1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_MIPS_CODEGEN_MIPS_H_
#define V8_MIPS_CODEGEN_MIPS_H_
namespace v8 {
namespace internal {
// Forward declarations
class CompilationInfo;
class DeferredCode;
class RegisterAllocator;
class RegisterFile;
enum InitState { CONST_INIT, NOT_CONST_INIT };
enum TypeofState { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF };
// -----------------------------------------------------------------------------
// Reference support
// A reference is a C++ stack-allocated object that keeps an ECMA
// reference on the execution stack while in scope. For variables
// the reference is empty, indicating that it isn't necessary to
// store state on the stack for keeping track of references to those.
// For properties, we keep either one (named) or two (indexed) values
// on the execution stack to represent the reference.
class Reference BASE_EMBEDDED {
public:
// The values of the types is important, see size().
enum Type { UNLOADED = -2, ILLEGAL = -1, SLOT = 0, NAMED = 1, KEYED = 2 };
Reference(CodeGenerator* cgen,
Expression* expression,
bool persist_after_get = false);
~Reference();
Expression* expression() const { return expression_; }
Type type() const { return type_; }
void set_type(Type value) {
ASSERT_EQ(ILLEGAL, type_);
type_ = value;
}
void set_unloaded() {
ASSERT_NE(ILLEGAL, type_);
ASSERT_NE(UNLOADED, type_);
type_ = UNLOADED;
}
// The size the reference takes up on the stack.
int size() const {
return (type_ < SLOT) ? 0 : type_;
}
bool is_illegal() const { return type_ == ILLEGAL; }
bool is_slot() const { return type_ == SLOT; }
bool is_property() const { return type_ == NAMED || type_ == KEYED; }
bool is_unloaded() const { return type_ == UNLOADED; }
// Return the name. Only valid for named property references.
Handle<String> GetName();
// Generate code to push the value of the reference on top of the
// expression stack. The reference is expected to be already on top of
// the expression stack, and it is consumed by the call unless the
// reference is for a compound assignment.
// If the reference is not consumed, it is left in place under its value.
void GetValue();
// Generate code to pop a reference, push the value of the reference,
// and then spill the stack frame.
inline void GetValueAndSpill();
// Generate code to store the value on top of the expression stack in the
// reference. The reference is expected to be immediately below the value
// on the expression stack. The value is stored in the location specified
// by the reference, and is left on top of the stack, after the reference
// is popped from beneath it (unloaded).
void SetValue(InitState init_state);
private:
CodeGenerator* cgen_;
Expression* expression_;
Type type_;
// Keep the reference on the stack after get, so it can be used by set later.
bool persist_after_get_;
};
// -----------------------------------------------------------------------------
// Code generation state
// The state is passed down the AST by the code generator (and back up, in
// the form of the state of the label pair). It is threaded through the
// call stack. Constructing a state implicitly pushes it on the owning code
// generator's stack of states, and destroying one implicitly pops it.
class CodeGenState BASE_EMBEDDED {
public:
// Create an initial code generator state. Destroying the initial state
// leaves the code generator with a NULL state.
explicit CodeGenState(CodeGenerator* owner);
// Create a code generator state based on a code generator's current
// state. The new state has its own typeof state and pair of branch
// labels.
CodeGenState(CodeGenerator* owner,
JumpTarget* true_target,
JumpTarget* false_target);
// Destroy a code generator state and restore the owning code generator's
// previous state.
~CodeGenState();
TypeofState typeof_state() const { return typeof_state_; }
JumpTarget* true_target() const { return true_target_; }
JumpTarget* false_target() const { return false_target_; }
private:
// The owning code generator.
CodeGenerator* owner_;
// A flag indicating whether we are compiling the immediate subexpression
// of a typeof expression.
TypeofState typeof_state_;
JumpTarget* true_target_;
JumpTarget* false_target_;
// The previous state of the owning code generator, restored when
// this state is destroyed.
CodeGenState* previous_;
};
// -----------------------------------------------------------------------------
// CodeGenerator
class CodeGenerator: public AstVisitor {
public:
// Compilation mode. Either the compiler is used as the primary
// compiler and needs to setup everything or the compiler is used as
// the secondary compiler for split compilation and has to handle
// bailouts.
enum Mode {
PRIMARY,
SECONDARY
};
// Takes a function literal, generates code for it. This function should only
// be called by compiler.cc.
static Handle<Code> MakeCode(CompilationInfo* info);
// Printing of AST, etc. as requested by flags.
static void MakeCodePrologue(CompilationInfo* info);
// Allocate and install the code.
static Handle<Code> MakeCodeEpilogue(MacroAssembler* masm,
Code::Flags flags,
CompilationInfo* info);
#ifdef ENABLE_LOGGING_AND_PROFILING
static bool ShouldGenerateLog(Expression* type);
#endif
static void SetFunctionInfo(Handle<JSFunction> fun,
FunctionLiteral* lit,
bool is_toplevel,
Handle<Script> script);
static void RecordPositions(MacroAssembler* masm, int pos);
// Accessors
MacroAssembler* masm() { return masm_; }
VirtualFrame* frame() const { return frame_; }
inline Handle<Script> script();
bool has_valid_frame() const { return frame_ != NULL; }
// Set the virtual frame to be new_frame, with non-frame register
// reference counts given by non_frame_registers. The non-frame
// register reference counts of the old frame are returned in
// non_frame_registers.
void SetFrame(VirtualFrame* new_frame, RegisterFile* non_frame_registers);
void DeleteFrame();
RegisterAllocator* allocator() const { return allocator_; }
CodeGenState* state() { return state_; }
void set_state(CodeGenState* state) { state_ = state; }
void AddDeferred(DeferredCode* code) { deferred_.Add(code); }
static const int kUnknownIntValue = -1;
// Number of instructions used for the JS return sequence. The constant is
// used by the debugger to patch the JS return sequence.
static const int kJSReturnSequenceLength = 7;
// If the name is an inline runtime function call return the number of
// expected arguments. Otherwise return -1.
static int InlineRuntimeCallArgumentsCount(Handle<String> name);
private:
// Construction/Destruction.
explicit CodeGenerator(MacroAssembler* masm);
// Accessors.
inline bool is_eval();
inline Scope* scope();
// Generating deferred code.
void ProcessDeferred();
// State
bool has_cc() const { return cc_reg_ != cc_always; }
TypeofState typeof_state() const { return state_->typeof_state(); }
JumpTarget* true_target() const { return state_->true_target(); }
JumpTarget* false_target() const { return state_->false_target(); }
// We don't track loop nesting level on mips yet.
int loop_nesting() const { return 0; }
// Node visitors.
void VisitStatements(ZoneList<Statement*>* statements);
#define DEF_VISIT(type) \
void Visit##type(type* node);
AST_NODE_LIST(DEF_VISIT)
#undef DEF_VISIT
// Visit a statement and then spill the virtual frame if control flow can
// reach the end of the statement (ie, it does not exit via break,
// continue, return, or throw). This function is used temporarily while
// the code generator is being transformed.
inline void VisitAndSpill(Statement* statement);
// Visit a list of statements and then spill the virtual frame if control
// flow can reach the end of the list.
inline void VisitStatementsAndSpill(ZoneList<Statement*>* statements);
// Main code generation function
void Generate(CompilationInfo* info);
// The following are used by class Reference.
void LoadReference(Reference* ref);
void UnloadReference(Reference* ref);
MemOperand ContextOperand(Register context, int index) const {
return MemOperand(context, Context::SlotOffset(index));
}
MemOperand SlotOperand(Slot* slot, Register tmp);
// Expressions
MemOperand GlobalObject() const {
return ContextOperand(cp, Context::GLOBAL_INDEX);
}
void LoadCondition(Expression* x,
JumpTarget* true_target,
JumpTarget* false_target,
bool force_cc);
void Load(Expression* x);
void LoadGlobal();
// Generate code to push the value of an expression on top of the frame
// and then spill the frame fully to memory. This function is used
// temporarily while the code generator is being transformed.
inline void LoadAndSpill(Expression* expression);
// Read a value from a slot and leave it on top of the expression stack.
void LoadFromSlot(Slot* slot, TypeofState typeof_state);
// Store the value on top of the stack to a slot.
void StoreToSlot(Slot* slot, InitState init_state);
struct InlineRuntimeLUT {
void (CodeGenerator::*method)(ZoneList<Expression*>*);
const char* name;
int nargs;
};
static InlineRuntimeLUT* FindInlineRuntimeLUT(Handle<String> name);
bool CheckForInlineRuntimeCall(CallRuntime* node);
static bool PatchInlineRuntimeEntry(Handle<String> name,
const InlineRuntimeLUT& new_entry,
InlineRuntimeLUT* old_entry);
static Handle<Code> ComputeLazyCompile(int argc);
void ProcessDeclarations(ZoneList<Declaration*>* declarations);
Handle<Code> ComputeCallInitialize(int argc, InLoopFlag in_loop);
// Declare global variables and functions in the given array of
// name/value pairs.
void DeclareGlobals(Handle<FixedArray> pairs);
// Support for type checks.
void GenerateIsSmi(ZoneList<Expression*>* args);
void GenerateIsNonNegativeSmi(ZoneList<Expression*>* args);
void GenerateIsArray(ZoneList<Expression*>* args);
void GenerateIsRegExp(ZoneList<Expression*>* args);
// Support for construct call checks.
void GenerateIsConstructCall(ZoneList<Expression*>* args);
// Support for arguments.length and arguments[?].
void GenerateArgumentsLength(ZoneList<Expression*>* args);
void GenerateArguments(ZoneList<Expression*>* args);
// Support for accessing the class and value fields of an object.
void GenerateClassOf(ZoneList<Expression*>* args);
void GenerateValueOf(ZoneList<Expression*>* args);
void GenerateSetValueOf(ZoneList<Expression*>* args);
// Fast support for charCodeAt(n).
void GenerateFastCharCodeAt(ZoneList<Expression*>* args);
// Fast support for string.charAt(n) and string[n].
void GenerateCharFromCode(ZoneList<Expression*>* args);
// Fast support for object equality testing.
void GenerateObjectEquals(ZoneList<Expression*>* args);
void GenerateLog(ZoneList<Expression*>* args);
// Fast support for Math.random().
void GenerateRandomHeapNumber(ZoneList<Expression*>* args);
void GenerateIsObject(ZoneList<Expression*>* args);
void GenerateIsSpecObject(ZoneList<Expression*>* args);
void GenerateIsFunction(ZoneList<Expression*>* args);
void GenerateIsUndetectableObject(ZoneList<Expression*>* args);
void GenerateStringAdd(ZoneList<Expression*>* args);
void GenerateSubString(ZoneList<Expression*>* args);
void GenerateStringCompare(ZoneList<Expression*>* args);
void GenerateRegExpExec(ZoneList<Expression*>* args);
void GenerateNumberToString(ZoneList<Expression*>* args);
// Fast call to math functions.
void GenerateMathPow(ZoneList<Expression*>* args);
void GenerateMathSin(ZoneList<Expression*>* args);
void GenerateMathCos(ZoneList<Expression*>* args);
void GenerateMathSqrt(ZoneList<Expression*>* args);
// Simple condition analysis.
enum ConditionAnalysis {
ALWAYS_TRUE,
ALWAYS_FALSE,
DONT_KNOW
};
ConditionAnalysis AnalyzeCondition(Expression* cond);
// Methods used to indicate which source code is generated for. Source
// positions are collected by the assembler and emitted with the relocation
// information.
void CodeForFunctionPosition(FunctionLiteral* fun);
void CodeForReturnPosition(FunctionLiteral* fun);
void CodeForStatementPosition(Statement* node);
void CodeForDoWhileConditionPosition(DoWhileStatement* stmt);
void CodeForSourcePosition(int pos);
#ifdef DEBUG
// True if the registers are valid for entry to a block.
bool HasValidEntryRegisters();
#endif
bool is_eval_; // Tells whether code is generated for eval.
Handle<Script> script_;
List<DeferredCode*> deferred_;
// Assembler
MacroAssembler* masm_; // to generate code
CompilationInfo* info_;
// Code generation state
VirtualFrame* frame_;
RegisterAllocator* allocator_;
Condition cc_reg_;
CodeGenState* state_;
// Jump targets
BreakTarget function_return_;
// True if the function return is shadowed (ie, jumping to the target
// function_return_ does not jump to the true function return, but rather
// to some unlinking code).
bool function_return_is_shadowed_;
static InlineRuntimeLUT kInlineRuntimeLUT[];
friend class VirtualFrame;
friend class JumpTarget;
friend class Reference;
friend class FastCodeGenerator;
friend class FullCodeGenerator;
friend class FullCodeGenSyntaxChecker;
DISALLOW_COPY_AND_ASSIGN(CodeGenerator);
};
} } // namespace v8::internal
#endif // V8_MIPS_CODEGEN_MIPS_H_
|