocked_result_registers.is_empty()) {
    RegisterT reg = GetRegisterHint<RegisterT>(hint);
    if (!blocked_result_registers.has(reg)) {
      reg = blocked_result_registers.first();
    }
    return OperandForNodeRegister(node, reg);
  }

  RegisterT reg = result_registers.first();
  block(reg);
  return OperandForNodeRegister(node, reg);
}

template <typename RegisterT>
compiler::InstructionOperand
RegisterFrameState<RegisterT>::TryChooseUnblockedInputRegister(
    ValueNode* node) {
  RegTList result_excl_blocked = node->result_registers<RegisterT>() - blocked_;
  if (result_excl_blocked.is_empty()) return compiler::InstructionOperand();
  RegisterT reg = result_excl_blocked.first();
  block(reg);
  return OperandForNodeRegister(node, reg);
}

template <typename RegisterT>
compiler::AllocatedOperand RegisterFrameState<RegisterT>::AllocateRegister(
    ValueNode* node, const compiler::InstructionOperand& hint) {
  DCHECK(!unblocked_free().is_empty());
  RegisterT reg = GetRegisterHint<RegisterT>(hint);
  if (!unblocked_free().has(reg)) {
    reg = unblocked_free().first();
  }
  RemoveFromFree(reg);

  // Allocation succeeded. This might have found an existing allocation.
  // Simply update the state anyway.
  SetValue(reg, node);
  return OperandForNodeRegister(node, reg);
}

template <typename RegisterT>
void StraightForwardRegisterAllocator::AssignFixedTemporaries(
    RegisterFrameState<RegisterT>& registers, NodeBase* node) {
  RegListBase<RegisterT> fixed_temporaries = node->temporaries<RegisterT>();

  // Make sure that any initially set temporaries are definitely free.
  for (RegisterT reg : fixed_temporaries) {
    DCHECK(!registers.is_blocked(reg));
    if (!registers.free().has(reg)) {
      DropRegisterValue(registers, reg);
      registers.AddToFree(reg);
    }
    registers.block(reg);
  }

  if (v8_flags.trace_maglev_regalloc && !fixed_temporaries.is_empty()) {
    if constexpr (std::is_same_v<RegisterT, Register>) {
      printing_visitor_->os()
          << "Fixed Temporaries: " << fixed_temporaries << "\n";
    } else {
      printing_visitor_->os()
          << "Fixed Double Temporaries: " << fixed_temporaries << "\n";
    }
  }

  // After allocating the specific/fixed temporary registers, we empty the node
  // set, so that it is used to allocate only the arbitrary/available temporary
  // register that is going to be inserted in the scratch scope.
  node->temporaries<RegisterT>() = {};
}

void StraightForwardRegisterAllocator::AssignFixedTemporaries(NodeBase* node) {
  AssignFixedTemporaries(general_registers_, node);
  AssignFixedTemporaries(double_registers_, node);
}

namespace {
template <typename RegisterT>
RegListBase<RegisterT> GetReservedRegisters(NodeBase* node_base) {
  if (!node_base->Is<ValueNode>()) return RegListBase<RegisterT>();
  ValueNode* node = node_base->Cast<ValueNode>();
  compiler::UnallocatedOperand operand =
      compiler::UnallocatedOperand::cast(node->result().operand());
  RegListBase<RegisterT> reserved = {node->GetRegisterHint<RegisterT>()};
  if constexpr (std::is_same_v<RegisterT, Register>) {
    if (operand.extended_policy() ==
        compiler::UnallocatedOperand::FIXED_REGISTER) {
      reserved.set(Register::from_code(operand.fixed_register_index()));
    }
  } else {
    static_assert(std::is_same_v<RegisterT, DoubleRegister>);
    if (operand.extended_policy() ==
        compiler::UnallocatedOperand::FIXED_FP_REGISTER) {
      reserved.set(DoubleRegister::from_code(operand.fixed_register_index()));
    }
  }
  return reserved;
}
}  // namespace

template <typename RegisterT>
void StraightForwardRegisterAllocator::AssignArbitraryTemporaries(
    RegisterFrameState<RegisterT>& registers, NodeBase* node) {
  int num_temporaries_needed = node->num_temporaries_needed<RegisterT>();
  if (num_temporaries_needed == 0) return;

  DCHECK_GT(num_temporaries_needed, 0);
  RegListBase<RegisterT> temporaries = node->temporaries<RegisterT>();
  DCHECK(temporaries.is_empty());
  int remaining_temporaries_needed = num_temporaries_needed;

  // If the node is a ValueNode with a fixed result register, we should not
  // assign a temporary to the result register, nor its hint.
  RegListBase<RegisterT> reserved = GetReservedRegisters<RegisterT>(node);
  for (RegisterT reg : (registers.unblocked_free() - reserved)) {
    registers.block(reg);
    DCHECK(!temporaries.has(reg));
    temporaries.set(reg);
    if (--remaining_temporaries_needed == 0) break;
  }

  // Free extra registers if necessary.
  for (int i = 0; i < remaining_temporaries_needed; ++i) {
    DCHECK((registers.unblocked_free() - reserved).is_empty());
    RegisterT reg = FreeUnblockedRegister<RegisterT>(reserved);
    registers.block(reg);
    DCHECK(!temporaries.has(reg));
    temporaries.set(reg);
  }

  DCHECK_GE(temporaries.Count(), num_temporaries_needed);

  node->assign_temporaries(temporaries);
  if (v8_flags.trace_maglev_regalloc) {
    if constexpr (std::is_same_v<RegisterT, Register>) {
      printing_visitor_->os() << "Temporaries: " << temporaries << "\n";
    } else {
      printing_visitor_->os() << "Double Temporaries: " << temporaries << "\n";
    }
  }
}

void StraightForwardRegisterAllocator::AssignArbitraryTemporaries(
    NodeBase* node) {
  AssignArbitraryTemporaries(general_registers_, node);
  AssignArbitraryTemporaries(double_registers_, node);
}

namespace {
template <typename RegisterT>
void ClearRegisterState(RegisterFrameState<RegisterT>& registers) {
  while (!registers.used().is_empty()) {
    RegisterT reg = registers.used().first();
    ValueNode* node = registers.GetValue(reg);
    registers.FreeRegistersUsedBy(node);
    DCHECK(!registers.used().has(reg));
  }
}
}  // namespace

template <typename Function>
void StraightForwardRegisterAllocator::ForEachMergePointRegisterState(
    MergePointRegisterState& merge_point_state, Function&& f) {
  merge_point_state.ForEachGeneralRegister(
      [&](Register reg, RegisterState& state) {
        f(general_registers_, reg, state);
      });
  merge_point_state.ForEachDoubleRegister(
      [&](DoubleRegister reg, RegisterState& state) {
        f(double_registers_, reg, state);
      });
}

void StraightForwardRegisterAllocator::ClearRegisterValues() {
  ClearRegisterState(general_registers_);
  ClearRegisterState(double_registers_);

  // All registers should be free by now.
  DCHECK_EQ(general_registers_.unblocked_free(), kAllocatableGeneralRegisters);
  DCHECK_EQ(double_registers_.unblocked_free(), kAllocatableDoubleRegisters);
}

void StraightForwardRegisterAllocator::InitializeRegisterValues(
    MergePointRegisterState& target_state) {
  // First clear the register state.
  ClearRegisterValues();

  // Then fill it in with target information.
  auto fill = [&](auto& registers, auto reg, RegisterState& state) {
    ValueNode* node;
    RegisterMerge* merge;
    LoadMergeState(state, &node, &merge);
    if (node != nullptr) {
      registers.RemoveFromFree(reg);
      registers.SetValue(reg, node);
    } else {
      DCHECK(!state.GetPayload().is_merge);
    }
  };
  ForEachMergePointRegisterState(target_state, fill);

  // SetValue will have blocked registers, unblock them.
  general_registers_.clear_blocked();
  double_registers_.clear_blocked();
}

#ifdef DEBUG

bool StraightForwardRegisterAllocator::IsInRegister(
    MergePointRegisterState& target_state, ValueNode* incoming) {
  bool found = false;
  auto find = [&found, &incoming](auto reg, RegisterState& state) {
    ValueNode* node;
    RegisterMerge* merge;
    LoadMergeState(state, &node, &merge);
    if (node == incoming) found = true;
  };
  if (incoming->use_double_register()) {
    target_state.ForEachDoubleRegister(find);
  } else {
    target_state.ForEachGeneralRegister(find);
  }
  return found;
}

// Returns true if {first_id} or {last_id} are forward-reachable from {current}.
bool StraightForwardRegisterAllocator::IsForwardReachable(
    BasicBlock* start_block, NodeIdT first_id, NodeIdT last_id) {
  ZoneQueue<BasicBlock*> queue(compilation_info_->zone());
  ZoneSet<BasicBlock*> seen(compilation_info_->zone());
  while (!queue.empty()) {
    BasicBlock* curr = queue.front();
    queue.pop();

    if (curr->contains_node_id(first_id) || curr->contains_node_id(last_id)) {
      return true;
    }

    if (curr->control_node()->Is<JumpLoop>()) {
      // A JumpLoop will have a backward edge. Since we are only interested in
      // checking forward reachability, we ignore its successors.
      continue;
    }

    for (BasicBlock* succ : curr->successors()) {
      if (seen.insert(succ).second) {
        queue.push(succ);
      }
      // Since we skipped JumpLoop, only forward edges should remain.
      DCHECK_GT(succ->first_id(), curr->first_id());
    }
  }

  return false;
}

#endif  //  DEBUG

void StraightForwardRegisterAllocator::InitializeBranchTargetRegisterValues(
    ControlNode* source, BasicBlock* target) {
  MergePointRegisterState& target_state = target->state()->register_state();
  DCHECK(!target_state.is_initialized());
  auto init = [&](auto& registers, auto reg, RegisterState& state) {
    ValueNode* node = nullptr;
    DCHECK(registers.blocked().is_empty());
    if (!registers.free().has(reg)) {
      node = registers.GetValue(reg);
      if (!IsLiveAtTarget(node, source, target)) node = nullptr;
    }
    state = {node, initialized_node};
  };
  ForEachMergePointRegisterState(target_state, init);
}

void StraightForwardRegisterAllocator::InitializeEmptyBlockRegisterValues(
    ControlNode* source, BasicBlock* target) {
  DCHECK(target->is_edge_split_block());
  MergePointRegisterState* register_state =
      compilation_info_->zone()->New<MergePointRegisterState>();

  DCHECK(!register_state->is_initialized());
  auto init = [&](auto& registers, auto reg, RegisterState& state) {
    ValueNode* node = nullptr;
    DCHECK(registers.blocked().is_empty());
    if (!registers.free().has(reg)) {
      node = registers.GetValue(reg);
      if (!IsLiveAtTarget(node, source, target)) node = nullptr;
    }
    state = {node, initialized_node};
  };
  ForEachMergePointRegisterState(*register_state, init);

  target->set_edge_split_block_register_state(register_state);
}

void StraightForwardRegisterAllocator::MergeRegisterValues(ControlNode* control,
                                                           BasicBlock* target,
                                                           int predecessor_id) {
  if (target->is_edge_split_block()) {
    return InitializeEmptyBlockRegisterValues(control, target);
  }

  MergePointRegisterState& target_state = target->state()->register_state();
  if (!target_state.is_initialized()) {
    // This is the first block we're merging, initialize the values.
    return InitializeBranchTargetRegisterValues(control, target);
  }

  if (v8_flags.trace_maglev_regalloc) {
    printing_visitor_->os() << "Merging registers...\n";
  }

  int predecessor_count = target->state()->predecessor_count();
  auto merge = [&](auto& registers, auto reg, RegisterState& state) {
    ValueNode* node;
    RegisterMerge* merge;
    LoadMergeState(state, &node, &merge);

    // This isn't quite the right machine representation for Int32 nodes, but
    // those are stored in the same registers as Tagged nodes so in this case it
    // doesn't matter.
    MachineRepresentation mach_repr = std::is_same_v<decltype(reg), Register>
                                          ? MachineRepresentation::kTagged
                                          : MachineRepresentation::kFloat64;
    compiler::AllocatedOperand register_info = {
        compiler::LocationOperand::REGISTER, mach_repr, reg.code()};

    ValueNode* incoming = nullptr;
    DCHECK(registers.blocked().is_empty());
    if (!registers.free().has(reg)) {
      incoming = registers.GetValue(reg);
      if (!IsLiveAtTarget(incoming, control, target)) {
        if (v8_flags.trace_maglev_regalloc) {
          printing_visitor_->os() << "  " << reg << " - incoming node "
                                  << PrintNodeLabel(graph_labeller(), incoming)
                                  << " dead at target\n";
        }
        incoming = nullptr;
      }
    }

    if (incoming == node) {
      // We're using the same register as the target already has. If registers
      // are merged, add input information.
      if (v8_flags.trace_maglev_regalloc) {
        if (node) {
          printing_visitor_->os()
              << "  " << reg << " - incoming node same as node: "
              << PrintNodeLabel(graph_labeller(), node) << "\n";
        }
      }
      if (merge) merge->operand(predecessor_id) = register_info;
      return;
    }

    if (node == nullptr) {
      // Don't load new nodes at loop headers.
      if (control->Is<JumpLoop>()) return;
    } else if (!node->is_loadable() && !node->has_register()) {
      // If we have a node already, but can't load it here, we must be in a
      // liveness hole for it, so nuke the merge state.
      // This can only happen for conversion nodes, as they can split and take
      // over the liveness of the node they are converting.
      // TODO(v8:7700): Overeager DCHECK.
      // DCHECK(node->properties().is_conversion());
      if (v8_flags.trace_maglev_regalloc) {
        printing_visitor_->os() << "  " << reg << " - can't load "
                                << PrintNodeLabel(graph_labeller(), node)
                                << ", dropping the merge\n";
      }
      // We always need to be able to restore values on JumpLoop since the value
      // is definitely live at the loop header.
      CHECK(!control->Is<JumpLoop>());
      state = {nullptr, initialized_node};
      return;
    }

    if (merge) {
      // The register is already occupied with a different node. Figure out
      // where that node is allocated on the incoming branch.
      merge->operand(predecessor_id) = node->allocation();
      if (v8_flags.trace_maglev_regalloc) {
        printing_visitor_->os() << "  " << reg << " - merge: loading "
                                << PrintNodeLabel(graph_labeller(), node)
                                << " from " << node->allocation() << " \n";
      }

      if (incoming != nullptr) {
        // If {incoming} isn't loadable or available in a register, then we are
        // in a liveness hole, and none of its uses should be reachable from
        // {target} (for simplicity/speed, we only check the first and last use
        // though).
        DCHECK_IMPLIES(
            !incoming->is_loadable() && !IsInRegister(target_state, incoming),
            !IsForwardReachable(target, incoming->next_use(),
                                incoming->live_range().end));
      }

      return;
    }

    DCHECK_IMPLIES(node == nullptr, incoming != nullptr);
    if (node == nullptr && !incoming->is_loadable()) {
      // If the register is unallocated at the merge point, and the incoming
      // value isn't spilled, that means we must have seen it already in a
      // different register.
      // This maybe not be true for conversion nodes, as they can split and take
      // over the liveness of the node they are converting.
      // TODO(v8:7700): This DCHECK is overeager, {incoming} can be a Phi node
      // containing conversion nodes.
      // DCHECK_IMPLIES(!IsInRegister(target_state, incoming),
      //                incoming->properties().is_conversion());
      if (v8_flags.trace_maglev_regalloc) {
        printing_visitor_->os()
            << "  " << reg << " - can't load incoming "
            << PrintNodeLabel(graph_labeller(), incoming) << ", bailing out\n";
      }
      return;
    }

    const size_t size = sizeof(RegisterMerge) +
                        predecessor_count * sizeof(compiler::AllocatedOperand);
    void* buffer = compilation_info_->zone()->Allocate<void*>(size);
    merge = new (buffer) RegisterMerge();
    merge->node = node == nullptr ? incoming : node;

    // If the register is unallocated at the merge point, allocation so far
    // is the loadable slot for the incoming value. Otherwise all incoming
    // branches agree that the current node is in the register info.
    compiler::InstructionOperand info_so_far =
        node == nullptr ? incoming->loadable_slot() : register_info;

    // Initialize the entire array with info_so_far since we don't know in
    // which order we've seen the predecessors so far. Predecessors we
    // haven't seen yet will simply overwrite their entry later.
    for (int i = 0; i < predecessor_count; i++) {
      merge->operand(i) = info_so_far;
    }
    // If the register is unallocated at the merge point, fill in the
    // incoming value. Otherwise find the merge-point node in the incoming
    // state.
    if (node == nullptr) {
      merge->operand(predecessor_id) = register_info;
      if (v8_flags.trace_maglev_regalloc) {
        printing_visitor_->os() << "  " << reg << " - new merge: loading new "
                                << PrintNodeLabel(graph_labeller(), incoming)
                                << " from " << register_info << " \n";
      }
    } else {
      merge->operand(predecessor_id) = node->allocation();
      if (v8_flags.trace_maglev_regalloc) {
        printing_visitor_->os() << "  " << reg << " - new merge: loading "
                                << PrintNodeLabel(graph_labeller(), node)
                                << " from " << node->allocation() << " \n";
      }
    }
    state = {merge, initialized_merge};
  };
  ForEachMergePointRegisterState(target_state, merge);
}

}  // namespace maglev
}  // namespace internal
}  // namespace v8