summaryrefslogtreecommitdiff
path: root/deps/v8/src/mips64/constants-mips64.h
blob: 521869b412ae0013103c645cd1d93791a9b35c8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef  V8_MIPS_CONSTANTS_H_
#define  V8_MIPS_CONSTANTS_H_

// UNIMPLEMENTED_ macro for MIPS.
#ifdef DEBUG
#define UNIMPLEMENTED_MIPS()                                                  \
  v8::internal::PrintF("%s, \tline %d: \tfunction %s not implemented. \n",    \
                       __FILE__, __LINE__, __func__)
#else
#define UNIMPLEMENTED_MIPS()
#endif

#define UNSUPPORTED_MIPS() v8::internal::PrintF("Unsupported instruction.\n")

enum ArchVariants {
  kMips64r2,
  kMips64r6
};


#ifdef _MIPS_ARCH_MIPS64R2
  static const ArchVariants kArchVariant = kMips64r2;
#elif  _MIPS_ARCH_MIPS64R6
  static const ArchVariants kArchVariant = kMips64r6;
#else
  static const ArchVariants kArchVariant = kMips64r2;
#endif


// TODO(plind): consider deriving ABI from compiler flags or build system.

// ABI-dependent definitions are made with #define in simulator-mips64.h,
// so the ABI choice must be available to the pre-processor. However, in all
// other cases, we should use the enum AbiVariants with normal if statements.

#define MIPS_ABI_N64 1
// #define MIPS_ABI_O32 1

// The only supported Abi's are O32, and n64.
enum AbiVariants {
  kO32,
  kN64  // Use upper case N for 'n64' ABI to conform to style standard.
};

#ifdef MIPS_ABI_N64
static const AbiVariants kMipsAbi = kN64;
#else
static const AbiVariants kMipsAbi = kO32;
#endif


// TODO(plind): consider renaming these ...
#if(defined(__mips_hard_float) && __mips_hard_float != 0)
// Use floating-point coprocessor instructions. This flag is raised when
// -mhard-float is passed to the compiler.
const bool IsMipsSoftFloatABI = false;
#elif(defined(__mips_soft_float) && __mips_soft_float != 0)
// This flag is raised when -msoft-float is passed to the compiler.
// Although FPU is a base requirement for v8, soft-float ABI is used
// on soft-float systems with FPU kernel emulation.
const bool IsMipsSoftFloatABI = true;
#else
const bool IsMipsSoftFloatABI = true;
#endif


#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>


// Defines constants and accessor classes to assemble, disassemble and
// simulate MIPS32 instructions.
//
// See: MIPS32 Architecture For Programmers
//      Volume II: The MIPS32 Instruction Set
// Try www.cs.cornell.edu/courses/cs3410/2008fa/MIPS_Vol2.pdf.

namespace v8 {
namespace internal {

// -----------------------------------------------------------------------------
// Registers and FPURegisters.

// Number of general purpose registers.
const int kNumRegisters = 32;
const int kInvalidRegister = -1;

// Number of registers with HI, LO, and pc.
const int kNumSimuRegisters = 35;

// In the simulator, the PC register is simulated as the 34th register.
const int kPCRegister = 34;

// Number coprocessor registers.
const int kNumFPURegisters = 32;
const int kInvalidFPURegister = -1;

// FPU (coprocessor 1) control registers. Currently only FCSR is implemented.
const int kFCSRRegister = 31;
const int kInvalidFPUControlRegister = -1;
const uint32_t kFPUInvalidResult = static_cast<uint32_t>(1 << 31) - 1;
const uint64_t kFPU64InvalidResult =
    static_cast<uint64_t>(static_cast<uint64_t>(1) << 63) - 1;

// FCSR constants.
const uint32_t kFCSRInexactFlagBit = 2;
const uint32_t kFCSRUnderflowFlagBit = 3;
const uint32_t kFCSROverflowFlagBit = 4;
const uint32_t kFCSRDivideByZeroFlagBit = 5;
const uint32_t kFCSRInvalidOpFlagBit = 6;

const uint32_t kFCSRInexactFlagMask = 1 << kFCSRInexactFlagBit;
const uint32_t kFCSRUnderflowFlagMask = 1 << kFCSRUnderflowFlagBit;
const uint32_t kFCSROverflowFlagMask = 1 << kFCSROverflowFlagBit;
const uint32_t kFCSRDivideByZeroFlagMask = 1 << kFCSRDivideByZeroFlagBit;
const uint32_t kFCSRInvalidOpFlagMask = 1 << kFCSRInvalidOpFlagBit;

const uint32_t kFCSRFlagMask =
    kFCSRInexactFlagMask |
    kFCSRUnderflowFlagMask |
    kFCSROverflowFlagMask |
    kFCSRDivideByZeroFlagMask |
    kFCSRInvalidOpFlagMask;

const uint32_t kFCSRExceptionFlagMask = kFCSRFlagMask ^ kFCSRInexactFlagMask;

// 'pref' instruction hints
const int32_t kPrefHintLoad = 0;
const int32_t kPrefHintStore = 1;
const int32_t kPrefHintLoadStreamed = 4;
const int32_t kPrefHintStoreStreamed = 5;
const int32_t kPrefHintLoadRetained = 6;
const int32_t kPrefHintStoreRetained = 7;
const int32_t kPrefHintWritebackInvalidate = 25;
const int32_t kPrefHintPrepareForStore = 30;

// Helper functions for converting between register numbers and names.
class Registers {
 public:
  // Return the name of the register.
  static const char* Name(int reg);

  // Lookup the register number for the name provided.
  static int Number(const char* name);

  struct RegisterAlias {
    int reg;
    const char* name;
  };

  static const int64_t kMaxValue = 0x7fffffffffffffffl;
  static const int64_t kMinValue = 0x8000000000000000l;

 private:
  static const char* names_[kNumSimuRegisters];
  static const RegisterAlias aliases_[];
};

// Helper functions for converting between register numbers and names.
class FPURegisters {
 public:
  // Return the name of the register.
  static const char* Name(int reg);

  // Lookup the register number for the name provided.
  static int Number(const char* name);

  struct RegisterAlias {
    int creg;
    const char* name;
  };

 private:
  static const char* names_[kNumFPURegisters];
  static const RegisterAlias aliases_[];
};


// -----------------------------------------------------------------------------
// Instructions encoding constants.

// On MIPS all instructions are 32 bits.
typedef int32_t Instr;

// Special Software Interrupt codes when used in the presence of the MIPS
// simulator.
enum SoftwareInterruptCodes {
  // Transition to C code.
  call_rt_redirected = 0xfffff
};

// On MIPS Simulator breakpoints can have different codes:
// - Breaks between 0 and kMaxWatchpointCode are treated as simple watchpoints,
//   the simulator will run through them and print the registers.
// - Breaks between kMaxWatchpointCode and kMaxStopCode are treated as stop()
//   instructions (see Assembler::stop()).
// - Breaks larger than kMaxStopCode are simple breaks, dropping you into the
//   debugger.
const uint32_t kMaxWatchpointCode = 31;
const uint32_t kMaxStopCode = 127;
STATIC_ASSERT(kMaxWatchpointCode < kMaxStopCode);


// ----- Fields offset and length.
const int kOpcodeShift   = 26;
const int kOpcodeBits    = 6;
const int kRsShift       = 21;
const int kRsBits        = 5;
const int kRtShift       = 16;
const int kRtBits        = 5;
const int kRdShift       = 11;
const int kRdBits        = 5;
const int kSaShift       = 6;
const int kSaBits        = 5;
const int kFunctionShift = 0;
const int kFunctionBits  = 6;
const int kLuiShift      = 16;

const int kImm16Shift = 0;
const int kImm16Bits  = 16;
const int kImm21Shift = 0;
const int kImm21Bits  = 21;
const int kImm26Shift = 0;
const int kImm26Bits  = 26;
const int kImm28Shift = 0;
const int kImm28Bits  = 28;
const int kImm32Shift = 0;
const int kImm32Bits  = 32;

// In branches and jumps immediate fields point to words, not bytes,
// and are therefore shifted by 2.
const int kImmFieldShift = 2;

const int kFrBits        = 5;
const int kFrShift       = 21;
const int kFsShift       = 11;
const int kFsBits        = 5;
const int kFtShift       = 16;
const int kFtBits        = 5;
const int kFdShift       = 6;
const int kFdBits        = 5;
const int kFCccShift     = 8;
const int kFCccBits      = 3;
const int kFBccShift     = 18;
const int kFBccBits      = 3;
const int kFBtrueShift   = 16;
const int kFBtrueBits    = 1;

// ----- Miscellaneous useful masks.
// Instruction bit masks.
const int  kOpcodeMask   = ((1 << kOpcodeBits) - 1) << kOpcodeShift;
const int  kImm16Mask    = ((1 << kImm16Bits) - 1) << kImm16Shift;
const int  kImm26Mask    = ((1 << kImm26Bits) - 1) << kImm26Shift;
const int  kImm28Mask    = ((1 << kImm28Bits) - 1) << kImm28Shift;
const int  kRsFieldMask  = ((1 << kRsBits) - 1) << kRsShift;
const int  kRtFieldMask  = ((1 << kRtBits) - 1) << kRtShift;
const int  kRdFieldMask  = ((1 << kRdBits) - 1) << kRdShift;
const int  kSaFieldMask  = ((1 << kSaBits) - 1) << kSaShift;
const int  kFunctionFieldMask = ((1 << kFunctionBits) - 1) << kFunctionShift;
// Misc masks.
const int  kHiMask       =   0xffff << 16;
const int  kLoMask       =   0xffff;
const int  kSignMask     =   0x80000000;
const int  kJumpAddrMask = (1 << (kImm26Bits + kImmFieldShift)) - 1;
const int64_t  kHi16MaskOf64 =   (int64_t)0xffff << 48;
const int64_t  kSe16MaskOf64 =   (int64_t)0xffff << 32;
const int64_t  kTh16MaskOf64 =   (int64_t)0xffff << 16;

// ----- MIPS Opcodes and Function Fields.
// We use this presentation to stay close to the table representation in
// MIPS32 Architecture For Programmers, Volume II: The MIPS32 Instruction Set.
enum Opcode {
  SPECIAL   =   0 << kOpcodeShift,
  REGIMM    =   1 << kOpcodeShift,

  J         =   ((0 << 3) + 2) << kOpcodeShift,
  JAL       =   ((0 << 3) + 3) << kOpcodeShift,
  BEQ       =   ((0 << 3) + 4) << kOpcodeShift,
  BNE       =   ((0 << 3) + 5) << kOpcodeShift,
  BLEZ      =   ((0 << 3) + 6) << kOpcodeShift,
  BGTZ      =   ((0 << 3) + 7) << kOpcodeShift,

  ADDI      =   ((1 << 3) + 0) << kOpcodeShift,
  ADDIU     =   ((1 << 3) + 1) << kOpcodeShift,
  SLTI      =   ((1 << 3) + 2) << kOpcodeShift,
  SLTIU     =   ((1 << 3) + 3) << kOpcodeShift,
  ANDI      =   ((1 << 3) + 4) << kOpcodeShift,
  ORI       =   ((1 << 3) + 5) << kOpcodeShift,
  XORI      =   ((1 << 3) + 6) << kOpcodeShift,
  LUI       =   ((1 << 3) + 7) << kOpcodeShift,  // LUI/AUI family.
  DAUI      =   ((3 << 3) + 5) << kOpcodeShift,

  BEQC      =   ((2 << 3) + 0) << kOpcodeShift,
  COP1      =   ((2 << 3) + 1) << kOpcodeShift,  // Coprocessor 1 class.
  BEQL      =   ((2 << 3) + 4) << kOpcodeShift,
  BNEL      =   ((2 << 3) + 5) << kOpcodeShift,
  BLEZL     =   ((2 << 3) + 6) << kOpcodeShift,
  BGTZL     =   ((2 << 3) + 7) << kOpcodeShift,

  DADDI     =   ((3 << 3) + 0) << kOpcodeShift,  // This is also BNEC.
  DADDIU    =   ((3 << 3) + 1) << kOpcodeShift,
  LDL       =   ((3 << 3) + 2) << kOpcodeShift,
  LDR       =   ((3 << 3) + 3) << kOpcodeShift,
  SPECIAL2  =   ((3 << 3) + 4) << kOpcodeShift,
  SPECIAL3  =   ((3 << 3) + 7) << kOpcodeShift,

  LB        =   ((4 << 3) + 0) << kOpcodeShift,
  LH        =   ((4 << 3) + 1) << kOpcodeShift,
  LWL       =   ((4 << 3) + 2) << kOpcodeShift,
  LW        =   ((4 << 3) + 3) << kOpcodeShift,
  LBU       =   ((4 << 3) + 4) << kOpcodeShift,
  LHU       =   ((4 << 3) + 5) << kOpcodeShift,
  LWR       =   ((4 << 3) + 6) << kOpcodeShift,
  LWU       =   ((4 << 3) + 7) << kOpcodeShift,

  SB        =   ((5 << 3) + 0) << kOpcodeShift,
  SH        =   ((5 << 3) + 1) << kOpcodeShift,
  SWL       =   ((5 << 3) + 2) << kOpcodeShift,
  SW        =   ((5 << 3) + 3) << kOpcodeShift,
  SDL       =   ((5 << 3) + 4) << kOpcodeShift,
  SDR       =   ((5 << 3) + 5) << kOpcodeShift,
  SWR       =   ((5 << 3) + 6) << kOpcodeShift,

  LWC1      =   ((6 << 3) + 1) << kOpcodeShift,
  LLD       =   ((6 << 3) + 4) << kOpcodeShift,
  LDC1      =   ((6 << 3) + 5) << kOpcodeShift,
  BEQZC     =   ((6 << 3) + 6) << kOpcodeShift,
  LD        =   ((6 << 3) + 7) << kOpcodeShift,

  PREF      =   ((6 << 3) + 3) << kOpcodeShift,

  SWC1      =   ((7 << 3) + 1) << kOpcodeShift,
  SCD       =   ((7 << 3) + 4) << kOpcodeShift,
  SDC1      =   ((7 << 3) + 5) << kOpcodeShift,
  BNEZC     =   ((7 << 3) + 6) << kOpcodeShift,
  SD        =   ((7 << 3) + 7) << kOpcodeShift,

  COP1X     =   ((1 << 4) + 3) << kOpcodeShift
};

enum SecondaryField {
  // SPECIAL Encoding of Function Field.
  SLL       =   ((0 << 3) + 0),
  MOVCI     =   ((0 << 3) + 1),
  SRL       =   ((0 << 3) + 2),
  SRA       =   ((0 << 3) + 3),
  SLLV      =   ((0 << 3) + 4),
  SRLV      =   ((0 << 3) + 6),
  SRAV      =   ((0 << 3) + 7),

  JR        =   ((1 << 3) + 0),
  JALR      =   ((1 << 3) + 1),
  MOVZ      =   ((1 << 3) + 2),
  MOVN      =   ((1 << 3) + 3),
  BREAK     =   ((1 << 3) + 5),

  MFHI      =   ((2 << 3) + 0),
  CLZ_R6    =   ((2 << 3) + 0),
  CLO_R6    =   ((2 << 3) + 1),
  MFLO      =   ((2 << 3) + 2),
  DSLLV     =   ((2 << 3) + 4),
  DSRLV     =   ((2 << 3) + 6),
  DSRAV     =   ((2 << 3) + 7),

  MULT      =   ((3 << 3) + 0),
  MULTU     =   ((3 << 3) + 1),
  DIV       =   ((3 << 3) + 2),
  DIVU      =   ((3 << 3) + 3),
  DMULT     =   ((3 << 3) + 4),
  DMULTU    =   ((3 << 3) + 5),
  DDIV      =   ((3 << 3) + 6),
  DDIVU     =   ((3 << 3) + 7),

  ADD       =   ((4 << 3) + 0),
  ADDU      =   ((4 << 3) + 1),
  SUB       =   ((4 << 3) + 2),
  SUBU      =   ((4 << 3) + 3),
  AND       =   ((4 << 3) + 4),
  OR        =   ((4 << 3) + 5),
  XOR       =   ((4 << 3) + 6),
  NOR       =   ((4 << 3) + 7),

  SLT       =   ((5 << 3) + 2),
  SLTU      =   ((5 << 3) + 3),
  DADD      =   ((5 << 3) + 4),
  DADDU     =   ((5 << 3) + 5),
  DSUB      =   ((5 << 3) + 6),
  DSUBU     =   ((5 << 3) + 7),

  TGE       =   ((6 << 3) + 0),
  TGEU      =   ((6 << 3) + 1),
  TLT       =   ((6 << 3) + 2),
  TLTU      =   ((6 << 3) + 3),
  TEQ       =   ((6 << 3) + 4),
  SELEQZ_S  =   ((6 << 3) + 5),
  TNE       =   ((6 << 3) + 6),
  SELNEZ_S  =   ((6 << 3) + 7),

  DSLL      =   ((7 << 3) + 0),
  DSRL      =   ((7 << 3) + 2),
  DSRA      =   ((7 << 3) + 3),
  DSLL32    =   ((7 << 3) + 4),
  DSRL32    =   ((7 << 3) + 6),
  DSRA32    =   ((7 << 3) + 7),

  // Multiply integers in r6.
  MUL_MUH   =   ((3 << 3) + 0),  // MUL, MUH.
  MUL_MUH_U =   ((3 << 3) + 1),  // MUL_U, MUH_U.
  D_MUL_MUH =   ((7 << 2) + 0),  // DMUL, DMUH.
  D_MUL_MUH_U = ((7 << 2) + 1),  // DMUL_U, DMUH_U.

  MUL_OP    =   ((0 << 3) + 2),
  MUH_OP    =   ((0 << 3) + 3),
  DIV_OP    =   ((0 << 3) + 2),
  MOD_OP    =   ((0 << 3) + 3),

  DIV_MOD   =   ((3 << 3) + 2),
  DIV_MOD_U =   ((3 << 3) + 3),
  D_DIV_MOD =   ((3 << 3) + 6),
  D_DIV_MOD_U = ((3 << 3) + 7),

  // drotr in special4?

  // SPECIAL2 Encoding of Function Field.
  MUL       =   ((0 << 3) + 2),
  CLZ       =   ((4 << 3) + 0),
  CLO       =   ((4 << 3) + 1),

  // SPECIAL3 Encoding of Function Field.
  EXT       =   ((0 << 3) + 0),
  DEXTM     =   ((0 << 3) + 1),
  DEXTU     =   ((0 << 3) + 2),
  DEXT      =   ((0 << 3) + 3),
  INS       =   ((0 << 3) + 4),
  DINSM     =   ((0 << 3) + 5),
  DINSU     =   ((0 << 3) + 6),
  DINS      =   ((0 << 3) + 7),

  DSBH      =   ((4 << 3) + 4),

  // REGIMM  encoding of rt Field.
  BLTZ      =   ((0 << 3) + 0) << 16,
  BGEZ      =   ((0 << 3) + 1) << 16,
  BLTZAL    =   ((2 << 3) + 0) << 16,
  BGEZAL    =   ((2 << 3) + 1) << 16,
  BGEZALL   =   ((2 << 3) + 3) << 16,
  DAHI      =   ((0 << 3) + 6) << 16,
  DATI      =   ((3 << 3) + 6) << 16,

  // COP1 Encoding of rs Field.
  MFC1      =   ((0 << 3) + 0) << 21,
  DMFC1     =   ((0 << 3) + 1) << 21,
  CFC1      =   ((0 << 3) + 2) << 21,
  MFHC1     =   ((0 << 3) + 3) << 21,
  MTC1      =   ((0 << 3) + 4) << 21,
  DMTC1     =   ((0 << 3) + 5) << 21,
  CTC1      =   ((0 << 3) + 6) << 21,
  MTHC1     =   ((0 << 3) + 7) << 21,
  BC1       =   ((1 << 3) + 0) << 21,
  S         =   ((2 << 3) + 0) << 21,
  D         =   ((2 << 3) + 1) << 21,
  W         =   ((2 << 3) + 4) << 21,
  L         =   ((2 << 3) + 5) << 21,
  PS        =   ((2 << 3) + 6) << 21,
  // COP1 Encoding of Function Field When rs=S.
  ROUND_L_S =   ((1 << 3) + 0),
  TRUNC_L_S =   ((1 << 3) + 1),
  CEIL_L_S  =   ((1 << 3) + 2),
  FLOOR_L_S =   ((1 << 3) + 3),
  ROUND_W_S =   ((1 << 3) + 4),
  TRUNC_W_S =   ((1 << 3) + 5),
  CEIL_W_S  =   ((1 << 3) + 6),
  FLOOR_W_S =   ((1 << 3) + 7),
  CVT_D_S   =   ((4 << 3) + 1),
  CVT_W_S   =   ((4 << 3) + 4),
  CVT_L_S   =   ((4 << 3) + 5),
  CVT_PS_S  =   ((4 << 3) + 6),
  // COP1 Encoding of Function Field When rs=D.
  ADD_D     =   ((0 << 3) + 0),
  SUB_D     =   ((0 << 3) + 1),
  MUL_D     =   ((0 << 3) + 2),
  DIV_D     =   ((0 << 3) + 3),
  SQRT_D    =   ((0 << 3) + 4),
  ABS_D     =   ((0 << 3) + 5),
  MOV_D     =   ((0 << 3) + 6),
  NEG_D     =   ((0 << 3) + 7),
  ROUND_L_D =   ((1 << 3) + 0),
  TRUNC_L_D =   ((1 << 3) + 1),
  CEIL_L_D  =   ((1 << 3) + 2),
  FLOOR_L_D =   ((1 << 3) + 3),
  ROUND_W_D =   ((1 << 3) + 4),
  TRUNC_W_D =   ((1 << 3) + 5),
  CEIL_W_D  =   ((1 << 3) + 6),
  FLOOR_W_D =   ((1 << 3) + 7),
  MIN       =   ((3 << 3) + 4),
  MINA      =   ((3 << 3) + 5),
  MAX       =   ((3 << 3) + 6),
  MAXA      =   ((3 << 3) + 7),
  CVT_S_D   =   ((4 << 3) + 0),
  CVT_W_D   =   ((4 << 3) + 4),
  CVT_L_D   =   ((4 << 3) + 5),
  C_F_D     =   ((6 << 3) + 0),
  C_UN_D    =   ((6 << 3) + 1),
  C_EQ_D    =   ((6 << 3) + 2),
  C_UEQ_D   =   ((6 << 3) + 3),
  C_OLT_D   =   ((6 << 3) + 4),
  C_ULT_D   =   ((6 << 3) + 5),
  C_OLE_D   =   ((6 << 3) + 6),
  C_ULE_D   =   ((6 << 3) + 7),
  // COP1 Encoding of Function Field When rs=W or L.
  CVT_S_W   =   ((4 << 3) + 0),
  CVT_D_W   =   ((4 << 3) + 1),
  CVT_S_L   =   ((4 << 3) + 0),
  CVT_D_L   =   ((4 << 3) + 1),
  BC1EQZ    =   ((2 << 2) + 1) << 21,
  BC1NEZ    =   ((3 << 2) + 1) << 21,
  // COP1 CMP positive predicates Bit 5..4 = 00.
  CMP_AF    =   ((0 << 3) + 0),
  CMP_UN    =   ((0 << 3) + 1),
  CMP_EQ    =   ((0 << 3) + 2),
  CMP_UEQ   =   ((0 << 3) + 3),
  CMP_LT    =   ((0 << 3) + 4),
  CMP_ULT   =   ((0 << 3) + 5),
  CMP_LE    =   ((0 << 3) + 6),
  CMP_ULE   =   ((0 << 3) + 7),
  CMP_SAF   =   ((1 << 3) + 0),
  CMP_SUN   =   ((1 << 3) + 1),
  CMP_SEQ   =   ((1 << 3) + 2),
  CMP_SUEQ  =   ((1 << 3) + 3),
  CMP_SSLT  =   ((1 << 3) + 4),
  CMP_SSULT =   ((1 << 3) + 5),
  CMP_SLE   =   ((1 << 3) + 6),
  CMP_SULE  =   ((1 << 3) + 7),
  // COP1 CMP negative predicates Bit 5..4 = 01.
  CMP_AT    =   ((2 << 3) + 0),  // Reserved, not implemented.
  CMP_OR    =   ((2 << 3) + 1),
  CMP_UNE   =   ((2 << 3) + 2),
  CMP_NE    =   ((2 << 3) + 3),
  CMP_UGE   =   ((2 << 3) + 4),  // Reserved, not implemented.
  CMP_OGE   =   ((2 << 3) + 5),  // Reserved, not implemented.
  CMP_UGT   =   ((2 << 3) + 6),  // Reserved, not implemented.
  CMP_OGT   =   ((2 << 3) + 7),  // Reserved, not implemented.
  CMP_SAT   =   ((3 << 3) + 0),  // Reserved, not implemented.
  CMP_SOR   =   ((3 << 3) + 1),
  CMP_SUNE  =   ((3 << 3) + 2),
  CMP_SNE   =   ((3 << 3) + 3),
  CMP_SUGE  =   ((3 << 3) + 4),  // Reserved, not implemented.
  CMP_SOGE  =   ((3 << 3) + 5),  // Reserved, not implemented.
  CMP_SUGT  =   ((3 << 3) + 6),  // Reserved, not implemented.
  CMP_SOGT  =   ((3 << 3) + 7),  // Reserved, not implemented.

  SEL       =   ((2 << 3) + 0),
  SELEQZ_C  =   ((2 << 3) + 4),  // COP1 on FPR registers.
  SELNEZ_C  =   ((2 << 3) + 7),  // COP1 on FPR registers.

  // COP1 Encoding of Function Field When rs=PS.
  // COP1X Encoding of Function Field.
  MADD_D    =   ((4 << 3) + 1),

  NULLSF    =   0
};


// ----- Emulated conditions.
// On MIPS we use this enum to abstract from conditional branch instructions.
// The 'U' prefix is used to specify unsigned comparisons.
// Opposite conditions must be paired as odd/even numbers
// because 'NegateCondition' function flips LSB to negate condition.
enum Condition {
  // Any value < 0 is considered no_condition.
  kNoCondition  = -1,

  overflow      =  0,
  no_overflow   =  1,
  Uless         =  2,
  Ugreater_equal=  3,
  equal         =  4,
  not_equal     =  5,
  Uless_equal   =  6,
  Ugreater      =  7,
  negative      =  8,
  positive      =  9,
  parity_even   = 10,
  parity_odd    = 11,
  less          = 12,
  greater_equal = 13,
  less_equal    = 14,
  greater       = 15,
  ueq           = 16,  // Unordered or Equal.
  nue           = 17,  // Not (Unordered or Equal).

  cc_always     = 18,

  // Aliases.
  carry         = Uless,
  not_carry     = Ugreater_equal,
  zero          = equal,
  eq            = equal,
  not_zero      = not_equal,
  ne            = not_equal,
  nz            = not_equal,
  sign          = negative,
  not_sign      = positive,
  mi            = negative,
  pl            = positive,
  hi            = Ugreater,
  ls            = Uless_equal,
  ge            = greater_equal,
  lt            = less,
  gt            = greater,
  le            = less_equal,
  hs            = Ugreater_equal,
  lo            = Uless,
  al            = cc_always,

  cc_default    = kNoCondition
};


// Returns the equivalent of !cc.
// Negation of the default kNoCondition (-1) results in a non-default
// no_condition value (-2). As long as tests for no_condition check
// for condition < 0, this will work as expected.
inline Condition NegateCondition(Condition cc) {
  DCHECK(cc != cc_always);
  return static_cast<Condition>(cc ^ 1);
}


// Commute a condition such that {a cond b == b cond' a}.
inline Condition CommuteCondition(Condition cc) {
  switch (cc) {
    case Uless:
      return Ugreater;
    case Ugreater:
      return Uless;
    case Ugreater_equal:
      return Uless_equal;
    case Uless_equal:
      return Ugreater_equal;
    case less:
      return greater;
    case greater:
      return less;
    case greater_equal:
      return less_equal;
    case less_equal:
      return greater_equal;
    default:
      return cc;
  }
}


// ----- Coprocessor conditions.
enum FPUCondition {
  kNoFPUCondition = -1,

  F     = 0,  // False.
  UN    = 1,  // Unordered.
  EQ    = 2,  // Equal.
  UEQ   = 3,  // Unordered or Equal.
  OLT   = 4,  // Ordered or Less Than.
  ULT   = 5,  // Unordered or Less Than.
  OLE   = 6,  // Ordered or Less Than or Equal.
  ULE   = 7   // Unordered or Less Than or Equal.
};


// FPU rounding modes.
enum FPURoundingMode {
  RN = 0 << 0,  // Round to Nearest.
  RZ = 1 << 0,  // Round towards zero.
  RP = 2 << 0,  // Round towards Plus Infinity.
  RM = 3 << 0,  // Round towards Minus Infinity.

  // Aliases.
  kRoundToNearest = RN,
  kRoundToZero = RZ,
  kRoundToPlusInf = RP,
  kRoundToMinusInf = RM
};

const uint32_t kFPURoundingModeMask = 3 << 0;

enum CheckForInexactConversion {
  kCheckForInexactConversion,
  kDontCheckForInexactConversion
};


// -----------------------------------------------------------------------------
// Hints.

// Branch hints are not used on the MIPS.  They are defined so that they can
// appear in shared function signatures, but will be ignored in MIPS
// implementations.
enum Hint {
  no_hint = 0
};


inline Hint NegateHint(Hint hint) {
  return no_hint;
}


// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
// These constants are declared in assembler-mips.cc, as they use named
// registers and other constants.

// addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
// operations as post-increment of sp.
extern const Instr kPopInstruction;
// addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
extern const Instr kPushInstruction;
// sw(r, MemOperand(sp, 0))
extern const Instr kPushRegPattern;
// lw(r, MemOperand(sp, 0))
extern const Instr kPopRegPattern;
extern const Instr kLwRegFpOffsetPattern;
extern const Instr kSwRegFpOffsetPattern;
extern const Instr kLwRegFpNegOffsetPattern;
extern const Instr kSwRegFpNegOffsetPattern;
// A mask for the Rt register for push, pop, lw, sw instructions.
extern const Instr kRtMask;
extern const Instr kLwSwInstrTypeMask;
extern const Instr kLwSwInstrArgumentMask;
extern const Instr kLwSwOffsetMask;

// Break 0xfffff, reserved for redirected real time call.
const Instr rtCallRedirInstr = SPECIAL | BREAK | call_rt_redirected << 6;
// A nop instruction. (Encoding of sll 0 0 0).
const Instr nopInstr = 0;

class Instruction {
 public:
  enum {
    kInstrSize = 4,
    kInstrSizeLog2 = 2,
    // On MIPS PC cannot actually be directly accessed. We behave as if PC was
    // always the value of the current instruction being executed.
    kPCReadOffset = 0
  };

  // Get the raw instruction bits.
  inline Instr InstructionBits() const {
    return *reinterpret_cast<const Instr*>(this);
  }

  // Set the raw instruction bits to value.
  inline void SetInstructionBits(Instr value) {
    *reinterpret_cast<Instr*>(this) = value;
  }

  // Read one particular bit out of the instruction bits.
  inline int Bit(int nr) const {
    return (InstructionBits() >> nr) & 1;
  }

  // Read a bit field out of the instruction bits.
  inline int Bits(int hi, int lo) const {
    return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
  }

  // Instruction type.
  enum Type {
    kRegisterType,
    kImmediateType,
    kJumpType,
    kUnsupported = -1
  };

  // Get the encoding type of the instruction.
  Type InstructionType() const;


  // Accessors for the different named fields used in the MIPS encoding.
  inline Opcode OpcodeValue() const {
    return static_cast<Opcode>(
        Bits(kOpcodeShift + kOpcodeBits - 1, kOpcodeShift));
  }

  inline int RsValue() const {
    DCHECK(InstructionType() == kRegisterType ||
           InstructionType() == kImmediateType);
    return Bits(kRsShift + kRsBits - 1, kRsShift);
  }

  inline int RtValue() const {
    DCHECK(InstructionType() == kRegisterType ||
           InstructionType() == kImmediateType);
    return Bits(kRtShift + kRtBits - 1, kRtShift);
  }

  inline int RdValue() const {
    DCHECK(InstructionType() == kRegisterType);
    return Bits(kRdShift + kRdBits - 1, kRdShift);
  }

  inline int SaValue() const {
    DCHECK(InstructionType() == kRegisterType);
    return Bits(kSaShift + kSaBits - 1, kSaShift);
  }

  inline int FunctionValue() const {
    DCHECK(InstructionType() == kRegisterType ||
           InstructionType() == kImmediateType);
    return Bits(kFunctionShift + kFunctionBits - 1, kFunctionShift);
  }

  inline int FdValue() const {
    return Bits(kFdShift + kFdBits - 1, kFdShift);
  }

  inline int FsValue() const {
    return Bits(kFsShift + kFsBits - 1, kFsShift);
  }

  inline int FtValue() const {
    return Bits(kFtShift + kFtBits - 1, kFtShift);
  }

  inline int FrValue() const {
    return Bits(kFrShift + kFrBits -1, kFrShift);
  }

  // Float Compare condition code instruction bits.
  inline int FCccValue() const {
    return Bits(kFCccShift + kFCccBits - 1, kFCccShift);
  }

  // Float Branch condition code instruction bits.
  inline int FBccValue() const {
    return Bits(kFBccShift + kFBccBits - 1, kFBccShift);
  }

  // Float Branch true/false instruction bit.
  inline int FBtrueValue() const {
    return Bits(kFBtrueShift + kFBtrueBits - 1, kFBtrueShift);
  }

  // Return the fields at their original place in the instruction encoding.
  inline Opcode OpcodeFieldRaw() const {
    return static_cast<Opcode>(InstructionBits() & kOpcodeMask);
  }

  inline int RsFieldRaw() const {
    DCHECK(InstructionType() == kRegisterType ||
           InstructionType() == kImmediateType);
    return InstructionBits() & kRsFieldMask;
  }

  // Same as above function, but safe to call within InstructionType().
  inline int RsFieldRawNoAssert() const {
    return InstructionBits() & kRsFieldMask;
  }

  inline int RtFieldRaw() const {
    DCHECK(InstructionType() == kRegisterType ||
           InstructionType() == kImmediateType);
    return InstructionBits() & kRtFieldMask;
  }

  inline int RdFieldRaw() const {
    DCHECK(InstructionType() == kRegisterType);
    return InstructionBits() & kRdFieldMask;
  }

  inline int SaFieldRaw() const {
    DCHECK(InstructionType() == kRegisterType);
    return InstructionBits() & kSaFieldMask;
  }

  inline int FunctionFieldRaw() const {
    return InstructionBits() & kFunctionFieldMask;
  }

  // Get the secondary field according to the opcode.
  inline int SecondaryValue() const {
    Opcode op = OpcodeFieldRaw();
    switch (op) {
      case SPECIAL:
      case SPECIAL2:
        return FunctionValue();
      case COP1:
        return RsValue();
      case REGIMM:
        return RtValue();
      default:
        return NULLSF;
    }
  }

  inline int32_t Imm16Value() const {
    DCHECK(InstructionType() == kImmediateType);
    return Bits(kImm16Shift + kImm16Bits - 1, kImm16Shift);
  }

  inline int32_t Imm21Value() const {
    DCHECK(InstructionType() == kImmediateType);
    return Bits(kImm21Shift + kImm21Bits - 1, kImm21Shift);
  }

  inline int32_t Imm26Value() const {
    DCHECK(InstructionType() == kJumpType);
    return Bits(kImm26Shift + kImm26Bits - 1, kImm26Shift);
  }

  // Say if the instruction should not be used in a branch delay slot.
  bool IsForbiddenInBranchDelay() const;
  // Say if the instruction 'links'. e.g. jal, bal.
  bool IsLinkingInstruction() const;
  // Say if the instruction is a break or a trap.
  bool IsTrap() const;

  // Instructions are read of out a code stream. The only way to get a
  // reference to an instruction is to convert a pointer. There is no way
  // to allocate or create instances of class Instruction.
  // Use the At(pc) function to create references to Instruction.
  static Instruction* At(byte* pc) {
    return reinterpret_cast<Instruction*>(pc);
  }

 private:
  // We need to prevent the creation of instances of class Instruction.
  DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
};


// -----------------------------------------------------------------------------
// MIPS assembly various constants.

// C/C++ argument slots size.
const int kCArgSlotCount = (kMipsAbi == kN64) ? 0 : 4;

// TODO(plind): below should be based on kPointerSize
// TODO(plind): find all usages and remove the needless instructions for n64.
const int kCArgsSlotsSize = kCArgSlotCount * Instruction::kInstrSize * 2;

const int kBranchReturnOffset = 2 * Instruction::kInstrSize;

} }   // namespace v8::internal

#endif    // #ifndef V8_MIPS_CONSTANTS_H_