summaryrefslogtreecommitdiff
path: root/deps/v8/src/objects.h
blob: 5ec1d7d27baf319932d3153584b80c54d384f012 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_OBJECTS_H_
#define V8_OBJECTS_H_

#include <iosfwd>

#include "src/allocation.h"
#include "src/assert-scope.h"
#include "src/bailout-reason.h"
#include "src/base/bits.h"
#include "src/builtins.h"
#include "src/checks.h"
#include "src/elements-kind.h"
#include "src/field-index.h"
#include "src/flags.h"
#include "src/list.h"
#include "src/property-details.h"
#include "src/smart-pointers.h"
#include "src/unicode-inl.h"
#include "src/unicode-decoder.h"
#include "src/zone.h"

#if V8_TARGET_ARCH_ARM
#include "src/arm/constants-arm.h"  // NOLINT
#elif V8_TARGET_ARCH_ARM64
#include "src/arm64/constants-arm64.h"  // NOLINT
#elif V8_TARGET_ARCH_MIPS
#include "src/mips/constants-mips.h"  // NOLINT
#elif V8_TARGET_ARCH_MIPS64
#include "src/mips64/constants-mips64.h"  // NOLINT
#elif V8_TARGET_ARCH_PPC
#include "src/ppc/constants-ppc.h"  // NOLINT
#endif


//
// Most object types in the V8 JavaScript are described in this file.
//
// Inheritance hierarchy:
// - Object
//   - Smi          (immediate small integer)
//   - HeapObject   (superclass for everything allocated in the heap)
//     - JSReceiver  (suitable for property access)
//       - JSObject
//         - JSArray
//         - JSArrayBuffer
//         - JSArrayBufferView
//           - JSTypedArray
//           - JSDataView
//         - JSCollection
//           - JSSet
//           - JSMap
//         - JSSetIterator
//         - JSMapIterator
//         - JSWeakCollection
//           - JSWeakMap
//           - JSWeakSet
//         - JSRegExp
//         - JSFunction
//         - JSGeneratorObject
//         - JSModule
//         - GlobalObject
//           - JSGlobalObject
//           - JSBuiltinsObject
//         - JSGlobalProxy
//         - JSValue
//           - JSDate
//         - JSMessageObject
//       - JSProxy
//         - JSFunctionProxy
//     - FixedArrayBase
//       - ByteArray
//       - FixedArray
//         - DescriptorArray
//         - HashTable
//           - Dictionary
//           - StringTable
//           - CompilationCacheTable
//           - CodeCacheHashTable
//           - MapCache
//         - OrderedHashTable
//           - OrderedHashSet
//           - OrderedHashMap
//         - Context
//         - TypeFeedbackVector
//         - JSFunctionResultCache
//         - ScopeInfo
//         - TransitionArray
//         - ScriptContextTable
//         - WeakFixedArray
//       - FixedDoubleArray
//       - ExternalArray
//         - ExternalUint8ClampedArray
//         - ExternalInt8Array
//         - ExternalUint8Array
//         - ExternalInt16Array
//         - ExternalUint16Array
//         - ExternalInt32Array
//         - ExternalUint32Array
//         - ExternalFloat32Array
//     - Name
//       - String
//         - SeqString
//           - SeqOneByteString
//           - SeqTwoByteString
//         - SlicedString
//         - ConsString
//         - ExternalString
//           - ExternalOneByteString
//           - ExternalTwoByteString
//         - InternalizedString
//           - SeqInternalizedString
//             - SeqOneByteInternalizedString
//             - SeqTwoByteInternalizedString
//           - ConsInternalizedString
//           - ExternalInternalizedString
//             - ExternalOneByteInternalizedString
//             - ExternalTwoByteInternalizedString
//       - Symbol
//     - HeapNumber
//     - Cell
//     - PropertyCell
//     - Code
//     - Map
//     - Oddball
//     - Foreign
//     - SharedFunctionInfo
//     - Struct
//       - Box
//       - AccessorInfo
//         - ExecutableAccessorInfo
//       - AccessorPair
//       - AccessCheckInfo
//       - InterceptorInfo
//       - CallHandlerInfo
//       - TemplateInfo
//         - FunctionTemplateInfo
//         - ObjectTemplateInfo
//       - Script
//       - TypeSwitchInfo
//       - DebugInfo
//       - BreakPointInfo
//       - CodeCache
//       - PrototypeInfo
//     - WeakCell
//
// Formats of Object*:
//  Smi:        [31 bit signed int] 0
//  HeapObject: [32 bit direct pointer] (4 byte aligned) | 01

namespace v8 {
namespace internal {

enum KeyedAccessStoreMode {
  STANDARD_STORE,
  STORE_TRANSITION_SMI_TO_OBJECT,
  STORE_TRANSITION_SMI_TO_DOUBLE,
  STORE_TRANSITION_DOUBLE_TO_OBJECT,
  STORE_TRANSITION_HOLEY_SMI_TO_OBJECT,
  STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE,
  STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT,
  STORE_AND_GROW_NO_TRANSITION,
  STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT,
  STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE,
  STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT,
  STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT,
  STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE,
  STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT,
  STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS,
  STORE_NO_TRANSITION_HANDLE_COW
};


enum ContextualMode {
  NOT_CONTEXTUAL,
  CONTEXTUAL
};


enum MutableMode {
  MUTABLE,
  IMMUTABLE
};


enum ExternalArrayType {
  kExternalInt8Array = 1,
  kExternalUint8Array,
  kExternalInt16Array,
  kExternalUint16Array,
  kExternalInt32Array,
  kExternalUint32Array,
  kExternalFloat32Array,
  kExternalFloat64Array,
  kExternalUint8ClampedArray,
};


static const int kGrowICDelta = STORE_AND_GROW_NO_TRANSITION -
    STANDARD_STORE;
STATIC_ASSERT(STANDARD_STORE == 0);
STATIC_ASSERT(kGrowICDelta ==
              STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT -
              STORE_TRANSITION_SMI_TO_OBJECT);
STATIC_ASSERT(kGrowICDelta ==
              STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE -
              STORE_TRANSITION_SMI_TO_DOUBLE);
STATIC_ASSERT(kGrowICDelta ==
              STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT -
              STORE_TRANSITION_DOUBLE_TO_OBJECT);


static inline KeyedAccessStoreMode GetGrowStoreMode(
    KeyedAccessStoreMode store_mode) {
  if (store_mode < STORE_AND_GROW_NO_TRANSITION) {
    store_mode = static_cast<KeyedAccessStoreMode>(
        static_cast<int>(store_mode) + kGrowICDelta);
  }
  return store_mode;
}


static inline bool IsTransitionStoreMode(KeyedAccessStoreMode store_mode) {
  return store_mode > STANDARD_STORE &&
      store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT &&
      store_mode != STORE_AND_GROW_NO_TRANSITION;
}


static inline KeyedAccessStoreMode GetNonTransitioningStoreMode(
    KeyedAccessStoreMode store_mode) {
  if (store_mode >= STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
    return store_mode;
  }
  if (store_mode >= STORE_AND_GROW_NO_TRANSITION) {
    return STORE_AND_GROW_NO_TRANSITION;
  }
  return STANDARD_STORE;
}


static inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) {
  return store_mode >= STORE_AND_GROW_NO_TRANSITION &&
      store_mode <= STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
}


enum IcCheckType { ELEMENT, PROPERTY };


// Setter that skips the write barrier if mode is SKIP_WRITE_BARRIER.
enum WriteBarrierMode { SKIP_WRITE_BARRIER, UPDATE_WRITE_BARRIER };


// Indicates whether a value can be loaded as a constant.
enum StoreMode { ALLOW_IN_DESCRIPTOR, FORCE_FIELD };


// PropertyNormalizationMode is used to specify whether to keep
// inobject properties when normalizing properties of a JSObject.
enum PropertyNormalizationMode {
  CLEAR_INOBJECT_PROPERTIES,
  KEEP_INOBJECT_PROPERTIES
};


// Indicates how aggressively the prototype should be optimized. FAST_PROTOTYPE
// will give the fastest result by tailoring the map to the prototype, but that
// will cause polymorphism with other objects. REGULAR_PROTOTYPE is to be used
// (at least for now) when dynamically modifying the prototype chain of an
// object using __proto__ or Object.setPrototypeOf.
enum PrototypeOptimizationMode { REGULAR_PROTOTYPE, FAST_PROTOTYPE };


// Indicates whether transitions can be added to a source map or not.
enum TransitionFlag {
  INSERT_TRANSITION,
  OMIT_TRANSITION
};


enum DebugExtraICState {
  DEBUG_BREAK,
  DEBUG_PREPARE_STEP_IN
};


// Indicates whether the transition is simple: the target map of the transition
// either extends the current map with a new property, or it modifies the
// property that was added last to the current map.
enum SimpleTransitionFlag {
  SIMPLE_PROPERTY_TRANSITION,
  PROPERTY_TRANSITION,
  SPECIAL_TRANSITION
};


// Indicates whether we are only interested in the descriptors of a particular
// map, or in all descriptors in the descriptor array.
enum DescriptorFlag {
  ALL_DESCRIPTORS,
  OWN_DESCRIPTORS
};

// The GC maintains a bit of information, the MarkingParity, which toggles
// from odd to even and back every time marking is completed. Incremental
// marking can visit an object twice during a marking phase, so algorithms that
// that piggy-back on marking can use the parity to ensure that they only
// perform an operation on an object once per marking phase: they record the
// MarkingParity when they visit an object, and only re-visit the object when it
// is marked again and the MarkingParity changes.
enum MarkingParity {
  NO_MARKING_PARITY,
  ODD_MARKING_PARITY,
  EVEN_MARKING_PARITY
};

// ICs store extra state in a Code object. The default extra state is
// kNoExtraICState.
typedef int ExtraICState;
static const ExtraICState kNoExtraICState = 0;

// Instance size sentinel for objects of variable size.
const int kVariableSizeSentinel = 0;

// We may store the unsigned bit field as signed Smi value and do not
// use the sign bit.
const int kStubMajorKeyBits = 7;
const int kStubMinorKeyBits = kSmiValueSize - kStubMajorKeyBits - 1;

// All Maps have a field instance_type containing a InstanceType.
// It describes the type of the instances.
//
// As an example, a JavaScript object is a heap object and its map
// instance_type is JS_OBJECT_TYPE.
//
// The names of the string instance types are intended to systematically
// mirror their encoding in the instance_type field of the map.  The default
// encoding is considered TWO_BYTE.  It is not mentioned in the name.  ONE_BYTE
// encoding is mentioned explicitly in the name.  Likewise, the default
// representation is considered sequential.  It is not mentioned in the
// name.  The other representations (e.g. CONS, EXTERNAL) are explicitly
// mentioned.  Finally, the string is either a STRING_TYPE (if it is a normal
// string) or a INTERNALIZED_STRING_TYPE (if it is a internalized string).
//
// NOTE: The following things are some that depend on the string types having
// instance_types that are less than those of all other types:
// HeapObject::Size, HeapObject::IterateBody, the typeof operator, and
// Object::IsString.
//
// NOTE: Everything following JS_VALUE_TYPE is considered a
// JSObject for GC purposes. The first four entries here have typeof
// 'object', whereas JS_FUNCTION_TYPE has typeof 'function'.
#define INSTANCE_TYPE_LIST(V)                                   \
  V(STRING_TYPE)                                                \
  V(ONE_BYTE_STRING_TYPE)                                       \
  V(CONS_STRING_TYPE)                                           \
  V(CONS_ONE_BYTE_STRING_TYPE)                                  \
  V(SLICED_STRING_TYPE)                                         \
  V(SLICED_ONE_BYTE_STRING_TYPE)                                \
  V(EXTERNAL_STRING_TYPE)                                       \
  V(EXTERNAL_ONE_BYTE_STRING_TYPE)                              \
  V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE)                    \
  V(SHORT_EXTERNAL_STRING_TYPE)                                 \
  V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE)                        \
  V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE)              \
                                                                \
  V(INTERNALIZED_STRING_TYPE)                                   \
  V(ONE_BYTE_INTERNALIZED_STRING_TYPE)                          \
  V(EXTERNAL_INTERNALIZED_STRING_TYPE)                          \
  V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE)                 \
  V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE)       \
  V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE)                    \
  V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE)           \
  V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE) \
                                                                \
  V(SYMBOL_TYPE)                                                \
                                                                \
  V(MAP_TYPE)                                                   \
  V(CODE_TYPE)                                                  \
  V(ODDBALL_TYPE)                                               \
  V(CELL_TYPE)                                                  \
  V(PROPERTY_CELL_TYPE)                                         \
                                                                \
  V(HEAP_NUMBER_TYPE)                                           \
  V(MUTABLE_HEAP_NUMBER_TYPE)                                   \
  V(FOREIGN_TYPE)                                               \
  V(BYTE_ARRAY_TYPE)                                            \
  V(FREE_SPACE_TYPE)                                            \
  /* Note: the order of these external array */                 \
  /* types is relied upon in */                                 \
  /* Object::IsExternalArray(). */                              \
  V(EXTERNAL_INT8_ARRAY_TYPE)                                   \
  V(EXTERNAL_UINT8_ARRAY_TYPE)                                  \
  V(EXTERNAL_INT16_ARRAY_TYPE)                                  \
  V(EXTERNAL_UINT16_ARRAY_TYPE)                                 \
  V(EXTERNAL_INT32_ARRAY_TYPE)                                  \
  V(EXTERNAL_UINT32_ARRAY_TYPE)                                 \
  V(EXTERNAL_FLOAT32_ARRAY_TYPE)                                \
  V(EXTERNAL_FLOAT64_ARRAY_TYPE)                                \
  V(EXTERNAL_UINT8_CLAMPED_ARRAY_TYPE)                          \
                                                                \
  V(FIXED_INT8_ARRAY_TYPE)                                      \
  V(FIXED_UINT8_ARRAY_TYPE)                                     \
  V(FIXED_INT16_ARRAY_TYPE)                                     \
  V(FIXED_UINT16_ARRAY_TYPE)                                    \
  V(FIXED_INT32_ARRAY_TYPE)                                     \
  V(FIXED_UINT32_ARRAY_TYPE)                                    \
  V(FIXED_FLOAT32_ARRAY_TYPE)                                   \
  V(FIXED_FLOAT64_ARRAY_TYPE)                                   \
  V(FIXED_UINT8_CLAMPED_ARRAY_TYPE)                             \
                                                                \
  V(FILLER_TYPE)                                                \
                                                                \
  V(DECLARED_ACCESSOR_DESCRIPTOR_TYPE)                          \
  V(DECLARED_ACCESSOR_INFO_TYPE)                                \
  V(EXECUTABLE_ACCESSOR_INFO_TYPE)                              \
  V(ACCESSOR_PAIR_TYPE)                                         \
  V(ACCESS_CHECK_INFO_TYPE)                                     \
  V(INTERCEPTOR_INFO_TYPE)                                      \
  V(CALL_HANDLER_INFO_TYPE)                                     \
  V(FUNCTION_TEMPLATE_INFO_TYPE)                                \
  V(OBJECT_TEMPLATE_INFO_TYPE)                                  \
  V(SIGNATURE_INFO_TYPE)                                        \
  V(TYPE_SWITCH_INFO_TYPE)                                      \
  V(ALLOCATION_MEMENTO_TYPE)                                    \
  V(ALLOCATION_SITE_TYPE)                                       \
  V(SCRIPT_TYPE)                                                \
  V(CODE_CACHE_TYPE)                                            \
  V(POLYMORPHIC_CODE_CACHE_TYPE)                                \
  V(TYPE_FEEDBACK_INFO_TYPE)                                    \
  V(ALIASED_ARGUMENTS_ENTRY_TYPE)                               \
  V(BOX_TYPE)                                                   \
  V(PROTOTYPE_INFO_TYPE)                                        \
                                                                \
  V(FIXED_ARRAY_TYPE)                                           \
  V(FIXED_DOUBLE_ARRAY_TYPE)                                    \
  V(CONSTANT_POOL_ARRAY_TYPE)                                   \
  V(SHARED_FUNCTION_INFO_TYPE)                                  \
  V(WEAK_CELL_TYPE)                                             \
                                                                \
  V(JS_MESSAGE_OBJECT_TYPE)                                     \
                                                                \
  V(JS_VALUE_TYPE)                                              \
  V(JS_DATE_TYPE)                                               \
  V(JS_OBJECT_TYPE)                                             \
  V(JS_CONTEXT_EXTENSION_OBJECT_TYPE)                           \
  V(JS_GENERATOR_OBJECT_TYPE)                                   \
  V(JS_MODULE_TYPE)                                             \
  V(JS_GLOBAL_OBJECT_TYPE)                                      \
  V(JS_BUILTINS_OBJECT_TYPE)                                    \
  V(JS_GLOBAL_PROXY_TYPE)                                       \
  V(JS_ARRAY_TYPE)                                              \
  V(JS_ARRAY_BUFFER_TYPE)                                       \
  V(JS_TYPED_ARRAY_TYPE)                                        \
  V(JS_DATA_VIEW_TYPE)                                          \
  V(JS_PROXY_TYPE)                                              \
  V(JS_SET_TYPE)                                                \
  V(JS_MAP_TYPE)                                                \
  V(JS_SET_ITERATOR_TYPE)                                       \
  V(JS_MAP_ITERATOR_TYPE)                                       \
  V(JS_WEAK_MAP_TYPE)                                           \
  V(JS_WEAK_SET_TYPE)                                           \
  V(JS_REGEXP_TYPE)                                             \
                                                                \
  V(JS_FUNCTION_TYPE)                                           \
  V(JS_FUNCTION_PROXY_TYPE)                                     \
  V(DEBUG_INFO_TYPE)                                            \
  V(BREAK_POINT_INFO_TYPE)


// Since string types are not consecutive, this macro is used to
// iterate over them.
#define STRING_TYPE_LIST(V)                                                   \
  V(STRING_TYPE, kVariableSizeSentinel, string, String)                       \
  V(ONE_BYTE_STRING_TYPE, kVariableSizeSentinel, one_byte_string,             \
    OneByteString)                                                            \
  V(CONS_STRING_TYPE, ConsString::kSize, cons_string, ConsString)             \
  V(CONS_ONE_BYTE_STRING_TYPE, ConsString::kSize, cons_one_byte_string,       \
    ConsOneByteString)                                                        \
  V(SLICED_STRING_TYPE, SlicedString::kSize, sliced_string, SlicedString)     \
  V(SLICED_ONE_BYTE_STRING_TYPE, SlicedString::kSize, sliced_one_byte_string, \
    SlicedOneByteString)                                                      \
  V(EXTERNAL_STRING_TYPE, ExternalTwoByteString::kSize, external_string,      \
    ExternalString)                                                           \
  V(EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kSize,              \
    external_one_byte_string, ExternalOneByteString)                          \
  V(EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE, ExternalTwoByteString::kSize,    \
    external_string_with_one_byte_data, ExternalStringWithOneByteData)        \
  V(SHORT_EXTERNAL_STRING_TYPE, ExternalTwoByteString::kShortSize,            \
    short_external_string, ShortExternalString)                               \
  V(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kShortSize,   \
    short_external_one_byte_string, ShortExternalOneByteString)               \
  V(SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE,                            \
    ExternalTwoByteString::kShortSize,                                        \
    short_external_string_with_one_byte_data,                                 \
    ShortExternalStringWithOneByteData)                                       \
                                                                              \
  V(INTERNALIZED_STRING_TYPE, kVariableSizeSentinel, internalized_string,     \
    InternalizedString)                                                       \
  V(ONE_BYTE_INTERNALIZED_STRING_TYPE, kVariableSizeSentinel,                 \
    one_byte_internalized_string, OneByteInternalizedString)                  \
  V(EXTERNAL_INTERNALIZED_STRING_TYPE, ExternalTwoByteString::kSize,          \
    external_internalized_string, ExternalInternalizedString)                 \
  V(EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE, ExternalOneByteString::kSize, \
    external_one_byte_internalized_string, ExternalOneByteInternalizedString) \
  V(EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE,                     \
    ExternalTwoByteString::kSize,                                             \
    external_internalized_string_with_one_byte_data,                          \
    ExternalInternalizedStringWithOneByteData)                                \
  V(SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE,                                  \
    ExternalTwoByteString::kShortSize, short_external_internalized_string,    \
    ShortExternalInternalizedString)                                          \
  V(SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE,                         \
    ExternalOneByteString::kShortSize,                                        \
    short_external_one_byte_internalized_string,                              \
    ShortExternalOneByteInternalizedString)                                   \
  V(SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE,               \
    ExternalTwoByteString::kShortSize,                                        \
    short_external_internalized_string_with_one_byte_data,                    \
    ShortExternalInternalizedStringWithOneByteData)

// A struct is a simple object a set of object-valued fields.  Including an
// object type in this causes the compiler to generate most of the boilerplate
// code for the class including allocation and garbage collection routines,
// casts and predicates.  All you need to define is the class, methods and
// object verification routines.  Easy, no?
//
// Note that for subtle reasons related to the ordering or numerical values of
// type tags, elements in this list have to be added to the INSTANCE_TYPE_LIST
// manually.
#define STRUCT_LIST(V)                                                       \
  V(BOX, Box, box)                                                           \
  V(EXECUTABLE_ACCESSOR_INFO, ExecutableAccessorInfo,                        \
    executable_accessor_info)                                                \
  V(ACCESSOR_PAIR, AccessorPair, accessor_pair)                              \
  V(ACCESS_CHECK_INFO, AccessCheckInfo, access_check_info)                   \
  V(INTERCEPTOR_INFO, InterceptorInfo, interceptor_info)                     \
  V(CALL_HANDLER_INFO, CallHandlerInfo, call_handler_info)                   \
  V(FUNCTION_TEMPLATE_INFO, FunctionTemplateInfo, function_template_info)    \
  V(OBJECT_TEMPLATE_INFO, ObjectTemplateInfo, object_template_info)          \
  V(TYPE_SWITCH_INFO, TypeSwitchInfo, type_switch_info)                      \
  V(SCRIPT, Script, script)                                                  \
  V(ALLOCATION_SITE, AllocationSite, allocation_site)                        \
  V(ALLOCATION_MEMENTO, AllocationMemento, allocation_memento)               \
  V(CODE_CACHE, CodeCache, code_cache)                                       \
  V(POLYMORPHIC_CODE_CACHE, PolymorphicCodeCache, polymorphic_code_cache)    \
  V(TYPE_FEEDBACK_INFO, TypeFeedbackInfo, type_feedback_info)                \
  V(ALIASED_ARGUMENTS_ENTRY, AliasedArgumentsEntry, aliased_arguments_entry) \
  V(DEBUG_INFO, DebugInfo, debug_info)                                       \
  V(BREAK_POINT_INFO, BreakPointInfo, break_point_info)                      \
  V(PROTOTYPE_INFO, PrototypeInfo, prototype_info)

// We use the full 8 bits of the instance_type field to encode heap object
// instance types.  The high-order bit (bit 7) is set if the object is not a
// string, and cleared if it is a string.
const uint32_t kIsNotStringMask = 0x80;
const uint32_t kStringTag = 0x0;
const uint32_t kNotStringTag = 0x80;

// Bit 6 indicates that the object is an internalized string (if set) or not.
// Bit 7 has to be clear as well.
const uint32_t kIsNotInternalizedMask = 0x40;
const uint32_t kNotInternalizedTag = 0x40;
const uint32_t kInternalizedTag = 0x0;

// If bit 7 is clear then bit 2 indicates whether the string consists of
// two-byte characters or one-byte characters.
const uint32_t kStringEncodingMask = 0x4;
const uint32_t kTwoByteStringTag = 0x0;
const uint32_t kOneByteStringTag = 0x4;

// If bit 7 is clear, the low-order 2 bits indicate the representation
// of the string.
const uint32_t kStringRepresentationMask = 0x03;
enum StringRepresentationTag {
  kSeqStringTag = 0x0,
  kConsStringTag = 0x1,
  kExternalStringTag = 0x2,
  kSlicedStringTag = 0x3
};
const uint32_t kIsIndirectStringMask = 0x1;
const uint32_t kIsIndirectStringTag = 0x1;
STATIC_ASSERT((kSeqStringTag & kIsIndirectStringMask) == 0);  // NOLINT
STATIC_ASSERT((kExternalStringTag & kIsIndirectStringMask) == 0);  // NOLINT
STATIC_ASSERT((kConsStringTag &
               kIsIndirectStringMask) == kIsIndirectStringTag);  // NOLINT
STATIC_ASSERT((kSlicedStringTag &
               kIsIndirectStringMask) == kIsIndirectStringTag);  // NOLINT

// Use this mask to distinguish between cons and slice only after making
// sure that the string is one of the two (an indirect string).
const uint32_t kSlicedNotConsMask = kSlicedStringTag & ~kConsStringTag;
STATIC_ASSERT(IS_POWER_OF_TWO(kSlicedNotConsMask));

// If bit 7 is clear, then bit 3 indicates whether this two-byte
// string actually contains one byte data.
const uint32_t kOneByteDataHintMask = 0x08;
const uint32_t kOneByteDataHintTag = 0x08;

// If bit 7 is clear and string representation indicates an external string,
// then bit 4 indicates whether the data pointer is cached.
const uint32_t kShortExternalStringMask = 0x10;
const uint32_t kShortExternalStringTag = 0x10;


// A ConsString with an empty string as the right side is a candidate
// for being shortcut by the garbage collector. We don't allocate any
// non-flat internalized strings, so we do not shortcut them thereby
// avoiding turning internalized strings into strings. The bit-masks
// below contain the internalized bit as additional safety.
// See heap.cc, mark-compact.cc and objects-visiting.cc.
const uint32_t kShortcutTypeMask =
    kIsNotStringMask |
    kIsNotInternalizedMask |
    kStringRepresentationMask;
const uint32_t kShortcutTypeTag = kConsStringTag | kNotInternalizedTag;

static inline bool IsShortcutCandidate(int type) {
  return ((type & kShortcutTypeMask) == kShortcutTypeTag);
}


enum InstanceType {
  // String types.
  INTERNALIZED_STRING_TYPE =
      kTwoByteStringTag | kSeqStringTag | kInternalizedTag,
  ONE_BYTE_INTERNALIZED_STRING_TYPE =
      kOneByteStringTag | kSeqStringTag | kInternalizedTag,
  EXTERNAL_INTERNALIZED_STRING_TYPE =
      kTwoByteStringTag | kExternalStringTag | kInternalizedTag,
  EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
      kOneByteStringTag | kExternalStringTag | kInternalizedTag,
  EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
      EXTERNAL_INTERNALIZED_STRING_TYPE | kOneByteDataHintTag |
      kInternalizedTag,
  SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE = EXTERNAL_INTERNALIZED_STRING_TYPE |
                                            kShortExternalStringTag |
                                            kInternalizedTag,
  SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE =
      EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kShortExternalStringTag |
      kInternalizedTag,
  SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE =
      EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
      kShortExternalStringTag | kInternalizedTag,
  STRING_TYPE = INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
  ONE_BYTE_STRING_TYPE =
      ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
  CONS_STRING_TYPE = kTwoByteStringTag | kConsStringTag | kNotInternalizedTag,
  CONS_ONE_BYTE_STRING_TYPE =
      kOneByteStringTag | kConsStringTag | kNotInternalizedTag,
  SLICED_STRING_TYPE =
      kTwoByteStringTag | kSlicedStringTag | kNotInternalizedTag,
  SLICED_ONE_BYTE_STRING_TYPE =
      kOneByteStringTag | kSlicedStringTag | kNotInternalizedTag,
  EXTERNAL_STRING_TYPE =
      EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
  EXTERNAL_ONE_BYTE_STRING_TYPE =
      EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
  EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
      EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
      kNotInternalizedTag,
  SHORT_EXTERNAL_STRING_TYPE =
      SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
  SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE =
      SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE | kNotInternalizedTag,
  SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE =
      SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE |
      kNotInternalizedTag,

  // Non-string names
  SYMBOL_TYPE = kNotStringTag,  // FIRST_NONSTRING_TYPE, LAST_NAME_TYPE

  // Objects allocated in their own spaces (never in new space).
  MAP_TYPE,
  CODE_TYPE,
  ODDBALL_TYPE,

  // "Data", objects that cannot contain non-map-word pointers to heap
  // objects.
  HEAP_NUMBER_TYPE,
  MUTABLE_HEAP_NUMBER_TYPE,
  FOREIGN_TYPE,
  BYTE_ARRAY_TYPE,
  FREE_SPACE_TYPE,
  EXTERNAL_INT8_ARRAY_TYPE,  // FIRST_EXTERNAL_ARRAY_TYPE
  EXTERNAL_UINT8_ARRAY_TYPE,
  EXTERNAL_INT16_ARRAY_TYPE,
  EXTERNAL_UINT16_ARRAY_TYPE,
  EXTERNAL_INT32_ARRAY_TYPE,
  EXTERNAL_UINT32_ARRAY_TYPE,
  EXTERNAL_FLOAT32_ARRAY_TYPE,
  EXTERNAL_FLOAT64_ARRAY_TYPE,
  EXTERNAL_UINT8_CLAMPED_ARRAY_TYPE,  // LAST_EXTERNAL_ARRAY_TYPE
  FIXED_INT8_ARRAY_TYPE,              // FIRST_FIXED_TYPED_ARRAY_TYPE
  FIXED_UINT8_ARRAY_TYPE,
  FIXED_INT16_ARRAY_TYPE,
  FIXED_UINT16_ARRAY_TYPE,
  FIXED_INT32_ARRAY_TYPE,
  FIXED_UINT32_ARRAY_TYPE,
  FIXED_FLOAT32_ARRAY_TYPE,
  FIXED_FLOAT64_ARRAY_TYPE,
  FIXED_UINT8_CLAMPED_ARRAY_TYPE,  // LAST_FIXED_TYPED_ARRAY_TYPE
  FIXED_DOUBLE_ARRAY_TYPE,
  FILLER_TYPE,  // LAST_DATA_TYPE

  // Structs.
  DECLARED_ACCESSOR_DESCRIPTOR_TYPE,
  DECLARED_ACCESSOR_INFO_TYPE,
  EXECUTABLE_ACCESSOR_INFO_TYPE,
  ACCESSOR_PAIR_TYPE,
  ACCESS_CHECK_INFO_TYPE,
  INTERCEPTOR_INFO_TYPE,
  CALL_HANDLER_INFO_TYPE,
  FUNCTION_TEMPLATE_INFO_TYPE,
  OBJECT_TEMPLATE_INFO_TYPE,
  SIGNATURE_INFO_TYPE,
  TYPE_SWITCH_INFO_TYPE,
  ALLOCATION_SITE_TYPE,
  ALLOCATION_MEMENTO_TYPE,
  SCRIPT_TYPE,
  CODE_CACHE_TYPE,
  POLYMORPHIC_CODE_CACHE_TYPE,
  TYPE_FEEDBACK_INFO_TYPE,
  ALIASED_ARGUMENTS_ENTRY_TYPE,
  BOX_TYPE,
  DEBUG_INFO_TYPE,
  BREAK_POINT_INFO_TYPE,
  FIXED_ARRAY_TYPE,
  CONSTANT_POOL_ARRAY_TYPE,
  SHARED_FUNCTION_INFO_TYPE,
  CELL_TYPE,
  WEAK_CELL_TYPE,
  PROPERTY_CELL_TYPE,
  PROTOTYPE_INFO_TYPE,

  // All the following types are subtypes of JSReceiver, which corresponds to
  // objects in the JS sense. The first and the last type in this range are
  // the two forms of function. This organization enables using the same
  // compares for checking the JS_RECEIVER/SPEC_OBJECT range and the
  // NONCALLABLE_JS_OBJECT range.
  JS_FUNCTION_PROXY_TYPE,  // FIRST_JS_RECEIVER_TYPE, FIRST_JS_PROXY_TYPE
  JS_PROXY_TYPE,           // LAST_JS_PROXY_TYPE
  JS_VALUE_TYPE,           // FIRST_JS_OBJECT_TYPE
  JS_MESSAGE_OBJECT_TYPE,
  JS_DATE_TYPE,
  JS_OBJECT_TYPE,
  JS_CONTEXT_EXTENSION_OBJECT_TYPE,
  JS_GENERATOR_OBJECT_TYPE,
  JS_MODULE_TYPE,
  JS_GLOBAL_OBJECT_TYPE,
  JS_BUILTINS_OBJECT_TYPE,
  JS_GLOBAL_PROXY_TYPE,
  JS_ARRAY_TYPE,
  JS_ARRAY_BUFFER_TYPE,
  JS_TYPED_ARRAY_TYPE,
  JS_DATA_VIEW_TYPE,
  JS_SET_TYPE,
  JS_MAP_TYPE,
  JS_SET_ITERATOR_TYPE,
  JS_MAP_ITERATOR_TYPE,
  JS_WEAK_MAP_TYPE,
  JS_WEAK_SET_TYPE,
  JS_REGEXP_TYPE,
  JS_FUNCTION_TYPE,  // LAST_JS_OBJECT_TYPE, LAST_JS_RECEIVER_TYPE

  // Pseudo-types
  FIRST_TYPE = 0x0,
  LAST_TYPE = JS_FUNCTION_TYPE,
  FIRST_NAME_TYPE = FIRST_TYPE,
  LAST_NAME_TYPE = SYMBOL_TYPE,
  FIRST_UNIQUE_NAME_TYPE = INTERNALIZED_STRING_TYPE,
  LAST_UNIQUE_NAME_TYPE = SYMBOL_TYPE,
  FIRST_NONSTRING_TYPE = SYMBOL_TYPE,
  // Boundaries for testing for an external array.
  FIRST_EXTERNAL_ARRAY_TYPE = EXTERNAL_INT8_ARRAY_TYPE,
  LAST_EXTERNAL_ARRAY_TYPE = EXTERNAL_UINT8_CLAMPED_ARRAY_TYPE,
  // Boundaries for testing for a fixed typed array.
  FIRST_FIXED_TYPED_ARRAY_TYPE = FIXED_INT8_ARRAY_TYPE,
  LAST_FIXED_TYPED_ARRAY_TYPE = FIXED_UINT8_CLAMPED_ARRAY_TYPE,
  // Boundary for promotion to old space.
  LAST_DATA_TYPE = FILLER_TYPE,
  // Boundary for objects represented as JSReceiver (i.e. JSObject or JSProxy).
  // Note that there is no range for JSObject or JSProxy, since their subtypes
  // are not continuous in this enum! The enum ranges instead reflect the
  // external class names, where proxies are treated as either ordinary objects,
  // or functions.
  FIRST_JS_RECEIVER_TYPE = JS_FUNCTION_PROXY_TYPE,
  LAST_JS_RECEIVER_TYPE = LAST_TYPE,
  // Boundaries for testing the types represented as JSObject
  FIRST_JS_OBJECT_TYPE = JS_VALUE_TYPE,
  LAST_JS_OBJECT_TYPE = LAST_TYPE,
  // Boundaries for testing the types represented as JSProxy
  FIRST_JS_PROXY_TYPE = JS_FUNCTION_PROXY_TYPE,
  LAST_JS_PROXY_TYPE = JS_PROXY_TYPE,
  // Boundaries for testing whether the type is a JavaScript object.
  FIRST_SPEC_OBJECT_TYPE = FIRST_JS_RECEIVER_TYPE,
  LAST_SPEC_OBJECT_TYPE = LAST_JS_RECEIVER_TYPE,
  // Boundaries for testing the types for which typeof is "object".
  FIRST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_PROXY_TYPE,
  LAST_NONCALLABLE_SPEC_OBJECT_TYPE = JS_REGEXP_TYPE,
  // Note that the types for which typeof is "function" are not continuous.
  // Define this so that we can put assertions on discrete checks.
  NUM_OF_CALLABLE_SPEC_OBJECT_TYPES = 2
};

const int kExternalArrayTypeCount =
    LAST_EXTERNAL_ARRAY_TYPE - FIRST_EXTERNAL_ARRAY_TYPE + 1;

STATIC_ASSERT(JS_OBJECT_TYPE == Internals::kJSObjectType);
STATIC_ASSERT(FIRST_NONSTRING_TYPE == Internals::kFirstNonstringType);
STATIC_ASSERT(ODDBALL_TYPE == Internals::kOddballType);
STATIC_ASSERT(FOREIGN_TYPE == Internals::kForeignType);


#define FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(V) \
  V(FAST_ELEMENTS_SUB_TYPE)                   \
  V(DICTIONARY_ELEMENTS_SUB_TYPE)             \
  V(FAST_PROPERTIES_SUB_TYPE)                 \
  V(DICTIONARY_PROPERTIES_SUB_TYPE)           \
  V(MAP_CODE_CACHE_SUB_TYPE)                  \
  V(SCOPE_INFO_SUB_TYPE)                      \
  V(STRING_TABLE_SUB_TYPE)                    \
  V(DESCRIPTOR_ARRAY_SUB_TYPE)                \
  V(TRANSITION_ARRAY_SUB_TYPE)

enum FixedArraySubInstanceType {
#define DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE(name) name,
  FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE)
#undef DEFINE_FIXED_ARRAY_SUB_INSTANCE_TYPE
  LAST_FIXED_ARRAY_SUB_TYPE = TRANSITION_ARRAY_SUB_TYPE
};


enum CompareResult {
  LESS      = -1,
  EQUAL     =  0,
  GREATER   =  1,

  NOT_EQUAL = GREATER
};


#define DECL_BOOLEAN_ACCESSORS(name)   \
  inline bool name() const;            \
  inline void set_##name(bool value);  \


#define DECL_ACCESSORS(name, type)                                      \
  inline type* name() const;                                            \
  inline void set_##name(type* value,                                   \
                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER); \


#define DECLARE_CAST(type)                              \
  INLINE(static type* cast(Object* object));            \
  INLINE(static const type* cast(const Object* object));


class AccessorPair;
class AllocationSite;
class AllocationSiteCreationContext;
class AllocationSiteUsageContext;
class ConsString;
class DictionaryElementsAccessor;
class ElementsAccessor;
class FixedArrayBase;
class FunctionLiteral;
class GlobalObject;
class LayoutDescriptor;
class LookupIterator;
class ObjectVisitor;
class StringStream;
class TypeFeedbackVector;
class WeakCell;

// We cannot just say "class HeapType;" if it is created from a template... =8-?
template<class> class TypeImpl;
struct HeapTypeConfig;
typedef TypeImpl<HeapTypeConfig> HeapType;


// A template-ized version of the IsXXX functions.
template <class C> inline bool Is(Object* obj);

#ifdef VERIFY_HEAP
#define DECLARE_VERIFIER(Name) void Name##Verify();
#else
#define DECLARE_VERIFIER(Name)
#endif

#ifdef OBJECT_PRINT
#define DECLARE_PRINTER(Name) void Name##Print(std::ostream& os);  // NOLINT
#else
#define DECLARE_PRINTER(Name)
#endif


#define OBJECT_TYPE_LIST(V) \
  V(Smi)                    \
  V(HeapObject)             \
  V(Number)

#define HEAP_OBJECT_TYPE_LIST(V)   \
  V(HeapNumber)                    \
  V(MutableHeapNumber)             \
  V(Name)                          \
  V(UniqueName)                    \
  V(String)                        \
  V(SeqString)                     \
  V(ExternalString)                \
  V(ConsString)                    \
  V(SlicedString)                  \
  V(ExternalTwoByteString)         \
  V(ExternalOneByteString)         \
  V(SeqTwoByteString)              \
  V(SeqOneByteString)              \
  V(InternalizedString)            \
  V(Symbol)                        \
                                   \
  V(ExternalArray)                 \
  V(ExternalInt8Array)             \
  V(ExternalUint8Array)            \
  V(ExternalInt16Array)            \
  V(ExternalUint16Array)           \
  V(ExternalInt32Array)            \
  V(ExternalUint32Array)           \
  V(ExternalFloat32Array)          \
  V(ExternalFloat64Array)          \
  V(ExternalUint8ClampedArray)     \
  V(FixedTypedArrayBase)           \
  V(FixedUint8Array)               \
  V(FixedInt8Array)                \
  V(FixedUint16Array)              \
  V(FixedInt16Array)               \
  V(FixedUint32Array)              \
  V(FixedInt32Array)               \
  V(FixedFloat32Array)             \
  V(FixedFloat64Array)             \
  V(FixedUint8ClampedArray)        \
  V(ByteArray)                     \
  V(FreeSpace)                     \
  V(JSReceiver)                    \
  V(JSObject)                      \
  V(JSContextExtensionObject)      \
  V(JSGeneratorObject)             \
  V(JSModule)                      \
  V(LayoutDescriptor)              \
  V(Map)                           \
  V(DescriptorArray)               \
  V(TransitionArray)               \
  V(TypeFeedbackVector)            \
  V(DeoptimizationInputData)       \
  V(DeoptimizationOutputData)      \
  V(DependentCode)                 \
  V(HandlerTable)                  \
  V(FixedArray)                    \
  V(FixedDoubleArray)              \
  V(WeakFixedArray)                \
  V(ArrayList)                     \
  V(ConstantPoolArray)             \
  V(Context)                       \
  V(ScriptContextTable)            \
  V(NativeContext)                 \
  V(ScopeInfo)                     \
  V(JSFunction)                    \
  V(Code)                          \
  V(Oddball)                       \
  V(SharedFunctionInfo)            \
  V(JSValue)                       \
  V(JSDate)                        \
  V(JSMessageObject)               \
  V(StringWrapper)                 \
  V(Foreign)                       \
  V(Boolean)                       \
  V(JSArray)                       \
  V(JSArrayBuffer)                 \
  V(JSArrayBufferView)             \
  V(JSTypedArray)                  \
  V(JSDataView)                    \
  V(JSProxy)                       \
  V(JSFunctionProxy)               \
  V(JSSet)                         \
  V(JSMap)                         \
  V(JSSetIterator)                 \
  V(JSMapIterator)                 \
  V(JSWeakCollection)              \
  V(JSWeakMap)                     \
  V(JSWeakSet)                     \
  V(JSRegExp)                      \
  V(HashTable)                     \
  V(Dictionary)                    \
  V(StringTable)                   \
  V(JSFunctionResultCache)         \
  V(NormalizedMapCache)            \
  V(CompilationCacheTable)         \
  V(CodeCacheHashTable)            \
  V(PolymorphicCodeCacheHashTable) \
  V(MapCache)                      \
  V(Primitive)                     \
  V(GlobalObject)                  \
  V(JSGlobalObject)                \
  V(JSBuiltinsObject)              \
  V(JSGlobalProxy)                 \
  V(UndetectableObject)            \
  V(AccessCheckNeeded)             \
  V(Cell)                          \
  V(PropertyCell)                  \
  V(WeakCell)                      \
  V(ObjectHashTable)               \
  V(WeakHashTable)                 \
  V(OrderedHashTable)

// Object is the abstract superclass for all classes in the
// object hierarchy.
// Object does not use any virtual functions to avoid the
// allocation of the C++ vtable.
// Since both Smi and HeapObject are subclasses of Object no
// data members can be present in Object.
class Object {
 public:
  // Type testing.
  bool IsObject() const { return true; }

#define IS_TYPE_FUNCTION_DECL(type_)  INLINE(bool Is##type_() const);
  OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
  HEAP_OBJECT_TYPE_LIST(IS_TYPE_FUNCTION_DECL)
#undef IS_TYPE_FUNCTION_DECL

  // A non-keyed store is of the form a.x = foo or a["x"] = foo whereas
  // a keyed store is of the form a[expression] = foo.
  enum StoreFromKeyed {
    MAY_BE_STORE_FROM_KEYED,
    CERTAINLY_NOT_STORE_FROM_KEYED
  };

  INLINE(bool IsFixedArrayBase() const);
  INLINE(bool IsExternal() const);
  INLINE(bool IsAccessorInfo() const);

  INLINE(bool IsStruct() const);
#define DECLARE_STRUCT_PREDICATE(NAME, Name, name) \
  INLINE(bool Is##Name() const);
  STRUCT_LIST(DECLARE_STRUCT_PREDICATE)
#undef DECLARE_STRUCT_PREDICATE

  INLINE(bool IsSpecObject()) const;
  INLINE(bool IsSpecFunction()) const;
  INLINE(bool IsTemplateInfo()) const;
  INLINE(bool IsNameDictionary() const);
  INLINE(bool IsSeededNumberDictionary() const);
  INLINE(bool IsUnseededNumberDictionary() const);
  INLINE(bool IsOrderedHashSet() const);
  INLINE(bool IsOrderedHashMap() const);
  bool IsCallable() const;

  // Oddball testing.
  INLINE(bool IsUndefined() const);
  INLINE(bool IsNull() const);
  INLINE(bool IsTheHole() const);
  INLINE(bool IsException() const);
  INLINE(bool IsUninitialized() const);
  INLINE(bool IsTrue() const);
  INLINE(bool IsFalse() const);
  INLINE(bool IsArgumentsMarker() const);

  // Filler objects (fillers and free space objects).
  INLINE(bool IsFiller() const);

  // Extract the number.
  inline double Number();
  INLINE(bool IsNaN() const);
  INLINE(bool IsMinusZero() const);
  bool ToInt32(int32_t* value);
  bool ToUint32(uint32_t* value);

  inline Representation OptimalRepresentation() {
    if (!FLAG_track_fields) return Representation::Tagged();
    if (IsSmi()) {
      return Representation::Smi();
    } else if (FLAG_track_double_fields && IsHeapNumber()) {
      return Representation::Double();
    } else if (FLAG_track_computed_fields && IsUninitialized()) {
      return Representation::None();
    } else if (FLAG_track_heap_object_fields) {
      DCHECK(IsHeapObject());
      return Representation::HeapObject();
    } else {
      return Representation::Tagged();
    }
  }

  inline bool FitsRepresentation(Representation representation) {
    if (FLAG_track_fields && representation.IsNone()) {
      return false;
    } else if (FLAG_track_fields && representation.IsSmi()) {
      return IsSmi();
    } else if (FLAG_track_double_fields && representation.IsDouble()) {
      return IsMutableHeapNumber() || IsNumber();
    } else if (FLAG_track_heap_object_fields && representation.IsHeapObject()) {
      return IsHeapObject();
    }
    return true;
  }

  Handle<HeapType> OptimalType(Isolate* isolate, Representation representation);

  inline static Handle<Object> NewStorageFor(Isolate* isolate,
                                             Handle<Object> object,
                                             Representation representation);

  inline static Handle<Object> WrapForRead(Isolate* isolate,
                                           Handle<Object> object,
                                           Representation representation);

  // Returns true if the object is of the correct type to be used as a
  // implementation of a JSObject's elements.
  inline bool HasValidElements();

  inline bool HasSpecificClassOf(String* name);

  bool BooleanValue();                                      // ECMA-262 9.2.

  // Convert to a JSObject if needed.
  // native_context is used when creating wrapper object.
  static inline MaybeHandle<JSReceiver> ToObject(Isolate* isolate,
                                                 Handle<Object> object);
  static MaybeHandle<JSReceiver> ToObject(Isolate* isolate,
                                          Handle<Object> object,
                                          Handle<Context> context);

  // Converts this to a Smi if possible.
  MUST_USE_RESULT static inline MaybeHandle<Smi> ToSmi(Isolate* isolate,
                                                       Handle<Object> object);

  MUST_USE_RESULT static MaybeHandle<Object> GetProperty(LookupIterator* it);

  // Implementation of [[Put]], ECMA-262 5th edition, section 8.12.5.
  MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
      Handle<Object> object, Handle<Name> key, Handle<Object> value,
      LanguageMode language_mode,
      StoreFromKeyed store_mode = MAY_BE_STORE_FROM_KEYED);

  MUST_USE_RESULT static MaybeHandle<Object> SetProperty(
      LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
      StoreFromKeyed store_mode);

  MUST_USE_RESULT static MaybeHandle<Object> SetSuperProperty(
      LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
      StoreFromKeyed store_mode);

  MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyProperty(
      LookupIterator* it, Handle<Object> value, LanguageMode language_mode);
  MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyProperty(
      Isolate* isolate, Handle<Object> reciever, Handle<Object> name,
      Handle<Object> value, LanguageMode language_mode);
  MUST_USE_RESULT static MaybeHandle<Object> WriteToReadOnlyElement(
      Isolate* isolate, Handle<Object> receiver, uint32_t index,
      Handle<Object> value, LanguageMode language_mode);
  MUST_USE_RESULT static MaybeHandle<Object> RedefineNonconfigurableProperty(
      Isolate* isolate, Handle<Object> name, Handle<Object> value,
      LanguageMode language_mode);
  MUST_USE_RESULT static MaybeHandle<Object> SetDataProperty(
      LookupIterator* it, Handle<Object> value);
  MUST_USE_RESULT static MaybeHandle<Object> AddDataProperty(
      LookupIterator* it, Handle<Object> value, PropertyAttributes attributes,
      LanguageMode language_mode, StoreFromKeyed store_mode);
  MUST_USE_RESULT static inline MaybeHandle<Object> GetPropertyOrElement(
      Handle<Object> object,
      Handle<Name> key);
  MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
      Isolate* isolate,
      Handle<Object> object,
      const char* key);
  MUST_USE_RESULT static inline MaybeHandle<Object> GetProperty(
      Handle<Object> object,
      Handle<Name> key);

  MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithAccessor(
      Handle<Object> receiver,
      Handle<Name> name,
      Handle<JSObject> holder,
      Handle<Object> structure);
  MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithAccessor(
      Handle<Object> receiver, Handle<Name> name, Handle<Object> value,
      Handle<JSObject> holder, Handle<Object> structure,
      LanguageMode language_mode);

  MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithDefinedGetter(
      Handle<Object> receiver,
      Handle<JSReceiver> getter);
  MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithDefinedSetter(
      Handle<Object> receiver,
      Handle<JSReceiver> setter,
      Handle<Object> value);

  MUST_USE_RESULT static inline MaybeHandle<Object> GetElement(
      Isolate* isolate,
      Handle<Object> object,
      uint32_t index);

  MUST_USE_RESULT static MaybeHandle<Object> GetElementWithReceiver(
      Isolate* isolate,
      Handle<Object> object,
      Handle<Object> receiver,
      uint32_t index);

  MUST_USE_RESULT static MaybeHandle<Object> SetElementWithReceiver(
      Isolate* isolate, Handle<Object> object, Handle<Object> receiver,
      uint32_t index, Handle<Object> value, LanguageMode language_mode);

  static inline Handle<Object> GetPrototypeSkipHiddenPrototypes(
      Isolate* isolate, Handle<Object> receiver);

  // Returns the permanent hash code associated with this object. May return
  // undefined if not yet created.
  Object* GetHash();

  // Returns the permanent hash code associated with this object depending on
  // the actual object type. May create and store a hash code if needed and none
  // exists.
  static Handle<Smi> GetOrCreateHash(Isolate* isolate, Handle<Object> object);

  // Checks whether this object has the same value as the given one.  This
  // function is implemented according to ES5, section 9.12 and can be used
  // to implement the Harmony "egal" function.
  bool SameValue(Object* other);

  // Checks whether this object has the same value as the given one.
  // +0 and -0 are treated equal. Everything else is the same as SameValue.
  // This function is implemented according to ES6, section 7.2.4 and is used
  // by ES6 Map and Set.
  bool SameValueZero(Object* other);

  // Tries to convert an object to an array index.  Returns true and sets
  // the output parameter if it succeeds.
  inline bool ToArrayIndex(uint32_t* index);

  // Returns true if this is a JSValue containing a string and the index is
  // < the length of the string.  Used to implement [] on strings.
  inline bool IsStringObjectWithCharacterAt(uint32_t index);

  DECLARE_VERIFIER(Object)
#ifdef VERIFY_HEAP
  // Verify a pointer is a valid object pointer.
  static void VerifyPointer(Object* p);
#endif

  inline void VerifyApiCallResultType();

  // Prints this object without details.
  void ShortPrint(FILE* out = stdout);

  // Prints this object without details to a message accumulator.
  void ShortPrint(StringStream* accumulator);

  void ShortPrint(std::ostream& os);  // NOLINT

  DECLARE_CAST(Object)

  // Layout description.
  static const int kHeaderSize = 0;  // Object does not take up any space.

#ifdef OBJECT_PRINT
  // For our gdb macros, we should perhaps change these in the future.
  void Print();

  // Prints this object with details.
  void Print(std::ostream& os);  // NOLINT
#else
  void Print() { ShortPrint(); }
  void Print(std::ostream& os) { ShortPrint(os); }  // NOLINT
#endif

 private:
  friend class LookupIterator;
  friend class PrototypeIterator;

  // Return the map of the root of object's prototype chain.
  Map* GetRootMap(Isolate* isolate);

  // Helper for SetProperty and SetSuperProperty.
  MUST_USE_RESULT static MaybeHandle<Object> SetPropertyInternal(
      LookupIterator* it, Handle<Object> value, LanguageMode language_mode,
      StoreFromKeyed store_mode, bool* found);

  DISALLOW_IMPLICIT_CONSTRUCTORS(Object);
};


struct Brief {
  explicit Brief(const Object* const v) : value(v) {}
  const Object* value;
};


std::ostream& operator<<(std::ostream& os, const Brief& v);


// Smi represents integer Numbers that can be stored in 31 bits.
// Smis are immediate which means they are NOT allocated in the heap.
// The this pointer has the following format: [31 bit signed int] 0
// For long smis it has the following format:
//     [32 bit signed int] [31 bits zero padding] 0
// Smi stands for small integer.
class Smi: public Object {
 public:
  // Returns the integer value.
  inline int value() const;

  // Convert a value to a Smi object.
  static inline Smi* FromInt(int value);

  static inline Smi* FromIntptr(intptr_t value);

  // Returns whether value can be represented in a Smi.
  static inline bool IsValid(intptr_t value);

  DECLARE_CAST(Smi)

  // Dispatched behavior.
  void SmiPrint(std::ostream& os) const;  // NOLINT
  DECLARE_VERIFIER(Smi)

  static const int kMinValue =
      (static_cast<unsigned int>(-1)) << (kSmiValueSize - 1);
  static const int kMaxValue = -(kMinValue + 1);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(Smi);
};


// Heap objects typically have a map pointer in their first word.  However,
// during GC other data (e.g. mark bits, forwarding addresses) is sometimes
// encoded in the first word.  The class MapWord is an abstraction of the
// value in a heap object's first word.
class MapWord BASE_EMBEDDED {
 public:
  // Normal state: the map word contains a map pointer.

  // Create a map word from a map pointer.
  static inline MapWord FromMap(const Map* map);

  // View this map word as a map pointer.
  inline Map* ToMap();


  // Scavenge collection: the map word of live objects in the from space
  // contains a forwarding address (a heap object pointer in the to space).

  // True if this map word is a forwarding address for a scavenge
  // collection.  Only valid during a scavenge collection (specifically,
  // when all map words are heap object pointers, i.e. not during a full GC).
  inline bool IsForwardingAddress();

  // Create a map word from a forwarding address.
  static inline MapWord FromForwardingAddress(HeapObject* object);

  // View this map word as a forwarding address.
  inline HeapObject* ToForwardingAddress();

  static inline MapWord FromRawValue(uintptr_t value) {
    return MapWord(value);
  }

  inline uintptr_t ToRawValue() {
    return value_;
  }

 private:
  // HeapObject calls the private constructor and directly reads the value.
  friend class HeapObject;

  explicit MapWord(uintptr_t value) : value_(value) {}

  uintptr_t value_;
};


// HeapObject is the superclass for all classes describing heap allocated
// objects.
class HeapObject: public Object {
 public:
  // [map]: Contains a map which contains the object's reflective
  // information.
  inline Map* map() const;
  inline void set_map(Map* value);
  // The no-write-barrier version.  This is OK if the object is white and in
  // new space, or if the value is an immortal immutable object, like the maps
  // of primitive (non-JS) objects like strings, heap numbers etc.
  inline void set_map_no_write_barrier(Map* value);

  // Get the map using acquire load.
  inline Map* synchronized_map();
  inline MapWord synchronized_map_word() const;

  // Set the map using release store
  inline void synchronized_set_map(Map* value);
  inline void synchronized_set_map_no_write_barrier(Map* value);
  inline void synchronized_set_map_word(MapWord map_word);

  // During garbage collection, the map word of a heap object does not
  // necessarily contain a map pointer.
  inline MapWord map_word() const;
  inline void set_map_word(MapWord map_word);

  // The Heap the object was allocated in. Used also to access Isolate.
  inline Heap* GetHeap() const;

  // Convenience method to get current isolate.
  inline Isolate* GetIsolate() const;

  // Converts an address to a HeapObject pointer.
  static inline HeapObject* FromAddress(Address address);

  // Returns the address of this HeapObject.
  inline Address address();

  // Iterates over pointers contained in the object (including the Map)
  void Iterate(ObjectVisitor* v);

  // Iterates over all pointers contained in the object except the
  // first map pointer.  The object type is given in the first
  // parameter. This function does not access the map pointer in the
  // object, and so is safe to call while the map pointer is modified.
  void IterateBody(InstanceType type, int object_size, ObjectVisitor* v);

  // Returns the heap object's size in bytes
  inline int Size();

  // Returns true if this heap object may contain raw values, i.e., values that
  // look like pointers to heap objects.
  inline bool MayContainRawValues();

  // Given a heap object's map pointer, returns the heap size in bytes
  // Useful when the map pointer field is used for other purposes.
  // GC internal.
  inline int SizeFromMap(Map* map);

  // Returns the field at offset in obj, as a read/write Object* reference.
  // Does no checking, and is safe to use during GC, while maps are invalid.
  // Does not invoke write barrier, so should only be assigned to
  // during marking GC.
  static inline Object** RawField(HeapObject* obj, int offset);

  // Adds the |code| object related to |name| to the code cache of this map. If
  // this map is a dictionary map that is shared, the map copied and installed
  // onto the object.
  static void UpdateMapCodeCache(Handle<HeapObject> object,
                                 Handle<Name> name,
                                 Handle<Code> code);

  DECLARE_CAST(HeapObject)

  // Return the write barrier mode for this. Callers of this function
  // must be able to present a reference to an DisallowHeapAllocation
  // object as a sign that they are not going to use this function
  // from code that allocates and thus invalidates the returned write
  // barrier mode.
  inline WriteBarrierMode GetWriteBarrierMode(
      const DisallowHeapAllocation& promise);

  // Dispatched behavior.
  void HeapObjectShortPrint(std::ostream& os);  // NOLINT
#ifdef OBJECT_PRINT
  void PrintHeader(std::ostream& os, const char* id);  // NOLINT
#endif
  DECLARE_PRINTER(HeapObject)
  DECLARE_VERIFIER(HeapObject)
#ifdef VERIFY_HEAP
  inline void VerifyObjectField(int offset);
  inline void VerifySmiField(int offset);

  // Verify a pointer is a valid HeapObject pointer that points to object
  // areas in the heap.
  static void VerifyHeapPointer(Object* p);
#endif

  inline bool NeedsToEnsureDoubleAlignment();

  // Layout description.
  // First field in a heap object is map.
  static const int kMapOffset = Object::kHeaderSize;
  static const int kHeaderSize = kMapOffset + kPointerSize;

  STATIC_ASSERT(kMapOffset == Internals::kHeapObjectMapOffset);

 protected:
  // helpers for calling an ObjectVisitor to iterate over pointers in the
  // half-open range [start, end) specified as integer offsets
  inline void IteratePointers(ObjectVisitor* v, int start, int end);
  // as above, for the single element at "offset"
  inline void IteratePointer(ObjectVisitor* v, int offset);
  // as above, for the next code link of a code object.
  inline void IterateNextCodeLink(ObjectVisitor* v, int offset);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapObject);
};


// This class describes a body of an object of a fixed size
// in which all pointer fields are located in the [start_offset, end_offset)
// interval.
template<int start_offset, int end_offset, int size>
class FixedBodyDescriptor {
 public:
  static const int kStartOffset = start_offset;
  static const int kEndOffset = end_offset;
  static const int kSize = size;

  static inline void IterateBody(HeapObject* obj, ObjectVisitor* v);

  template<typename StaticVisitor>
  static inline void IterateBody(HeapObject* obj) {
    StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
                                 HeapObject::RawField(obj, end_offset));
  }
};


// This class describes a body of an object of a variable size
// in which all pointer fields are located in the [start_offset, object_size)
// interval.
template<int start_offset>
class FlexibleBodyDescriptor {
 public:
  static const int kStartOffset = start_offset;

  static inline void IterateBody(HeapObject* obj,
                                 int object_size,
                                 ObjectVisitor* v);

  template<typename StaticVisitor>
  static inline void IterateBody(HeapObject* obj, int object_size) {
    StaticVisitor::VisitPointers(HeapObject::RawField(obj, start_offset),
                                 HeapObject::RawField(obj, object_size));
  }
};


// The HeapNumber class describes heap allocated numbers that cannot be
// represented in a Smi (small integer)
class HeapNumber: public HeapObject {
 public:
  // [value]: number value.
  inline double value() const;
  inline void set_value(double value);

  DECLARE_CAST(HeapNumber)

  // Dispatched behavior.
  bool HeapNumberBooleanValue();

  void HeapNumberPrint(std::ostream& os);  // NOLINT
  DECLARE_VERIFIER(HeapNumber)

  inline int get_exponent();
  inline int get_sign();

  // Layout description.
  static const int kValueOffset = HeapObject::kHeaderSize;
  // IEEE doubles are two 32 bit words.  The first is just mantissa, the second
  // is a mixture of sign, exponent and mantissa. The offsets of two 32 bit
  // words within double numbers are endian dependent and they are set
  // accordingly.
#if defined(V8_TARGET_LITTLE_ENDIAN)
  static const int kMantissaOffset = kValueOffset;
  static const int kExponentOffset = kValueOffset + 4;
#elif defined(V8_TARGET_BIG_ENDIAN)
  static const int kMantissaOffset = kValueOffset + 4;
  static const int kExponentOffset = kValueOffset;
#else
#error Unknown byte ordering
#endif

  static const int kSize = kValueOffset + kDoubleSize;
  static const uint32_t kSignMask = 0x80000000u;
  static const uint32_t kExponentMask = 0x7ff00000u;
  static const uint32_t kMantissaMask = 0xfffffu;
  static const int kMantissaBits = 52;
  static const int kExponentBits = 11;
  static const int kExponentBias = 1023;
  static const int kExponentShift = 20;
  static const int kInfinityOrNanExponent =
      (kExponentMask >> kExponentShift) - kExponentBias;
  static const int kMantissaBitsInTopWord = 20;
  static const int kNonMantissaBitsInTopWord = 12;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(HeapNumber);
};


enum EnsureElementsMode {
  DONT_ALLOW_DOUBLE_ELEMENTS,
  ALLOW_COPIED_DOUBLE_ELEMENTS,
  ALLOW_CONVERTED_DOUBLE_ELEMENTS
};


// Indicates whether a property should be set or (re)defined.  Setting of a
// property causes attributes to remain unchanged, writability to be checked
// and callbacks to be called.  Defining of a property causes attributes to
// be updated and callbacks to be overridden.
enum SetPropertyMode {
  SET_PROPERTY,
  DEFINE_PROPERTY
};


// Indicator for one component of an AccessorPair.
enum AccessorComponent {
  ACCESSOR_GETTER,
  ACCESSOR_SETTER
};


// JSReceiver includes types on which properties can be defined, i.e.,
// JSObject and JSProxy.
class JSReceiver: public HeapObject {
 public:
  DECLARE_CAST(JSReceiver)

  MUST_USE_RESULT static MaybeHandle<Object> SetElement(
      Handle<JSReceiver> object, uint32_t index, Handle<Object> value,
      PropertyAttributes attributes, LanguageMode language_mode);

  // Implementation of [[HasProperty]], ECMA-262 5th edition, section 8.12.6.
  MUST_USE_RESULT static inline Maybe<bool> HasProperty(
      Handle<JSReceiver> object, Handle<Name> name);
  MUST_USE_RESULT static inline Maybe<bool> HasOwnProperty(Handle<JSReceiver>,
                                                           Handle<Name> name);
  MUST_USE_RESULT static inline Maybe<bool> HasElement(
      Handle<JSReceiver> object, uint32_t index);
  MUST_USE_RESULT static inline Maybe<bool> HasOwnElement(
      Handle<JSReceiver> object, uint32_t index);

  // Implementation of [[Delete]], ECMA-262 5th edition, section 8.12.7.
  MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
      Handle<JSReceiver> object, Handle<Name> name,
      LanguageMode language_mode = SLOPPY);
  MUST_USE_RESULT static MaybeHandle<Object> DeleteElement(
      Handle<JSReceiver> object, uint32_t index,
      LanguageMode language_mode = SLOPPY);

  // Tests for the fast common case for property enumeration.
  bool IsSimpleEnum();

  // Returns the class name ([[Class]] property in the specification).
  String* class_name();

  // Returns the constructor name (the name (possibly, inferred name) of the
  // function that was used to instantiate the object).
  String* constructor_name();

  MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetPropertyAttributes(
      Handle<JSReceiver> object, Handle<Name> name);
  MUST_USE_RESULT static Maybe<PropertyAttributes> GetPropertyAttributes(
      LookupIterator* it);
  MUST_USE_RESULT static Maybe<PropertyAttributes> GetOwnPropertyAttributes(
      Handle<JSReceiver> object, Handle<Name> name);

  MUST_USE_RESULT static inline Maybe<PropertyAttributes> GetElementAttribute(
      Handle<JSReceiver> object, uint32_t index);
  MUST_USE_RESULT static inline Maybe<PropertyAttributes>
      GetOwnElementAttribute(Handle<JSReceiver> object, uint32_t index);

  // Retrieves a permanent object identity hash code. The undefined value might
  // be returned in case no hash was created yet.
  inline Object* GetIdentityHash();

  // Retrieves a permanent object identity hash code. May create and store a
  // hash code if needed and none exists.
  inline static Handle<Smi> GetOrCreateIdentityHash(
      Handle<JSReceiver> object);

  enum KeyCollectionType { OWN_ONLY, INCLUDE_PROTOS };

  // Computes the enumerable keys for a JSObject. Used for implementing
  // "for (n in object) { }".
  MUST_USE_RESULT static MaybeHandle<FixedArray> GetKeys(
      Handle<JSReceiver> object,
      KeyCollectionType type);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSReceiver);
};

// Forward declaration for JSObject::GetOrCreateHiddenPropertiesHashTable.
class ObjectHashTable;

// Forward declaration for JSObject::Copy.
class AllocationSite;


// The JSObject describes real heap allocated JavaScript objects with
// properties.
// Note that the map of JSObject changes during execution to enable inline
// caching.
class JSObject: public JSReceiver {
 public:
  // [properties]: Backing storage for properties.
  // properties is a FixedArray in the fast case and a Dictionary in the
  // slow case.
  DECL_ACCESSORS(properties, FixedArray)  // Get and set fast properties.
  inline void initialize_properties();
  inline bool HasFastProperties();
  inline NameDictionary* property_dictionary();  // Gets slow properties.

  // [elements]: The elements (properties with names that are integers).
  //
  // Elements can be in two general modes: fast and slow. Each mode
  // corrensponds to a set of object representations of elements that
  // have something in common.
  //
  // In the fast mode elements is a FixedArray and so each element can
  // be quickly accessed. This fact is used in the generated code. The
  // elements array can have one of three maps in this mode:
  // fixed_array_map, sloppy_arguments_elements_map or
  // fixed_cow_array_map (for copy-on-write arrays). In the latter case
  // the elements array may be shared by a few objects and so before
  // writing to any element the array must be copied. Use
  // EnsureWritableFastElements in this case.
  //
  // In the slow mode the elements is either a NumberDictionary, an
  // ExternalArray, or a FixedArray parameter map for a (sloppy)
  // arguments object.
  DECL_ACCESSORS(elements, FixedArrayBase)
  inline void initialize_elements();
  static void ResetElements(Handle<JSObject> object);
  static inline void SetMapAndElements(Handle<JSObject> object,
                                       Handle<Map> map,
                                       Handle<FixedArrayBase> elements);
  inline ElementsKind GetElementsKind();
  inline ElementsAccessor* GetElementsAccessor();
  // Returns true if an object has elements of FAST_SMI_ELEMENTS ElementsKind.
  inline bool HasFastSmiElements();
  // Returns true if an object has elements of FAST_ELEMENTS ElementsKind.
  inline bool HasFastObjectElements();
  // Returns true if an object has elements of FAST_ELEMENTS or
  // FAST_SMI_ONLY_ELEMENTS.
  inline bool HasFastSmiOrObjectElements();
  // Returns true if an object has any of the fast elements kinds.
  inline bool HasFastElements();
  // Returns true if an object has elements of FAST_DOUBLE_ELEMENTS
  // ElementsKind.
  inline bool HasFastDoubleElements();
  // Returns true if an object has elements of FAST_HOLEY_*_ELEMENTS
  // ElementsKind.
  inline bool HasFastHoleyElements();
  inline bool HasSloppyArgumentsElements();
  inline bool HasDictionaryElements();

  inline bool HasExternalUint8ClampedElements();
  inline bool HasExternalArrayElements();
  inline bool HasExternalInt8Elements();
  inline bool HasExternalUint8Elements();
  inline bool HasExternalInt16Elements();
  inline bool HasExternalUint16Elements();
  inline bool HasExternalInt32Elements();
  inline bool HasExternalUint32Elements();
  inline bool HasExternalFloat32Elements();
  inline bool HasExternalFloat64Elements();

  inline bool HasFixedTypedArrayElements();

  inline bool HasFixedUint8ClampedElements();
  inline bool HasFixedArrayElements();
  inline bool HasFixedInt8Elements();
  inline bool HasFixedUint8Elements();
  inline bool HasFixedInt16Elements();
  inline bool HasFixedUint16Elements();
  inline bool HasFixedInt32Elements();
  inline bool HasFixedUint32Elements();
  inline bool HasFixedFloat32Elements();
  inline bool HasFixedFloat64Elements();

  bool HasFastArgumentsElements();
  bool HasDictionaryArgumentsElements();
  inline SeededNumberDictionary* element_dictionary();  // Gets slow elements.

  // Requires: HasFastElements().
  static Handle<FixedArray> EnsureWritableFastElements(
      Handle<JSObject> object);

  // Collects elements starting at index 0.
  // Undefined values are placed after non-undefined values.
  // Returns the number of non-undefined values.
  static Handle<Object> PrepareElementsForSort(Handle<JSObject> object,
                                               uint32_t limit);
  // As PrepareElementsForSort, but only on objects where elements is
  // a dictionary, and it will stay a dictionary.  Collates undefined and
  // unexisting elements below limit from position zero of the elements.
  static Handle<Object> PrepareSlowElementsForSort(Handle<JSObject> object,
                                                   uint32_t limit);

  MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithInterceptor(
      LookupIterator* it, Handle<Object> value);

  // SetLocalPropertyIgnoreAttributes converts callbacks to fields. We need to
  // grant an exemption to ExecutableAccessor callbacks in some cases.
  enum ExecutableAccessorInfoHandling {
    DEFAULT_HANDLING,
    DONT_FORCE_FIELD
  };

  MUST_USE_RESULT static MaybeHandle<Object> SetOwnPropertyIgnoreAttributes(
      Handle<JSObject> object,
      Handle<Name> key,
      Handle<Object> value,
      PropertyAttributes attributes,
      ExecutableAccessorInfoHandling handling = DEFAULT_HANDLING);

  static void AddProperty(Handle<JSObject> object, Handle<Name> key,
                          Handle<Object> value, PropertyAttributes attributes);

  // Extend the receiver with a single fast property appeared first in the
  // passed map. This also extends the property backing store if necessary.
  static void AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map);

  // Migrates the given object to a map whose field representations are the
  // lowest upper bound of all known representations for that field.
  static void MigrateInstance(Handle<JSObject> instance);

  // Migrates the given object only if the target map is already available,
  // or returns false if such a map is not yet available.
  static bool TryMigrateInstance(Handle<JSObject> instance);

  // Sets the property value in a normalized object given (key, value, details).
  // Handles the special representation of JS global objects.
  static void SetNormalizedProperty(Handle<JSObject> object,
                                    Handle<Name> key,
                                    Handle<Object> value,
                                    PropertyDetails details);

  static void OptimizeAsPrototype(Handle<JSObject> object,
                                  PrototypeOptimizationMode mode);
  static void ReoptimizeIfPrototype(Handle<JSObject> object);
  static void LazyRegisterPrototypeUser(Handle<Map> user, Isolate* isolate);
  static bool RegisterPrototypeUserIfNotRegistered(Handle<JSObject> prototype,
                                                   Handle<HeapObject> user,
                                                   Isolate* isolate);
  static bool UnregisterPrototypeUser(Handle<JSObject> prototype,
                                      Handle<HeapObject> user);
  static void InvalidatePrototypeChains(Map* map);

  // Retrieve interceptors.
  InterceptorInfo* GetNamedInterceptor();
  InterceptorInfo* GetIndexedInterceptor();

  // Used from JSReceiver.
  MUST_USE_RESULT static Maybe<PropertyAttributes>
      GetPropertyAttributesWithInterceptor(Handle<JSObject> holder,
                                           Handle<Object> receiver,
                                           Handle<Name> name);
  MUST_USE_RESULT static Maybe<PropertyAttributes>
      GetPropertyAttributesWithFailedAccessCheck(LookupIterator* it);
  MUST_USE_RESULT static Maybe<PropertyAttributes>
      GetElementAttributeWithReceiver(Handle<JSObject> object,
                                      Handle<JSReceiver> receiver,
                                      uint32_t index, bool check_prototype);

  // Retrieves an AccessorPair property from the given object. Might return
  // undefined if the property doesn't exist or is of a different kind.
  MUST_USE_RESULT static MaybeHandle<Object> GetAccessor(
      Handle<JSObject> object,
      Handle<Name> name,
      AccessorComponent component);

  // Defines an AccessorPair property on the given object.
  // TODO(mstarzinger): Rename to SetAccessor().
  static MaybeHandle<Object> DefineAccessor(Handle<JSObject> object,
                                            Handle<Name> name,
                                            Handle<Object> getter,
                                            Handle<Object> setter,
                                            PropertyAttributes attributes);

  // Defines an AccessorInfo property on the given object.
  MUST_USE_RESULT static MaybeHandle<Object> SetAccessor(
      Handle<JSObject> object,
      Handle<AccessorInfo> info);

  MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithInterceptor(
      Handle<JSObject> object,
      Handle<Object> receiver,
      Handle<Name> name);

  // Accessors for hidden properties object.
  //
  // Hidden properties are not own properties of the object itself.
  // Instead they are stored in an auxiliary structure kept as an own
  // property with a special name Heap::hidden_string(). But if the
  // receiver is a JSGlobalProxy then the auxiliary object is a property
  // of its prototype, and if it's a detached proxy, then you can't have
  // hidden properties.

  // Sets a hidden property on this object. Returns this object if successful,
  // undefined if called on a detached proxy.
  static Handle<Object> SetHiddenProperty(Handle<JSObject> object,
                                          Handle<Name> key,
                                          Handle<Object> value);
  // Gets the value of a hidden property with the given key. Returns the hole
  // if the property doesn't exist (or if called on a detached proxy),
  // otherwise returns the value set for the key.
  Object* GetHiddenProperty(Handle<Name> key);
  // Deletes a hidden property. Deleting a non-existing property is
  // considered successful.
  static void DeleteHiddenProperty(Handle<JSObject> object,
                                   Handle<Name> key);
  // Returns true if the object has a property with the hidden string as name.
  static bool HasHiddenProperties(Handle<JSObject> object);

  static void SetIdentityHash(Handle<JSObject> object, Handle<Smi> hash);

  static inline void ValidateElements(Handle<JSObject> object);

  // Makes sure that this object can contain HeapObject as elements.
  static inline void EnsureCanContainHeapObjectElements(Handle<JSObject> obj);

  // Makes sure that this object can contain the specified elements.
  static inline void EnsureCanContainElements(
      Handle<JSObject> object,
      Object** elements,
      uint32_t count,
      EnsureElementsMode mode);
  static inline void EnsureCanContainElements(
      Handle<JSObject> object,
      Handle<FixedArrayBase> elements,
      uint32_t length,
      EnsureElementsMode mode);
  static void EnsureCanContainElements(
      Handle<JSObject> object,
      Arguments* arguments,
      uint32_t first_arg,
      uint32_t arg_count,
      EnsureElementsMode mode);

  // Would we convert a fast elements array to dictionary mode given
  // an access at key?
  bool WouldConvertToSlowElements(uint32_t index);
  inline bool WouldConvertToSlowElements(Handle<Object> key);
  // Do we want to keep the elements in fast case when increasing the
  // capacity?
  bool ShouldConvertToSlowElements(int new_capacity);
  // Returns true if the backing storage for the slow-case elements of
  // this object takes up nearly as much space as a fast-case backing
  // storage would.  In that case the JSObject should have fast
  // elements.
  bool ShouldConvertToFastElements();
  // Returns true if the elements of JSObject contains only values that can be
  // represented in a FixedDoubleArray and has at least one value that can only
  // be represented as a double and not a Smi.
  bool ShouldConvertToFastDoubleElements(bool* has_smi_only_elements);

  // Computes the new capacity when expanding the elements of a JSObject.
  static int NewElementsCapacity(int old_capacity) {
    // (old_capacity + 50%) + 16
    return old_capacity + (old_capacity >> 1) + 16;
  }

  // These methods do not perform access checks!
  MUST_USE_RESULT static MaybeHandle<AccessorPair> GetOwnElementAccessorPair(
      Handle<JSObject> object, uint32_t index);

  MUST_USE_RESULT static MaybeHandle<Object> SetFastElement(
      Handle<JSObject> object, uint32_t index, Handle<Object> value,
      LanguageMode language_mode, bool check_prototype);

  MUST_USE_RESULT static inline MaybeHandle<Object> SetOwnElement(
      Handle<JSObject> object, uint32_t index, Handle<Object> value,
      LanguageMode language_mode);

  MUST_USE_RESULT static MaybeHandle<Object> SetOwnElement(
      Handle<JSObject> object, uint32_t index, Handle<Object> value,
      PropertyAttributes attributes, LanguageMode language_mode);

  // Empty handle is returned if the element cannot be set to the given value.
  MUST_USE_RESULT static MaybeHandle<Object> SetElement(
      Handle<JSObject> object, uint32_t index, Handle<Object> value,
      PropertyAttributes attributes, LanguageMode language_mode,
      bool check_prototype = true, SetPropertyMode set_mode = SET_PROPERTY);

  // Returns the index'th element.
  // The undefined object if index is out of bounds.
  MUST_USE_RESULT static MaybeHandle<Object> GetElementWithInterceptor(
      Handle<JSObject> object, Handle<Object> receiver, uint32_t index,
      bool check_prototype);

  enum SetFastElementsCapacitySmiMode {
    kAllowSmiElements,
    kForceSmiElements,
    kDontAllowSmiElements
  };

  static Handle<FixedArray> SetFastElementsCapacity(
      Handle<JSObject> object, int capacity,
      SetFastElementsCapacitySmiMode smi_mode);
  static Handle<FixedArrayBase> SetFastDoubleElementsCapacity(
      Handle<JSObject> object, int capacity);

  // Replace the elements' backing store with fast elements of the given
  // capacity.  Update the length for JSArrays.  Returns the new backing
  // store.
  static Handle<FixedArray> SetFastElementsCapacityAndLength(
      Handle<JSObject> object,
      int capacity,
      int length,
      SetFastElementsCapacitySmiMode smi_mode);
  static Handle<FixedArrayBase> SetFastDoubleElementsCapacityAndLength(
      Handle<JSObject> object, int capacity, int length);

  // Lookup interceptors are used for handling properties controlled by host
  // objects.
  inline bool HasNamedInterceptor();
  inline bool HasIndexedInterceptor();

  // Computes the enumerable keys from interceptors. Used for debug mirrors and
  // by JSReceiver::GetKeys.
  MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForNamedInterceptor(
      Handle<JSObject> object,
      Handle<JSReceiver> receiver);
  MUST_USE_RESULT static MaybeHandle<JSObject> GetKeysForIndexedInterceptor(
      Handle<JSObject> object,
      Handle<JSReceiver> receiver);

  // Support functions for v8 api (needed for correct interceptor behavior).
  MUST_USE_RESULT static Maybe<bool> HasRealNamedProperty(
      Handle<JSObject> object, Handle<Name> key);
  MUST_USE_RESULT static Maybe<bool> HasRealElementProperty(
      Handle<JSObject> object, uint32_t index);
  MUST_USE_RESULT static Maybe<bool> HasRealNamedCallbackProperty(
      Handle<JSObject> object, Handle<Name> key);

  // Get the header size for a JSObject.  Used to compute the index of
  // internal fields as well as the number of internal fields.
  inline int GetHeaderSize();

  inline int GetInternalFieldCount();
  inline int GetInternalFieldOffset(int index);
  inline Object* GetInternalField(int index);
  inline void SetInternalField(int index, Object* value);
  inline void SetInternalField(int index, Smi* value);

  // Returns the number of properties on this object filtering out properties
  // with the specified attributes (ignoring interceptors).
  int NumberOfOwnProperties(PropertyAttributes filter = NONE);
  // Fill in details for properties into storage starting at the specified
  // index.
  void GetOwnPropertyNames(
      FixedArray* storage, int index, PropertyAttributes filter = NONE);

  // Returns the number of properties on this object filtering out properties
  // with the specified attributes (ignoring interceptors).
  int NumberOfOwnElements(PropertyAttributes filter);
  // Returns the number of enumerable elements (ignoring interceptors).
  int NumberOfEnumElements();
  // Returns the number of elements on this object filtering out elements
  // with the specified attributes (ignoring interceptors).
  int GetOwnElementKeys(FixedArray* storage, PropertyAttributes filter);
  // Count and fill in the enumerable elements into storage.
  // (storage->length() == NumberOfEnumElements()).
  // If storage is NULL, will count the elements without adding
  // them to any storage.
  // Returns the number of enumerable elements.
  int GetEnumElementKeys(FixedArray* storage);

  static Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
                                                bool cache_result);

  // Returns a new map with all transitions dropped from the object's current
  // map and the ElementsKind set.
  static Handle<Map> GetElementsTransitionMap(Handle<JSObject> object,
                                              ElementsKind to_kind);
  static void TransitionElementsKind(Handle<JSObject> object,
                                     ElementsKind to_kind);

  // Always use this to migrate an object to a new map.
  // |expected_additional_properties| is only used for fast-to-slow transitions
  // and ignored otherwise.
  static void MigrateToMap(Handle<JSObject> object, Handle<Map> new_map,
                           int expected_additional_properties = 0);

  // Convert the object to use the canonical dictionary
  // representation. If the object is expected to have additional properties
  // added this number can be indicated to have the backing store allocated to
  // an initial capacity for holding these properties.
  static void NormalizeProperties(Handle<JSObject> object,
                                  PropertyNormalizationMode mode,
                                  int expected_additional_properties,
                                  const char* reason);

  // Convert and update the elements backing store to be a
  // SeededNumberDictionary dictionary.  Returns the backing after conversion.
  static Handle<SeededNumberDictionary> NormalizeElements(
      Handle<JSObject> object);

  // Transform slow named properties to fast variants.
  static void MigrateSlowToFast(Handle<JSObject> object,
                                int unused_property_fields, const char* reason);

  inline bool IsUnboxedDoubleField(FieldIndex index);

  // Access fast-case object properties at index.
  static Handle<Object> FastPropertyAt(Handle<JSObject> object,
                                       Representation representation,
                                       FieldIndex index);
  inline Object* RawFastPropertyAt(FieldIndex index);
  inline double RawFastDoublePropertyAt(FieldIndex index);

  inline void FastPropertyAtPut(FieldIndex index, Object* value);
  inline void RawFastPropertyAtPut(FieldIndex index, Object* value);
  inline void RawFastDoublePropertyAtPut(FieldIndex index, double value);
  inline void WriteToField(int descriptor, Object* value);

  // Access to in object properties.
  inline int GetInObjectPropertyOffset(int index);
  inline Object* InObjectPropertyAt(int index);
  inline Object* InObjectPropertyAtPut(int index,
                                       Object* value,
                                       WriteBarrierMode mode
                                       = UPDATE_WRITE_BARRIER);

  // Set the object's prototype (only JSReceiver and null are allowed values).
  MUST_USE_RESULT static MaybeHandle<Object> SetPrototype(
      Handle<JSObject> object, Handle<Object> value, bool from_javascript);

  // Initializes the body after properties slot, properties slot is
  // initialized by set_properties.  Fill the pre-allocated fields with
  // pre_allocated_value and the rest with filler_value.
  // Note: this call does not update write barrier, the caller is responsible
  // to ensure that |filler_value| can be collected without WB here.
  inline void InitializeBody(Map* map,
                             Object* pre_allocated_value,
                             Object* filler_value);

  // Check whether this object references another object
  bool ReferencesObject(Object* obj);

  // Disalow further properties to be added to the object.
  MUST_USE_RESULT static MaybeHandle<Object> PreventExtensions(
      Handle<JSObject> object);

  // ES5 Object.seal
  MUST_USE_RESULT static MaybeHandle<Object> Seal(Handle<JSObject> object);

  // ES5 Object.freeze
  MUST_USE_RESULT static MaybeHandle<Object> Freeze(Handle<JSObject> object);

  // Called the first time an object is observed with ES7 Object.observe.
  static void SetObserved(Handle<JSObject> object);

  // Copy object.
  enum DeepCopyHints { kNoHints = 0, kObjectIsShallow = 1 };

  static Handle<JSObject> Copy(Handle<JSObject> object);
  MUST_USE_RESULT static MaybeHandle<JSObject> DeepCopy(
      Handle<JSObject> object,
      AllocationSiteUsageContext* site_context,
      DeepCopyHints hints = kNoHints);
  MUST_USE_RESULT static MaybeHandle<JSObject> DeepWalk(
      Handle<JSObject> object,
      AllocationSiteCreationContext* site_context);

  static Handle<Object> GetDataProperty(Handle<JSObject> object,
                                        Handle<Name> key);
  static Handle<Object> GetDataProperty(LookupIterator* it);

  DECLARE_CAST(JSObject)

  // Dispatched behavior.
  void JSObjectShortPrint(StringStream* accumulator);
  DECLARE_PRINTER(JSObject)
  DECLARE_VERIFIER(JSObject)
#ifdef OBJECT_PRINT
  void PrintProperties(std::ostream& os);   // NOLINT
  void PrintElements(std::ostream& os);     // NOLINT
#endif
#if defined(DEBUG) || defined(OBJECT_PRINT)
  void PrintTransitions(std::ostream& os);  // NOLINT
#endif

  static void PrintElementsTransition(
      FILE* file, Handle<JSObject> object,
      ElementsKind from_kind, Handle<FixedArrayBase> from_elements,
      ElementsKind to_kind, Handle<FixedArrayBase> to_elements);

  void PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map);

#ifdef DEBUG
  // Structure for collecting spill information about JSObjects.
  class SpillInformation {
   public:
    void Clear();
    void Print();
    int number_of_objects_;
    int number_of_objects_with_fast_properties_;
    int number_of_objects_with_fast_elements_;
    int number_of_fast_used_fields_;
    int number_of_fast_unused_fields_;
    int number_of_slow_used_properties_;
    int number_of_slow_unused_properties_;
    int number_of_fast_used_elements_;
    int number_of_fast_unused_elements_;
    int number_of_slow_used_elements_;
    int number_of_slow_unused_elements_;
  };

  void IncrementSpillStatistics(SpillInformation* info);
#endif

#ifdef VERIFY_HEAP
  // If a GC was caused while constructing this object, the elements pointer
  // may point to a one pointer filler map. The object won't be rooted, but
  // our heap verification code could stumble across it.
  bool ElementsAreSafeToExamine();
#endif

  Object* SlowReverseLookup(Object* value);

  // Maximal number of elements (numbered 0 .. kMaxElementCount - 1).
  // Also maximal value of JSArray's length property.
  static const uint32_t kMaxElementCount = 0xffffffffu;

  // Constants for heuristics controlling conversion of fast elements
  // to slow elements.

  // Maximal gap that can be introduced by adding an element beyond
  // the current elements length.
  static const uint32_t kMaxGap = 1024;

  // Maximal length of fast elements array that won't be checked for
  // being dense enough on expansion.
  static const int kMaxUncheckedFastElementsLength = 5000;

  // Same as above but for old arrays. This limit is more strict. We
  // don't want to be wasteful with long lived objects.
  static const int kMaxUncheckedOldFastElementsLength = 500;

  // Note that Page::kMaxRegularHeapObjectSize puts a limit on
  // permissible values (see the DCHECK in heap.cc).
  static const int kInitialMaxFastElementArray = 100000;

  // This constant applies only to the initial map of "global.Object" and
  // not to arbitrary other JSObject maps.
  static const int kInitialGlobalObjectUnusedPropertiesCount = 4;

  static const int kMaxInstanceSize = 255 * kPointerSize;
  // When extending the backing storage for property values, we increase
  // its size by more than the 1 entry necessary, so sequentially adding fields
  // to the same object requires fewer allocations and copies.
  static const int kFieldsAdded = 3;

  // Layout description.
  static const int kPropertiesOffset = HeapObject::kHeaderSize;
  static const int kElementsOffset = kPropertiesOffset + kPointerSize;
  static const int kHeaderSize = kElementsOffset + kPointerSize;

  STATIC_ASSERT(kHeaderSize == Internals::kJSObjectHeaderSize);

  class BodyDescriptor : public FlexibleBodyDescriptor<kPropertiesOffset> {
   public:
    static inline int SizeOf(Map* map, HeapObject* object);
  };

  Context* GetCreationContext();

  // Enqueue change record for Object.observe. May cause GC.
  MUST_USE_RESULT static MaybeHandle<Object> EnqueueChangeRecord(
      Handle<JSObject> object, const char* type, Handle<Name> name,
      Handle<Object> old_value);

 private:
  friend class DictionaryElementsAccessor;
  friend class JSReceiver;
  friend class Object;

  static void MigrateFastToFast(Handle<JSObject> object, Handle<Map> new_map);
  static void MigrateFastToSlow(Handle<JSObject> object,
                                Handle<Map> new_map,
                                int expected_additional_properties);

  static void UpdateAllocationSite(Handle<JSObject> object,
                                   ElementsKind to_kind);

  // Used from Object::GetProperty().
  MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithFailedAccessCheck(
      LookupIterator* it);

  MUST_USE_RESULT static MaybeHandle<Object> GetElementWithCallback(
      Handle<JSObject> object,
      Handle<Object> receiver,
      Handle<Object> structure,
      uint32_t index,
      Handle<Object> holder);

  MUST_USE_RESULT static Maybe<PropertyAttributes>
      GetElementAttributeWithInterceptor(Handle<JSObject> object,
                                         Handle<JSReceiver> receiver,
                                         uint32_t index, bool continue_search);

  // Queries indexed interceptor on an object for property attributes.
  //
  // We determine property attributes as follows:
  // - if interceptor has a query callback, then the  property attributes are
  //   the result of query callback for index.
  // - otherwise if interceptor has a getter callback and it returns
  //   non-empty value on index, then the property attributes is NONE
  //   (property is present, and it is enumerable, configurable, writable)
  // - otherwise there are no property attributes that can be inferred for
  //   interceptor, and this function returns ABSENT.
  MUST_USE_RESULT static Maybe<PropertyAttributes>
      GetElementAttributeFromInterceptor(Handle<JSObject> object,
                                         Handle<Object> receiver,
                                         uint32_t index);

  MUST_USE_RESULT static Maybe<PropertyAttributes>
      GetElementAttributeWithoutInterceptor(Handle<JSObject> object,
                                            Handle<JSReceiver> receiver,
                                            uint32_t index,
                                            bool continue_search);
  MUST_USE_RESULT static MaybeHandle<Object> SetElementWithCallback(
      Handle<Object> object, Handle<Object> structure, uint32_t index,
      Handle<Object> value, Handle<JSObject> holder,
      LanguageMode language_mode);
  MUST_USE_RESULT static MaybeHandle<Object> SetElementWithInterceptor(
      Handle<JSObject> object, uint32_t index, Handle<Object> value,
      PropertyAttributes attributes, LanguageMode language_mode,
      bool check_prototype, SetPropertyMode set_mode);
  MUST_USE_RESULT static MaybeHandle<Object> SetElementWithoutInterceptor(
      Handle<JSObject> object, uint32_t index, Handle<Object> value,
      PropertyAttributes attributes, LanguageMode language_mode,
      bool check_prototype, SetPropertyMode set_mode);
  MUST_USE_RESULT
  static MaybeHandle<Object> SetElementWithCallbackSetterInPrototypes(
      Handle<JSObject> object, uint32_t index, Handle<Object> value,
      bool* found, LanguageMode language_mode);
  MUST_USE_RESULT static MaybeHandle<Object> SetDictionaryElement(
      Handle<JSObject> object, uint32_t index, Handle<Object> value,
      PropertyAttributes attributes, LanguageMode language_mode,
      bool check_prototype, SetPropertyMode set_mode = SET_PROPERTY);
  MUST_USE_RESULT static MaybeHandle<Object> SetFastDoubleElement(
      Handle<JSObject> object, uint32_t index, Handle<Object> value,
      LanguageMode language_mode, bool check_prototype = true);
  MUST_USE_RESULT static MaybeHandle<Object> GetElementWithFailedAccessCheck(
      Isolate* isolate, Handle<JSObject> object, Handle<Object> receiver,
      uint32_t index);
  MUST_USE_RESULT static Maybe<PropertyAttributes>
  GetElementAttributesWithFailedAccessCheck(Isolate* isolate,
                                            Handle<JSObject> object,
                                            Handle<Object> receiver,
                                            uint32_t index);

  MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithFailedAccessCheck(
      LookupIterator* it, Handle<Object> value, LanguageMode language_mode);

  // Add a property to a slow-case object.
  static void AddSlowProperty(Handle<JSObject> object,
                              Handle<Name> name,
                              Handle<Object> value,
                              PropertyAttributes attributes);

  MUST_USE_RESULT static MaybeHandle<Object> DeleteProperty(
      Handle<JSObject> object, Handle<Name> name, LanguageMode language_mode);
  MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithInterceptor(
      Handle<JSObject> holder, Handle<JSObject> receiver, Handle<Name> name);

  // Deletes an existing named property in a normalized object.
  static void DeleteNormalizedProperty(Handle<JSObject> object,
                                       Handle<Name> name);

  MUST_USE_RESULT static MaybeHandle<Object> DeleteElement(
      Handle<JSObject> object, uint32_t index, LanguageMode language_mode);
  MUST_USE_RESULT static MaybeHandle<Object> DeleteElementWithInterceptor(
      Handle<JSObject> object,
      uint32_t index);

  bool ReferencesObjectFromElements(FixedArray* elements,
                                    ElementsKind kind,
                                    Object* object);

  // Returns true if most of the elements backing storage is used.
  bool HasDenseElements();

  // Gets the current elements capacity and the number of used elements.
  void GetElementsCapacityAndUsage(int* capacity, int* used);

  static bool CanSetCallback(Handle<JSObject> object, Handle<Name> name);
  static void SetElementCallback(Handle<JSObject> object,
                                 uint32_t index,
                                 Handle<Object> structure,
                                 PropertyAttributes attributes);
  static void SetPropertyCallback(Handle<JSObject> object,
                                  Handle<Name> name,
                                  Handle<Object> structure,
                                  PropertyAttributes attributes);
  static void DefineElementAccessor(Handle<JSObject> object,
                                    uint32_t index,
                                    Handle<Object> getter,
                                    Handle<Object> setter,
                                    PropertyAttributes attributes);

  // Return the hash table backing store or the inline stored identity hash,
  // whatever is found.
  MUST_USE_RESULT Object* GetHiddenPropertiesHashTable();

  // Return the hash table backing store for hidden properties.  If there is no
  // backing store, allocate one.
  static Handle<ObjectHashTable> GetOrCreateHiddenPropertiesHashtable(
      Handle<JSObject> object);

  // Set the hidden property backing store to either a hash table or
  // the inline-stored identity hash.
  static Handle<Object> SetHiddenPropertiesHashTable(
      Handle<JSObject> object,
      Handle<Object> value);

  MUST_USE_RESULT Object* GetIdentityHash();

  static Handle<Smi> GetOrCreateIdentityHash(Handle<JSObject> object);

  static Handle<SeededNumberDictionary> GetNormalizedElementDictionary(
      Handle<JSObject> object);

  // Helper for fast versions of preventExtensions, seal, and freeze.
  // attrs is one of NONE, SEALED, or FROZEN (depending on the operation).
  template <PropertyAttributes attrs>
  MUST_USE_RESULT static MaybeHandle<Object> PreventExtensionsWithTransition(
      Handle<JSObject> object);

  DISALLOW_IMPLICIT_CONSTRUCTORS(JSObject);
};


// Common superclass for FixedArrays that allow implementations to share
// common accessors and some code paths.
class FixedArrayBase: public HeapObject {
 public:
  // [length]: length of the array.
  inline int length() const;
  inline void set_length(int value);

  // Get and set the length using acquire loads and release stores.
  inline int synchronized_length() const;
  inline void synchronized_set_length(int value);

  DECLARE_CAST(FixedArrayBase)

  // Layout description.
  // Length is smi tagged when it is stored.
  static const int kLengthOffset = HeapObject::kHeaderSize;
  static const int kHeaderSize = kLengthOffset + kPointerSize;
};


class FixedDoubleArray;
class IncrementalMarking;


// FixedArray describes fixed-sized arrays with element type Object*.
class FixedArray: public FixedArrayBase {
 public:
  // Setter and getter for elements.
  inline Object* get(int index) const;
  static inline Handle<Object> get(Handle<FixedArray> array, int index);
  // Setter that uses write barrier.
  inline void set(int index, Object* value);
  inline bool is_the_hole(int index);

  // Setter that doesn't need write barrier.
  inline void set(int index, Smi* value);
  // Setter with explicit barrier mode.
  inline void set(int index, Object* value, WriteBarrierMode mode);

  // Setters for frequently used oddballs located in old space.
  inline void set_undefined(int index);
  inline void set_null(int index);
  inline void set_the_hole(int index);

  inline Object** GetFirstElementAddress();
  inline bool ContainsOnlySmisOrHoles();

  // Gives access to raw memory which stores the array's data.
  inline Object** data_start();

  inline void FillWithHoles(int from, int to);

  // Shrink length and insert filler objects.
  void Shrink(int length);

  // Copy operation.
  static Handle<FixedArray> CopySize(Handle<FixedArray> array,
                                     int new_length,
                                     PretenureFlag pretenure = NOT_TENURED);

  enum KeyFilter { ALL_KEYS, NON_SYMBOL_KEYS };

  // Add the elements of a JSArray to this FixedArray.
  MUST_USE_RESULT static MaybeHandle<FixedArray> AddKeysFromArrayLike(
      Handle<FixedArray> content, Handle<JSObject> array,
      KeyFilter filter = ALL_KEYS);

  // Computes the union of keys and return the result.
  // Used for implementing "for (n in object) { }"
  MUST_USE_RESULT static MaybeHandle<FixedArray> UnionOfKeys(
      Handle<FixedArray> first,
      Handle<FixedArray> second);

  // Copy a sub array from the receiver to dest.
  void CopyTo(int pos, FixedArray* dest, int dest_pos, int len);

  // Garbage collection support.
  static int SizeFor(int length) { return kHeaderSize + length * kPointerSize; }

  // Code Generation support.
  static int OffsetOfElementAt(int index) { return SizeFor(index); }

  // Garbage collection support.
  Object** RawFieldOfElementAt(int index) {
    return HeapObject::RawField(this, OffsetOfElementAt(index));
  }

  DECLARE_CAST(FixedArray)

  // Maximal allowed size, in bytes, of a single FixedArray.
  // Prevents overflowing size computations, as well as extreme memory
  // consumption.
  static const int kMaxSize = 128 * MB * kPointerSize;
  // Maximally allowed length of a FixedArray.
  static const int kMaxLength = (kMaxSize - kHeaderSize) / kPointerSize;

  // Dispatched behavior.
  DECLARE_PRINTER(FixedArray)
  DECLARE_VERIFIER(FixedArray)
#ifdef DEBUG
  // Checks if two FixedArrays have identical contents.
  bool IsEqualTo(FixedArray* other);
#endif

  // Swap two elements in a pair of arrays.  If this array and the
  // numbers array are the same object, the elements are only swapped
  // once.
  void SwapPairs(FixedArray* numbers, int i, int j);

  // Sort prefix of this array and the numbers array as pairs wrt. the
  // numbers.  If the numbers array and the this array are the same
  // object, the prefix of this array is sorted.
  void SortPairs(FixedArray* numbers, uint32_t len);

  class BodyDescriptor : public FlexibleBodyDescriptor<kHeaderSize> {
   public:
    static inline int SizeOf(Map* map, HeapObject* object) {
      return SizeFor(
          reinterpret_cast<FixedArray*>(object)->synchronized_length());
    }
  };

 protected:
  // Set operation on FixedArray without using write barriers. Can
  // only be used for storing old space objects or smis.
  static inline void NoWriteBarrierSet(FixedArray* array,
                                       int index,
                                       Object* value);

  // Set operation on FixedArray without incremental write barrier. Can
  // only be used if the object is guaranteed to be white (whiteness witness
  // is present).
  static inline void NoIncrementalWriteBarrierSet(FixedArray* array,
                                                  int index,
                                                  Object* value);

 private:
  STATIC_ASSERT(kHeaderSize == Internals::kFixedArrayHeaderSize);

  DISALLOW_IMPLICIT_CONSTRUCTORS(FixedArray);
};


// FixedDoubleArray describes fixed-sized arrays with element type double.
class FixedDoubleArray: public FixedArrayBase {
 public:
  // Setter and getter for elements.
  inline double get_scalar(int index);
  inline uint64_t get_representation(int index);
  static inline Handle<Object> get(Handle<FixedDoubleArray> array, int index);
  inline void set(int index, double value);
  inline void set_the_hole(int index);

  // Checking for the hole.
  inline bool is_the_hole(int index);

  // Garbage collection support.
  inline static int SizeFor(int length) {
    return kHeaderSize + length * kDoubleSize;
  }

  // Gives access to raw memory which stores the array's data.
  inline double* data_start();

  inline void FillWithHoles(int from, int to);

  // Code Generation support.
  static int OffsetOfElementAt(int index) { return SizeFor(index); }

  DECLARE_CAST(FixedDoubleArray)

  // Maximal allowed size, in bytes, of a single FixedDoubleArray.
  // Prevents overflowing size computations, as well as extreme memory
  // consumption.
  static const int kMaxSize = 512 * MB;
  // Maximally allowed length of a FixedArray.
  static const int kMaxLength = (kMaxSize - kHeaderSize) / kDoubleSize;

  // Dispatched behavior.
  DECLARE_PRINTER(FixedDoubleArray)
  DECLARE_VERIFIER(FixedDoubleArray)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(FixedDoubleArray);
};


class WeakFixedArray : public FixedArray {
 public:
  enum SearchForDuplicates { kAlwaysAdd, kAddIfNotFound };

  // If |maybe_array| is not a WeakFixedArray, a fresh one will be allocated.
  static Handle<WeakFixedArray> Add(
      Handle<Object> maybe_array, Handle<HeapObject> value,
      SearchForDuplicates search_for_duplicates = kAlwaysAdd,
      bool* was_present = NULL);

  // Returns true if an entry was found and removed.
  bool Remove(Handle<HeapObject> value);

  void Compact();

  inline Object* Get(int index) const;
  inline void Clear(int index);
  inline int Length() const;

  inline bool IsEmptySlot(int index) const;
  static Object* Empty() { return Smi::FromInt(0); }

  DECLARE_CAST(WeakFixedArray)

 private:
  static const int kLastUsedIndexIndex = 0;
  static const int kFirstIndex = 1;

  static Handle<WeakFixedArray> Allocate(
      Isolate* isolate, int size, Handle<WeakFixedArray> initialize_from);

  static void Set(Handle<WeakFixedArray> array, int index,
                  Handle<HeapObject> value);
  inline void clear(int index);

  inline int last_used_index() const;
  inline void set_last_used_index(int index);

  // Disallow inherited setters.
  void set(int index, Smi* value);
  void set(int index, Object* value);
  void set(int index, Object* value, WriteBarrierMode mode);
  DISALLOW_IMPLICIT_CONSTRUCTORS(WeakFixedArray);
};


// Generic array grows dynamically with O(1) amortized insertion.
class ArrayList : public FixedArray {
 public:
  enum AddMode {
    kNone,
    // Use this if GC can delete elements from the array.
    kReloadLengthAfterAllocation,
  };
  static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj,
                               AddMode mode = kNone);
  static Handle<ArrayList> Add(Handle<ArrayList> array, Handle<Object> obj1,
                               Handle<Object> obj2, AddMode = kNone);
  inline int Length();
  inline void SetLength(int length);
  inline Object* Get(int index);
  inline Object** Slot(int index);
  inline void Set(int index, Object* obj);
  inline void Clear(int index, Object* undefined);
  DECLARE_CAST(ArrayList)

 private:
  static Handle<ArrayList> EnsureSpace(Handle<ArrayList> array, int length);
  static const int kLengthIndex = 0;
  static const int kFirstIndex = 1;
  DISALLOW_IMPLICIT_CONSTRUCTORS(ArrayList);
};


// ConstantPoolArray describes a fixed-sized array containing constant pool
// entries.
//
// A ConstantPoolArray can be structured in two different ways depending upon
// whether it is extended or small. The is_extended_layout() method can be used
// to discover which layout the constant pool has.
//
// The format of a small constant pool is:
//   [kSmallLayout1Offset]                    : Small section layout bitmap 1
//   [kSmallLayout2Offset]                    : Small section layout bitmap 2
//   [first_index(INT64, SMALL_SECTION)]      : 64 bit entries
//    ...                                     :  ...
//   [first_index(CODE_PTR, SMALL_SECTION)]   : code pointer entries
//    ...                                     :  ...
//   [first_index(HEAP_PTR, SMALL_SECTION)]   : heap pointer entries
//    ...                                     :  ...
//   [first_index(INT32, SMALL_SECTION)]      : 32 bit entries
//    ...                                     :  ...
//
// If the constant pool has an extended layout, the extended section constant
// pool also contains an extended section, which has the following format at
// location get_extended_section_header_offset():
//   [kExtendedInt64CountOffset]              : count of extended 64 bit entries
//   [kExtendedCodePtrCountOffset]            : count of extended code pointers
//   [kExtendedHeapPtrCountOffset]            : count of extended heap pointers
//   [kExtendedInt32CountOffset]              : count of extended 32 bit entries
//   [first_index(INT64, EXTENDED_SECTION)]   : 64 bit entries
//    ...                                     :  ...
//   [first_index(CODE_PTR, EXTENDED_SECTION)]: code pointer entries
//    ...                                     :  ...
//   [first_index(HEAP_PTR, EXTENDED_SECTION)]: heap pointer entries
//    ...                                     :  ...
//   [first_index(INT32, EXTENDED_SECTION)]   : 32 bit entries
//    ...                                     :  ...
//
class ConstantPoolArray: public HeapObject {
 public:
  enum WeakObjectState { NO_WEAK_OBJECTS, WEAK_OBJECTS_IN_OPTIMIZED_CODE };

  enum Type {
    INT64 = 0,
    CODE_PTR,
    HEAP_PTR,
    INT32,
    // Number of types stored by the ConstantPoolArrays.
    NUMBER_OF_TYPES,
    FIRST_TYPE = INT64,
    LAST_TYPE = INT32
  };

  enum LayoutSection {
    SMALL_SECTION = 0,
    EXTENDED_SECTION,
    NUMBER_OF_LAYOUT_SECTIONS
  };

  class NumberOfEntries BASE_EMBEDDED {
   public:
    inline NumberOfEntries() {
      for (int i = 0; i < NUMBER_OF_TYPES; i++) {
        element_counts_[i] = 0;
      }
    }

    inline NumberOfEntries(int int64_count, int code_ptr_count,
                           int heap_ptr_count, int int32_count) {
      element_counts_[INT64] = int64_count;
      element_counts_[CODE_PTR] = code_ptr_count;
      element_counts_[HEAP_PTR] = heap_ptr_count;
      element_counts_[INT32] = int32_count;
    }

    inline NumberOfEntries(ConstantPoolArray* array, LayoutSection section) {
      element_counts_[INT64] = array->number_of_entries(INT64, section);
      element_counts_[CODE_PTR] = array->number_of_entries(CODE_PTR, section);
      element_counts_[HEAP_PTR] = array->number_of_entries(HEAP_PTR, section);
      element_counts_[INT32] = array->number_of_entries(INT32, section);
    }

    inline void increment(Type type);
    inline int equals(const NumberOfEntries& other) const;
    inline bool is_empty() const;
    inline int count_of(Type type) const;
    inline int base_of(Type type) const;
    inline int total_count() const;
    inline int are_in_range(int min, int max) const;

   private:
    int element_counts_[NUMBER_OF_TYPES];
  };

  class Iterator BASE_EMBEDDED {
   public:
    inline Iterator(ConstantPoolArray* array, Type type)
        : array_(array),
          type_(type),
          final_section_(array->final_section()),
          current_section_(SMALL_SECTION),
          next_index_(array->first_index(type, SMALL_SECTION)) {
      update_section();
    }

    inline Iterator(ConstantPoolArray* array, Type type, LayoutSection section)
        : array_(array),
          type_(type),
          final_section_(section),
          current_section_(section),
          next_index_(array->first_index(type, section)) {
      update_section();
    }

    inline int next_index();
    inline bool is_finished();

   private:
    inline void update_section();
    ConstantPoolArray* array_;
    const Type type_;
    const LayoutSection final_section_;

    LayoutSection current_section_;
    int next_index_;
  };

  // Getters for the first index, the last index and the count of entries of
  // a given type for a given layout section.
  inline int first_index(Type type, LayoutSection layout_section);
  inline int last_index(Type type, LayoutSection layout_section);
  inline int number_of_entries(Type type, LayoutSection layout_section);

  // Returns the type of the entry at the given index.
  inline Type get_type(int index);
  inline bool offset_is_type(int offset, Type type);

  // Setter and getter for pool elements.
  inline Address get_code_ptr_entry(int index);
  inline Object* get_heap_ptr_entry(int index);
  inline int64_t get_int64_entry(int index);
  inline int32_t get_int32_entry(int index);
  inline double get_int64_entry_as_double(int index);

  inline void set(int index, Address value);
  inline void set(int index, Object* value);
  inline void set(int index, int64_t value);
  inline void set(int index, double value);
  inline void set(int index, int32_t value);

  // Setters which take a raw offset rather than an index (for code generation).
  inline void set_at_offset(int offset, int32_t value);
  inline void set_at_offset(int offset, int64_t value);
  inline void set_at_offset(int offset, double value);
  inline void set_at_offset(int offset, Address value);
  inline void set_at_offset(int offset, Object* value);

  // Setter and getter for weak objects state
  inline void set_weak_object_state(WeakObjectState state);
  inline WeakObjectState get_weak_object_state();

  // Returns true if the constant pool has an extended layout, false if it has
  // only the small layout.
  inline bool is_extended_layout();

  // Returns the last LayoutSection in this constant pool array.
  inline LayoutSection final_section();

  // Set up initial state for a small layout constant pool array.
  inline void Init(const NumberOfEntries& small);

  // Set up initial state for an extended layout constant pool array.
  inline void InitExtended(const NumberOfEntries& small,
                           const NumberOfEntries& extended);

  // Clears the pointer entries with GC safe values.
  void ClearPtrEntries(Isolate* isolate);

  // returns the total number of entries in the constant pool array.
  inline int length();

  // Garbage collection support.
  inline int size();


  inline static int MaxInt64Offset(int number_of_int64) {
    return kFirstEntryOffset + (number_of_int64 * kInt64Size);
  }

  inline static int SizeFor(const NumberOfEntries& small) {
    int size = kFirstEntryOffset +
        (small.count_of(INT64)  * kInt64Size) +
        (small.count_of(CODE_PTR) * kPointerSize) +
        (small.count_of(HEAP_PTR) * kPointerSize) +
        (small.count_of(INT32) * kInt32Size);
    return RoundUp(size, kPointerSize);
  }

  inline static int SizeForExtended(const NumberOfEntries& small,
                                    const NumberOfEntries& extended) {
    int size = SizeFor(small);
    size = RoundUp(size, kInt64Size);  // Align extended header to 64 bits.
    size += kExtendedFirstOffset +
        (extended.count_of(INT64) * kInt64Size) +
        (extended.count_of(CODE_PTR) * kPointerSize) +
        (extended.count_of(HEAP_PTR) * kPointerSize) +
        (extended.count_of(INT32) * kInt32Size);
    return RoundUp(size, kPointerSize);
  }

  inline static int entry_size(Type type) {
    switch (type) {
      case INT32:
        return kInt32Size;
      case INT64:
        return kInt64Size;
      case CODE_PTR:
      case HEAP_PTR:
        return kPointerSize;
      default:
        UNREACHABLE();
        return 0;
    }
  }

  // Code Generation support.
  inline int OffsetOfElementAt(int index) {
    int offset;
    LayoutSection section;
    if (is_extended_layout() && index >= first_extended_section_index()) {
      section = EXTENDED_SECTION;
      offset = get_extended_section_header_offset() + kExtendedFirstOffset;
    } else {
      section = SMALL_SECTION;
      offset = kFirstEntryOffset;
    }

    // Add offsets for the preceding type sections.
    DCHECK(index <= last_index(LAST_TYPE, section));
    for (Type type = FIRST_TYPE; index > last_index(type, section);
         type = next_type(type)) {
      offset += entry_size(type) * number_of_entries(type, section);
    }

    // Add offset for the index in it's type.
    Type type = get_type(index);
    offset += entry_size(type) * (index - first_index(type, section));
    return offset;
  }

  DECLARE_CAST(ConstantPoolArray)

  // Garbage collection support.
  Object** RawFieldOfElementAt(int index) {
    return HeapObject::RawField(this, OffsetOfElementAt(index));
  }

  // Small Layout description.
  static const int kSmallLayout1Offset = HeapObject::kHeaderSize;
  static const int kSmallLayout2Offset = kSmallLayout1Offset + kInt32Size;
  static const int kHeaderSize = kSmallLayout2Offset + kInt32Size;
  static const int kFirstEntryOffset = ROUND_UP(kHeaderSize, kInt64Size);

  static const int kSmallLayoutCountBits = 10;
  static const int kMaxSmallEntriesPerType = (1 << kSmallLayoutCountBits) - 1;

  // Fields in kSmallLayout1Offset.
  class Int64CountField: public BitField<int, 1, kSmallLayoutCountBits> {};
  class CodePtrCountField: public BitField<int, 11, kSmallLayoutCountBits> {};
  class HeapPtrCountField: public BitField<int, 21, kSmallLayoutCountBits> {};
  class IsExtendedField: public BitField<bool, 31, 1> {};

  // Fields in kSmallLayout2Offset.
  class Int32CountField: public BitField<int, 1, kSmallLayoutCountBits> {};
  class TotalCountField: public BitField<int, 11, 12> {};
  class WeakObjectStateField: public BitField<WeakObjectState, 23, 2> {};

  // Extended layout description, which starts at
  // get_extended_section_header_offset().
  static const int kExtendedInt64CountOffset = 0;
  static const int kExtendedCodePtrCountOffset =
      kExtendedInt64CountOffset + kInt32Size;
  static const int kExtendedHeapPtrCountOffset =
      kExtendedCodePtrCountOffset + kInt32Size;
  static const int kExtendedInt32CountOffset =
      kExtendedHeapPtrCountOffset + kInt32Size;
  static const int kExtendedFirstOffset =
      kExtendedInt32CountOffset + kInt32Size;

  // Dispatched behavior.
  void ConstantPoolIterateBody(ObjectVisitor* v);

  DECLARE_PRINTER(ConstantPoolArray)
  DECLARE_VERIFIER(ConstantPoolArray)

 private:
  inline int first_extended_section_index();
  inline int get_extended_section_header_offset();

  inline static Type next_type(Type type) {
    DCHECK(type >= FIRST_TYPE && type < NUMBER_OF_TYPES);
    int type_int = static_cast<int>(type);
    return static_cast<Type>(++type_int);
  }

  DISALLOW_IMPLICIT_CONSTRUCTORS(ConstantPoolArray);
};


// DescriptorArrays are fixed arrays used to hold instance descriptors.
// The format of the these objects is:
//   [0]: Number of descriptors
//   [1]: Either Smi(0) if uninitialized, or a pointer to small fixed array:
//          [0]: pointer to fixed array with enum cache
//          [1]: either Smi(0) or pointer to fixed array with indices
//   [2]: first key
//   [2 + number of descriptors * kDescriptorSize]: start of slack
class DescriptorArray: public FixedArray {
 public:
  // Returns true for both shared empty_descriptor_array and for smis, which the
  // map uses to encode additional bit fields when the descriptor array is not
  // yet used.
  inline bool IsEmpty();

  // Returns the number of descriptors in the array.
  int number_of_descriptors() {
    DCHECK(length() >= kFirstIndex || IsEmpty());
    int len = length();
    return len == 0 ? 0 : Smi::cast(get(kDescriptorLengthIndex))->value();
  }

  int number_of_descriptors_storage() {
    int len = length();
    return len == 0 ? 0 : (len - kFirstIndex) / kDescriptorSize;
  }

  int NumberOfSlackDescriptors() {
    return number_of_descriptors_storage() - number_of_descriptors();
  }

  inline void SetNumberOfDescriptors(int number_of_descriptors);
  inline int number_of_entries() { return number_of_descriptors(); }

  bool HasEnumCache() {
    return !IsEmpty() && !get(kEnumCacheIndex)->IsSmi();
  }

  void CopyEnumCacheFrom(DescriptorArray* array) {
    set(kEnumCacheIndex, array->get(kEnumCacheIndex));
  }

  FixedArray* GetEnumCache() {
    DCHECK(HasEnumCache());
    FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex));
    return FixedArray::cast(bridge->get(kEnumCacheBridgeCacheIndex));
  }

  bool HasEnumIndicesCache() {
    if (IsEmpty()) return false;
    Object* object = get(kEnumCacheIndex);
    if (object->IsSmi()) return false;
    FixedArray* bridge = FixedArray::cast(object);
    return !bridge->get(kEnumCacheBridgeIndicesCacheIndex)->IsSmi();
  }

  FixedArray* GetEnumIndicesCache() {
    DCHECK(HasEnumIndicesCache());
    FixedArray* bridge = FixedArray::cast(get(kEnumCacheIndex));
    return FixedArray::cast(bridge->get(kEnumCacheBridgeIndicesCacheIndex));
  }

  Object** GetEnumCacheSlot() {
    DCHECK(HasEnumCache());
    return HeapObject::RawField(reinterpret_cast<HeapObject*>(this),
                                kEnumCacheOffset);
  }

  void ClearEnumCache();

  // Initialize or change the enum cache,
  // using the supplied storage for the small "bridge".
  void SetEnumCache(FixedArray* bridge_storage,
                    FixedArray* new_cache,
                    Object* new_index_cache);

  bool CanHoldValue(int descriptor, Object* value);

  // Accessors for fetching instance descriptor at descriptor number.
  inline Name* GetKey(int descriptor_number);
  inline Object** GetKeySlot(int descriptor_number);
  inline Object* GetValue(int descriptor_number);
  inline void SetValue(int descriptor_number, Object* value);
  inline Object** GetValueSlot(int descriptor_number);
  static inline int GetValueOffset(int descriptor_number);
  inline Object** GetDescriptorStartSlot(int descriptor_number);
  inline Object** GetDescriptorEndSlot(int descriptor_number);
  inline PropertyDetails GetDetails(int descriptor_number);
  inline PropertyType GetType(int descriptor_number);
  inline int GetFieldIndex(int descriptor_number);
  inline HeapType* GetFieldType(int descriptor_number);
  inline Object* GetConstant(int descriptor_number);
  inline Object* GetCallbacksObject(int descriptor_number);
  inline AccessorDescriptor* GetCallbacks(int descriptor_number);

  inline Name* GetSortedKey(int descriptor_number);
  inline int GetSortedKeyIndex(int descriptor_number);
  inline void SetSortedKey(int pointer, int descriptor_number);
  inline void SetRepresentation(int descriptor_number,
                                Representation representation);

  // Accessor for complete descriptor.
  inline void Get(int descriptor_number, Descriptor* desc);
  inline void Set(int descriptor_number, Descriptor* desc);
  void Replace(int descriptor_number, Descriptor* descriptor);

  // Append automatically sets the enumeration index. This should only be used
  // to add descriptors in bulk at the end, followed by sorting the descriptor
  // array.
  inline void Append(Descriptor* desc);

  static Handle<DescriptorArray> CopyUpTo(Handle<DescriptorArray> desc,
                                          int enumeration_index,
                                          int slack = 0);

  static Handle<DescriptorArray> CopyUpToAddAttributes(
      Handle<DescriptorArray> desc,
      int enumeration_index,
      PropertyAttributes attributes,
      int slack = 0);

  // Sort the instance descriptors by the hash codes of their keys.
  void Sort();

  // Search the instance descriptors for given name.
  INLINE(int Search(Name* name, int number_of_own_descriptors));

  // As the above, but uses DescriptorLookupCache and updates it when
  // necessary.
  INLINE(int SearchWithCache(Name* name, Map* map));

  // Allocates a DescriptorArray, but returns the singleton
  // empty descriptor array object if number_of_descriptors is 0.
  static Handle<DescriptorArray> Allocate(Isolate* isolate,
                                          int number_of_descriptors,
                                          int slack = 0);

  DECLARE_CAST(DescriptorArray)

  // Constant for denoting key was not found.
  static const int kNotFound = -1;

  static const int kDescriptorLengthIndex = 0;
  static const int kEnumCacheIndex = 1;
  static const int kFirstIndex = 2;

  // The length of the "bridge" to the enum cache.
  static const int kEnumCacheBridgeLength = 2;
  static const int kEnumCacheBridgeCacheIndex = 0;
  static const int kEnumCacheBridgeIndicesCacheIndex = 1;

  // Layout description.
  static const int kDescriptorLengthOffset = FixedArray::kHeaderSize;
  static const int kEnumCacheOffset = kDescriptorLengthOffset + kPointerSize;
  static const int kFirstOffset = kEnumCacheOffset + kPointerSize;

  // Layout description for the bridge array.
  static const int kEnumCacheBridgeCacheOffset = FixedArray::kHeaderSize;

  // Layout of descriptor.
  static const int kDescriptorKey = 0;
  static const int kDescriptorDetails = 1;
  static const int kDescriptorValue = 2;
  static const int kDescriptorSize = 3;

#if defined(DEBUG) || defined(OBJECT_PRINT)
  // For our gdb macros, we should perhaps change these in the future.
  void Print();

  // Print all the descriptors.
  void PrintDescriptors(std::ostream& os);  // NOLINT
#endif

#ifdef DEBUG
  // Is the descriptor array sorted and without duplicates?
  bool IsSortedNoDuplicates(int valid_descriptors = -1);

  // Is the descriptor array consistent with the back pointers in targets?
  bool IsConsistentWithBackPointers(Map* current_map);

  // Are two DescriptorArrays equal?
  bool IsEqualTo(DescriptorArray* other);
#endif

  // Returns the fixed array length required to hold number_of_descriptors
  // descriptors.
  static int LengthFor(int number_of_descriptors) {
    return ToKeyIndex(number_of_descriptors);
  }

 private:
  // WhitenessWitness is used to prove that a descriptor array is white
  // (unmarked), so incremental write barriers can be skipped because the
  // marking invariant cannot be broken and slots pointing into evacuation
  // candidates will be discovered when the object is scanned. A witness is
  // always stack-allocated right after creating an array. By allocating a
  // witness, incremental marking is globally disabled. The witness is then
  // passed along wherever needed to statically prove that the array is known to
  // be white.
  class WhitenessWitness {
   public:
    inline explicit WhitenessWitness(DescriptorArray* array);
    inline ~WhitenessWitness();

   private:
    IncrementalMarking* marking_;
  };

  // An entry in a DescriptorArray, represented as an (array, index) pair.
  class Entry {
   public:
    inline explicit Entry(DescriptorArray* descs, int index) :
        descs_(descs), index_(index) { }

    inline PropertyType type() { return descs_->GetType(index_); }
    inline Object* GetCallbackObject() { return descs_->GetValue(index_); }

   private:
    DescriptorArray* descs_;
    int index_;
  };

  // Conversion from descriptor number to array indices.
  static int ToKeyIndex(int descriptor_number) {
    return kFirstIndex +
           (descriptor_number * kDescriptorSize) +
           kDescriptorKey;
  }

  static int ToDetailsIndex(int descriptor_number) {
    return kFirstIndex +
           (descriptor_number * kDescriptorSize) +
           kDescriptorDetails;
  }

  static int ToValueIndex(int descriptor_number) {
    return kFirstIndex +
           (descriptor_number * kDescriptorSize) +
           kDescriptorValue;
  }

  // Transfer a complete descriptor from the src descriptor array to this
  // descriptor array.
  void CopyFrom(int index, DescriptorArray* src, const WhitenessWitness&);

  inline void Set(int descriptor_number,
                  Descriptor* desc,
                  const WhitenessWitness&);

  // Swap first and second descriptor.
  inline void SwapSortedKeys(int first, int second);

  DISALLOW_IMPLICIT_CONSTRUCTORS(DescriptorArray);
};


enum SearchMode { ALL_ENTRIES, VALID_ENTRIES };

template <SearchMode search_mode, typename T>
inline int Search(T* array, Name* name, int valid_entries = 0,
                  int* out_insertion_index = NULL);


// HashTable is a subclass of FixedArray that implements a hash table
// that uses open addressing and quadratic probing.
//
// In order for the quadratic probing to work, elements that have not
// yet been used and elements that have been deleted are
// distinguished.  Probing continues when deleted elements are
// encountered and stops when unused elements are encountered.
//
// - Elements with key == undefined have not been used yet.
// - Elements with key == the_hole have been deleted.
//
// The hash table class is parameterized with a Shape and a Key.
// Shape must be a class with the following interface:
//   class ExampleShape {
//    public:
//      // Tells whether key matches other.
//     static bool IsMatch(Key key, Object* other);
//     // Returns the hash value for key.
//     static uint32_t Hash(Key key);
//     // Returns the hash value for object.
//     static uint32_t HashForObject(Key key, Object* object);
//     // Convert key to an object.
//     static inline Handle<Object> AsHandle(Isolate* isolate, Key key);
//     // The prefix size indicates number of elements in the beginning
//     // of the backing storage.
//     static const int kPrefixSize = ..;
//     // The Element size indicates number of elements per entry.
//     static const int kEntrySize = ..;
//   };
// The prefix size indicates an amount of memory in the
// beginning of the backing storage that can be used for non-element
// information by subclasses.

template<typename Key>
class BaseShape {
 public:
  static const bool UsesSeed = false;
  static uint32_t Hash(Key key) { return 0; }
  static uint32_t SeededHash(Key key, uint32_t seed) {
    DCHECK(UsesSeed);
    return Hash(key);
  }
  static uint32_t HashForObject(Key key, Object* object) { return 0; }
  static uint32_t SeededHashForObject(Key key, uint32_t seed, Object* object) {
    DCHECK(UsesSeed);
    return HashForObject(key, object);
  }
};


class HashTableBase : public FixedArray {
 public:
  // Returns the number of elements in the hash table.
  int NumberOfElements() {
    return Smi::cast(get(kNumberOfElementsIndex))->value();
  }

  // Returns the number of deleted elements in the hash table.
  int NumberOfDeletedElements() {
    return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
  }

  // Returns the capacity of the hash table.
  int Capacity() {
    return Smi::cast(get(kCapacityIndex))->value();
  }

  // ElementAdded should be called whenever an element is added to a
  // hash table.
  void ElementAdded() { SetNumberOfElements(NumberOfElements() + 1); }

  // ElementRemoved should be called whenever an element is removed from
  // a hash table.
  void ElementRemoved() {
    SetNumberOfElements(NumberOfElements() - 1);
    SetNumberOfDeletedElements(NumberOfDeletedElements() + 1);
  }
  void ElementsRemoved(int n) {
    SetNumberOfElements(NumberOfElements() - n);
    SetNumberOfDeletedElements(NumberOfDeletedElements() + n);
  }

  // Computes the required capacity for a table holding the given
  // number of elements. May be more than HashTable::kMaxCapacity.
  static inline int ComputeCapacity(int at_least_space_for);

  // Use a different heuristic to compute capacity when serializing.
  static inline int ComputeCapacityForSerialization(int at_least_space_for);

  // Tells whether k is a real key.  The hole and undefined are not allowed
  // as keys and can be used to indicate missing or deleted elements.
  bool IsKey(Object* k) {
    return !k->IsTheHole() && !k->IsUndefined();
  }

  // Compute the probe offset (quadratic probing).
  INLINE(static uint32_t GetProbeOffset(uint32_t n)) {
    return (n + n * n) >> 1;
  }

  static const int kNumberOfElementsIndex = 0;
  static const int kNumberOfDeletedElementsIndex = 1;
  static const int kCapacityIndex = 2;
  static const int kPrefixStartIndex = 3;

  // Constant used for denoting a absent entry.
  static const int kNotFound = -1;

 protected:
  // Update the number of elements in the hash table.
  void SetNumberOfElements(int nof) {
    set(kNumberOfElementsIndex, Smi::FromInt(nof));
  }

  // Update the number of deleted elements in the hash table.
  void SetNumberOfDeletedElements(int nod) {
    set(kNumberOfDeletedElementsIndex, Smi::FromInt(nod));
  }

  // Returns probe entry.
  static uint32_t GetProbe(uint32_t hash, uint32_t number, uint32_t size) {
    DCHECK(base::bits::IsPowerOfTwo32(size));
    return (hash + GetProbeOffset(number)) & (size - 1);
  }

  inline static uint32_t FirstProbe(uint32_t hash, uint32_t size) {
    return hash & (size - 1);
  }

  inline static uint32_t NextProbe(
      uint32_t last, uint32_t number, uint32_t size) {
    return (last + number) & (size - 1);
  }
};


template <typename Derived, typename Shape, typename Key>
class HashTable : public HashTableBase {
 public:
  // Wrapper methods
  inline uint32_t Hash(Key key) {
    if (Shape::UsesSeed) {
      return Shape::SeededHash(key, GetHeap()->HashSeed());
    } else {
      return Shape::Hash(key);
    }
  }

  inline uint32_t HashForObject(Key key, Object* object) {
    if (Shape::UsesSeed) {
      return Shape::SeededHashForObject(key, GetHeap()->HashSeed(), object);
    } else {
      return Shape::HashForObject(key, object);
    }
  }

  // Returns a new HashTable object.
  MUST_USE_RESULT static Handle<Derived> New(
      Isolate* isolate, int at_least_space_for,
      MinimumCapacity capacity_option = USE_DEFAULT_MINIMUM_CAPACITY,
      PretenureFlag pretenure = NOT_TENURED);

  DECLARE_CAST(HashTable)

  // Garbage collection support.
  void IteratePrefix(ObjectVisitor* visitor);
  void IterateElements(ObjectVisitor* visitor);

  // Find entry for key otherwise return kNotFound.
  inline int FindEntry(Key key);
  int FindEntry(Isolate* isolate, Key key);

  // Rehashes the table in-place.
  void Rehash(Key key);

  // Returns the key at entry.
  Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }

  static const int kElementsStartIndex = kPrefixStartIndex + Shape::kPrefixSize;
  static const int kEntrySize = Shape::kEntrySize;
  static const int kElementsStartOffset =
      kHeaderSize + kElementsStartIndex * kPointerSize;
  static const int kCapacityOffset =
      kHeaderSize + kCapacityIndex * kPointerSize;

 protected:
  friend class ObjectHashTable;

  // Find the entry at which to insert element with the given key that
  // has the given hash value.
  uint32_t FindInsertionEntry(uint32_t hash);

  // Attempt to shrink hash table after removal of key.
  MUST_USE_RESULT static Handle<Derived> Shrink(Handle<Derived> table, Key key);

  // Ensure enough space for n additional elements.
  MUST_USE_RESULT static Handle<Derived> EnsureCapacity(
      Handle<Derived> table,
      int n,
      Key key,
      PretenureFlag pretenure = NOT_TENURED);

  // Returns the index for an entry (of the key)
  static inline int EntryToIndex(int entry) {
    return (entry * kEntrySize) + kElementsStartIndex;
  }

  // Sets the capacity of the hash table.
  void SetCapacity(int capacity) {
    // To scale a computed hash code to fit within the hash table, we
    // use bit-wise AND with a mask, so the capacity must be positive
    // and non-zero.
    DCHECK(capacity > 0);
    DCHECK(capacity <= kMaxCapacity);
    set(kCapacityIndex, Smi::FromInt(capacity));
  }

  // Maximal capacity of HashTable. Based on maximal length of underlying
  // FixedArray. Staying below kMaxCapacity also ensures that EntryToIndex
  // cannot overflow.
  static const int kMaxCapacity =
      (FixedArray::kMaxLength - kElementsStartOffset) / kEntrySize;

 private:
  // Returns _expected_ if one of entries given by the first _probe_ probes is
  // equal to  _expected_. Otherwise, returns the entry given by the probe
  // number _probe_.
  uint32_t EntryForProbe(Key key, Object* k, int probe, uint32_t expected);

  void Swap(uint32_t entry1, uint32_t entry2, WriteBarrierMode mode);

  // Rehashes this hash-table into the new table.
  void Rehash(Handle<Derived> new_table, Key key);
};


// HashTableKey is an abstract superclass for virtual key behavior.
class HashTableKey {
 public:
  // Returns whether the other object matches this key.
  virtual bool IsMatch(Object* other) = 0;
  // Returns the hash value for this key.
  virtual uint32_t Hash() = 0;
  // Returns the hash value for object.
  virtual uint32_t HashForObject(Object* key) = 0;
  // Returns the key object for storing into the hash table.
  MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate) = 0;
  // Required.
  virtual ~HashTableKey() {}
};


class StringTableShape : public BaseShape<HashTableKey*> {
 public:
  static inline bool IsMatch(HashTableKey* key, Object* value) {
    return key->IsMatch(value);
  }

  static inline uint32_t Hash(HashTableKey* key) {
    return key->Hash();
  }

  static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
    return key->HashForObject(object);
  }

  static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);

  static const int kPrefixSize = 0;
  static const int kEntrySize = 1;
};

class SeqOneByteString;

// StringTable.
//
// No special elements in the prefix and the element size is 1
// because only the string itself (the key) needs to be stored.
class StringTable: public HashTable<StringTable,
                                    StringTableShape,
                                    HashTableKey*> {
 public:
  // Find string in the string table. If it is not there yet, it is
  // added. The return value is the string found.
  static Handle<String> LookupString(Isolate* isolate, Handle<String> key);
  static Handle<String> LookupKey(Isolate* isolate, HashTableKey* key);
  static String* LookupKeyIfExists(Isolate* isolate, HashTableKey* key);

  // Tries to internalize given string and returns string handle on success
  // or an empty handle otherwise.
  MUST_USE_RESULT static MaybeHandle<String> InternalizeStringIfExists(
      Isolate* isolate,
      Handle<String> string);

  // Looks up a string that is equal to the given string and returns
  // string handle if it is found, or an empty handle otherwise.
  MUST_USE_RESULT static MaybeHandle<String> LookupStringIfExists(
      Isolate* isolate,
      Handle<String> str);
  MUST_USE_RESULT static MaybeHandle<String> LookupTwoCharsStringIfExists(
      Isolate* isolate,
      uint16_t c1,
      uint16_t c2);

  static void EnsureCapacityForDeserialization(Isolate* isolate, int expected);

  DECLARE_CAST(StringTable)

 private:
  template <bool seq_one_byte>
  friend class JsonParser;

  DISALLOW_IMPLICIT_CONSTRUCTORS(StringTable);
};


enum class DictionaryEntryType { kObjects, kCells };


template <typename Derived, typename Shape, typename Key>
class Dictionary: public HashTable<Derived, Shape, Key> {
 protected:
  typedef HashTable<Derived, Shape, Key> DerivedHashTable;

 public:
  // Returns the value at entry.
  Object* ValueAt(int entry) {
    return this->get(DerivedHashTable::EntryToIndex(entry) + 1);
  }

  // Set the value for entry.
  void ValueAtPut(int entry, Object* value) {
    this->set(DerivedHashTable::EntryToIndex(entry) + 1, value);
  }

  // Returns the property details for the property at entry.
  PropertyDetails DetailsAt(int entry) {
    DCHECK(entry >= 0);  // Not found is -1, which is not caught by get().
    return PropertyDetails(
        Smi::cast(this->get(DerivedHashTable::EntryToIndex(entry) + 2)));
  }

  // Set the details for entry.
  void DetailsAtPut(int entry, PropertyDetails value) {
    this->set(DerivedHashTable::EntryToIndex(entry) + 2, value.AsSmi());
  }

  // Delete a property from the dictionary.
  static Handle<Object> DeleteProperty(Handle<Derived> dictionary, int entry);

  // Attempt to shrink the dictionary after deletion of key.
  MUST_USE_RESULT static inline Handle<Derived> Shrink(
      Handle<Derived> dictionary,
      Key key) {
    return DerivedHashTable::Shrink(dictionary, key);
  }

  // Sorting support
  // TODO(dcarney): templatize or move to SeededNumberDictionary
  void CopyValuesTo(FixedArray* elements);

  // Returns the number of elements in the dictionary filtering out properties
  // with the specified attributes.
  template <DictionaryEntryType type>
  int NumberOfElementsFilterAttributes(PropertyAttributes filter);
  int NumberOfElementsFilterAttributes(Object* holder,
                                       PropertyAttributes filter) {
    if (holder->IsGlobalObject()) {
      return NumberOfElementsFilterAttributes<DictionaryEntryType::kCells>(
          filter);
    } else {
      return NumberOfElementsFilterAttributes<DictionaryEntryType::kObjects>(
          filter);
    }
  }

  // Returns the number of enumerable elements in the dictionary.
  template <DictionaryEntryType type>
  int NumberOfEnumElements() {
    return NumberOfElementsFilterAttributes<type>(
        static_cast<PropertyAttributes>(DONT_ENUM | SYMBOLIC));
  }
  int NumberOfEnumElements(Object* holder) {
    if (holder->IsGlobalObject()) {
      return NumberOfEnumElements<DictionaryEntryType::kCells>();
    } else {
      return NumberOfEnumElements<DictionaryEntryType::kObjects>();
    }
  }

  // Returns true if the dictionary contains any elements that are non-writable,
  // non-configurable, non-enumerable, or have getters/setters.
  template <DictionaryEntryType type>
  bool HasComplexElements();
  bool HasComplexElements(Object* holder) {
    if (holder->IsGlobalObject()) {
      return HasComplexElements<DictionaryEntryType::kCells>();
    } else {
      return HasComplexElements<DictionaryEntryType::kObjects>();
    }
  }

  enum SortMode { UNSORTED, SORTED };

  // Copies keys to preallocated fixed array.
  template <DictionaryEntryType type>
  void CopyKeysTo(FixedArray* storage, PropertyAttributes filter,
                  SortMode sort_mode);
  void CopyKeysTo(Object* holder, FixedArray* storage,
                  PropertyAttributes filter, SortMode sort_mode) {
    if (holder->IsGlobalObject()) {
      return CopyKeysTo<DictionaryEntryType::kCells>(storage, filter,
                                                     sort_mode);
    } else {
      return CopyKeysTo<DictionaryEntryType::kObjects>(storage, filter,
                                                       sort_mode);
    }
  }

  // Fill in details for properties into storage.
  template <DictionaryEntryType type>
  void CopyKeysTo(FixedArray* storage, int index, PropertyAttributes filter,
                  SortMode sort_mode);
  void CopyKeysTo(Object* holder, FixedArray* storage, int index,
                  PropertyAttributes filter, SortMode sort_mode) {
    if (holder->IsGlobalObject()) {
      return CopyKeysTo<DictionaryEntryType::kCells>(storage, index, filter,
                                                     sort_mode);
    } else {
      return CopyKeysTo<DictionaryEntryType::kObjects>(storage, index, filter,
                                                       sort_mode);
    }
  }

  // Accessors for next enumeration index.
  void SetNextEnumerationIndex(int index) {
    DCHECK(index != 0);
    this->set(kNextEnumerationIndexIndex, Smi::FromInt(index));
  }

  int NextEnumerationIndex() {
    return Smi::cast(this->get(kNextEnumerationIndexIndex))->value();
  }

  // Creates a new dictionary.
  MUST_USE_RESULT static Handle<Derived> New(
      Isolate* isolate,
      int at_least_space_for,
      PretenureFlag pretenure = NOT_TENURED);

  // Ensure enough space for n additional elements.
  static Handle<Derived> EnsureCapacity(Handle<Derived> obj, int n, Key key);

#ifdef OBJECT_PRINT
  void Print(std::ostream& os);  // NOLINT
#endif
  // Returns the key (slow).
  Object* SlowReverseLookup(Object* value);

  // Sets the entry to (key, value) pair.
  inline void SetEntry(int entry,
                       Handle<Object> key,
                       Handle<Object> value);
  inline void SetEntry(int entry,
                       Handle<Object> key,
                       Handle<Object> value,
                       PropertyDetails details);

  MUST_USE_RESULT static Handle<Derived> Add(
      Handle<Derived> dictionary,
      Key key,
      Handle<Object> value,
      PropertyDetails details);

  // Returns iteration indices array for the |dictionary|.
  // Values are direct indices in the |HashTable| array.
  static Handle<FixedArray> BuildIterationIndicesArray(
      Handle<Derived> dictionary);

 protected:
  // Generic at put operation.
  MUST_USE_RESULT static Handle<Derived> AtPut(
      Handle<Derived> dictionary,
      Key key,
      Handle<Object> value);

  // Add entry to dictionary.
  static void AddEntry(
      Handle<Derived> dictionary,
      Key key,
      Handle<Object> value,
      PropertyDetails details,
      uint32_t hash);

  // Generate new enumeration indices to avoid enumeration index overflow.
  // Returns iteration indices array for the |dictionary|.
  static Handle<FixedArray> GenerateNewEnumerationIndices(
      Handle<Derived> dictionary);
  static const int kMaxNumberKeyIndex = DerivedHashTable::kPrefixStartIndex;
  static const int kNextEnumerationIndexIndex = kMaxNumberKeyIndex + 1;
};


class NameDictionaryShape : public BaseShape<Handle<Name> > {
 public:
  static inline bool IsMatch(Handle<Name> key, Object* other);
  static inline uint32_t Hash(Handle<Name> key);
  static inline uint32_t HashForObject(Handle<Name> key, Object* object);
  static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Name> key);
  static const int kPrefixSize = 2;
  static const int kEntrySize = 3;
  static const bool kIsEnumerable = true;
};


class NameDictionary: public Dictionary<NameDictionary,
                                        NameDictionaryShape,
                                        Handle<Name> > {
  typedef Dictionary<
      NameDictionary, NameDictionaryShape, Handle<Name> > DerivedDictionary;

 public:
  DECLARE_CAST(NameDictionary)

  // Copies enumerable keys to preallocated fixed array.
  template <DictionaryEntryType type>
  void CopyEnumKeysTo(FixedArray* storage);
  void CopyEnumKeysTo(Object* holder, FixedArray* storage) {
    if (holder->IsGlobalObject()) {
      return CopyEnumKeysTo<DictionaryEntryType::kCells>(storage);
    } else {
      return CopyEnumKeysTo<DictionaryEntryType::kObjects>(storage);
    }
  }

  inline static Handle<FixedArray> DoGenerateNewEnumerationIndices(
      Handle<NameDictionary> dictionary);

  // Find entry for key, otherwise return kNotFound. Optimized version of
  // HashTable::FindEntry.
  int FindEntry(Handle<Name> key);
};


class NumberDictionaryShape : public BaseShape<uint32_t> {
 public:
  static inline bool IsMatch(uint32_t key, Object* other);
  static inline Handle<Object> AsHandle(Isolate* isolate, uint32_t key);
  static const int kEntrySize = 3;
  static const bool kIsEnumerable = false;
};


class SeededNumberDictionaryShape : public NumberDictionaryShape {
 public:
  static const bool UsesSeed = true;
  static const int kPrefixSize = 2;

  static inline uint32_t SeededHash(uint32_t key, uint32_t seed);
  static inline uint32_t SeededHashForObject(uint32_t key,
                                             uint32_t seed,
                                             Object* object);
};


class UnseededNumberDictionaryShape : public NumberDictionaryShape {
 public:
  static const int kPrefixSize = 0;

  static inline uint32_t Hash(uint32_t key);
  static inline uint32_t HashForObject(uint32_t key, Object* object);
};


class SeededNumberDictionary
    : public Dictionary<SeededNumberDictionary,
                        SeededNumberDictionaryShape,
                        uint32_t> {
 public:
  DECLARE_CAST(SeededNumberDictionary)

  // Type specific at put (default NONE attributes is used when adding).
  MUST_USE_RESULT static Handle<SeededNumberDictionary> AtNumberPut(
      Handle<SeededNumberDictionary> dictionary,
      uint32_t key,
      Handle<Object> value);
  MUST_USE_RESULT static Handle<SeededNumberDictionary> AddNumberEntry(
      Handle<SeededNumberDictionary> dictionary,
      uint32_t key,
      Handle<Object> value,
      PropertyDetails details);

  // Set an existing entry or add a new one if needed.
  // Return the updated dictionary.
  MUST_USE_RESULT static Handle<SeededNumberDictionary> Set(
      Handle<SeededNumberDictionary> dictionary,
      uint32_t key,
      Handle<Object> value,
      PropertyDetails details);

  void UpdateMaxNumberKey(uint32_t key);

  // If slow elements are required we will never go back to fast-case
  // for the elements kept in this dictionary.  We require slow
  // elements if an element has been added at an index larger than
  // kRequiresSlowElementsLimit or set_requires_slow_elements() has been called
  // when defining a getter or setter with a number key.
  inline bool requires_slow_elements();
  inline void set_requires_slow_elements();

  // Get the value of the max number key that has been added to this
  // dictionary.  max_number_key can only be called if
  // requires_slow_elements returns false.
  inline uint32_t max_number_key();

  // Bit masks.
  static const int kRequiresSlowElementsMask = 1;
  static const int kRequiresSlowElementsTagSize = 1;
  static const uint32_t kRequiresSlowElementsLimit = (1 << 29) - 1;
};


class UnseededNumberDictionary
    : public Dictionary<UnseededNumberDictionary,
                        UnseededNumberDictionaryShape,
                        uint32_t> {
 public:
  DECLARE_CAST(UnseededNumberDictionary)

  // Type specific at put (default NONE attributes is used when adding).
  MUST_USE_RESULT static Handle<UnseededNumberDictionary> AtNumberPut(
      Handle<UnseededNumberDictionary> dictionary,
      uint32_t key,
      Handle<Object> value);
  MUST_USE_RESULT static Handle<UnseededNumberDictionary> AddNumberEntry(
      Handle<UnseededNumberDictionary> dictionary,
      uint32_t key,
      Handle<Object> value);

  // Set an existing entry or add a new one if needed.
  // Return the updated dictionary.
  MUST_USE_RESULT static Handle<UnseededNumberDictionary> Set(
      Handle<UnseededNumberDictionary> dictionary,
      uint32_t key,
      Handle<Object> value);
};


class ObjectHashTableShape : public BaseShape<Handle<Object> > {
 public:
  static inline bool IsMatch(Handle<Object> key, Object* other);
  static inline uint32_t Hash(Handle<Object> key);
  static inline uint32_t HashForObject(Handle<Object> key, Object* object);
  static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
  static const int kPrefixSize = 0;
  static const int kEntrySize = 2;
};


// ObjectHashTable maps keys that are arbitrary objects to object values by
// using the identity hash of the key for hashing purposes.
class ObjectHashTable: public HashTable<ObjectHashTable,
                                        ObjectHashTableShape,
                                        Handle<Object> > {
  typedef HashTable<
      ObjectHashTable, ObjectHashTableShape, Handle<Object> > DerivedHashTable;
 public:
  DECLARE_CAST(ObjectHashTable)

  // Attempt to shrink hash table after removal of key.
  MUST_USE_RESULT static inline Handle<ObjectHashTable> Shrink(
      Handle<ObjectHashTable> table,
      Handle<Object> key);

  // Looks up the value associated with the given key. The hole value is
  // returned in case the key is not present.
  Object* Lookup(Handle<Object> key);

  // Adds (or overwrites) the value associated with the given key.
  static Handle<ObjectHashTable> Put(Handle<ObjectHashTable> table,
                                     Handle<Object> key,
                                     Handle<Object> value);

  // Returns an ObjectHashTable (possibly |table|) where |key| has been removed.
  static Handle<ObjectHashTable> Remove(Handle<ObjectHashTable> table,
                                        Handle<Object> key,
                                        bool* was_present);

 private:
  friend class MarkCompactCollector;

  void AddEntry(int entry, Object* key, Object* value);
  void RemoveEntry(int entry);

  // Returns the index to the value of an entry.
  static inline int EntryToValueIndex(int entry) {
    return EntryToIndex(entry) + 1;
  }
};


// OrderedHashTable is a HashTable with Object keys that preserves
// insertion order. There are Map and Set interfaces (OrderedHashMap
// and OrderedHashTable, below). It is meant to be used by JSMap/JSSet.
//
// Only Object* keys are supported, with Object::SameValueZero() used as the
// equality operator and Object::GetHash() for the hash function.
//
// Based on the "Deterministic Hash Table" as described by Jason Orendorff at
// https://wiki.mozilla.org/User:Jorend/Deterministic_hash_tables
// Originally attributed to Tyler Close.
//
// Memory layout:
//   [0]: bucket count
//   [1]: element count
//   [2]: deleted element count
//   [3..(3 + NumberOfBuckets() - 1)]: "hash table", where each item is an
//                            offset into the data table (see below) where the
//                            first item in this bucket is stored.
//   [3 + NumberOfBuckets()..length]: "data table", an array of length
//                            Capacity() * kEntrySize, where the first entrysize
//                            items are handled by the derived class and the
//                            item at kChainOffset is another entry into the
//                            data table indicating the next entry in this hash
//                            bucket.
//
// When we transition the table to a new version we obsolete it and reuse parts
// of the memory to store information how to transition an iterator to the new
// table:
//
// Memory layout for obsolete table:
//   [0]: bucket count
//   [1]: Next newer table
//   [2]: Number of removed holes or -1 when the table was cleared.
//   [3..(3 + NumberOfRemovedHoles() - 1)]: The indexes of the removed holes.
//   [3 + NumberOfRemovedHoles()..length]: Not used
//
template<class Derived, class Iterator, int entrysize>
class OrderedHashTable: public FixedArray {
 public:
  // Returns an OrderedHashTable with a capacity of at least |capacity|.
  static Handle<Derived> Allocate(
      Isolate* isolate, int capacity, PretenureFlag pretenure = NOT_TENURED);

  // Returns an OrderedHashTable (possibly |table|) with enough space
  // to add at least one new element.
  static Handle<Derived> EnsureGrowable(Handle<Derived> table);

  // Returns an OrderedHashTable (possibly |table|) that's shrunken
  // if possible.
  static Handle<Derived> Shrink(Handle<Derived> table);

  // Returns a new empty OrderedHashTable and records the clearing so that
  // exisiting iterators can be updated.
  static Handle<Derived> Clear(Handle<Derived> table);

  int NumberOfElements() {
    return Smi::cast(get(kNumberOfElementsIndex))->value();
  }

  int NumberOfDeletedElements() {
    return Smi::cast(get(kNumberOfDeletedElementsIndex))->value();
  }

  int UsedCapacity() { return NumberOfElements() + NumberOfDeletedElements(); }

  int NumberOfBuckets() {
    return Smi::cast(get(kNumberOfBucketsIndex))->value();
  }

  // Returns an index into |this| for the given entry.
  int EntryToIndex(int entry) {
    return kHashTableStartIndex + NumberOfBuckets() + (entry * kEntrySize);
  }

  Object* KeyAt(int entry) { return get(EntryToIndex(entry)); }

  bool IsObsolete() {
    return !get(kNextTableIndex)->IsSmi();
  }

  // The next newer table. This is only valid if the table is obsolete.
  Derived* NextTable() {
    return Derived::cast(get(kNextTableIndex));
  }

  // When the table is obsolete we store the indexes of the removed holes.
  int RemovedIndexAt(int index) {
    return Smi::cast(get(kRemovedHolesIndex + index))->value();
  }

  static const int kNotFound = -1;
  static const int kMinCapacity = 4;

  static const int kNumberOfBucketsIndex = 0;
  static const int kNumberOfElementsIndex = kNumberOfBucketsIndex + 1;
  static const int kNumberOfDeletedElementsIndex = kNumberOfElementsIndex + 1;
  static const int kHashTableStartIndex = kNumberOfDeletedElementsIndex + 1;
  static const int kNextTableIndex = kNumberOfElementsIndex;

  static const int kNumberOfBucketsOffset =
      kHeaderSize + kNumberOfBucketsIndex * kPointerSize;
  static const int kNumberOfElementsOffset =
      kHeaderSize + kNumberOfElementsIndex * kPointerSize;
  static const int kNumberOfDeletedElementsOffset =
      kHeaderSize + kNumberOfDeletedElementsIndex * kPointerSize;
  static const int kHashTableStartOffset =
      kHeaderSize + kHashTableStartIndex * kPointerSize;
  static const int kNextTableOffset =
      kHeaderSize + kNextTableIndex * kPointerSize;

  static const int kEntrySize = entrysize + 1;
  static const int kChainOffset = entrysize;

  static const int kLoadFactor = 2;

  // NumberOfDeletedElements is set to kClearedTableSentinel when
  // the table is cleared, which allows iterator transitions to
  // optimize that case.
  static const int kClearedTableSentinel = -1;

 private:
  static Handle<Derived> Rehash(Handle<Derived> table, int new_capacity);

  void SetNumberOfBuckets(int num) {
    set(kNumberOfBucketsIndex, Smi::FromInt(num));
  }

  void SetNumberOfElements(int num) {
    set(kNumberOfElementsIndex, Smi::FromInt(num));
  }

  void SetNumberOfDeletedElements(int num) {
    set(kNumberOfDeletedElementsIndex, Smi::FromInt(num));
  }

  int Capacity() {
    return NumberOfBuckets() * kLoadFactor;
  }

  void SetNextTable(Derived* next_table) {
    set(kNextTableIndex, next_table);
  }

  void SetRemovedIndexAt(int index, int removed_index) {
    return set(kRemovedHolesIndex + index, Smi::FromInt(removed_index));
  }

  static const int kRemovedHolesIndex = kHashTableStartIndex;

  static const int kMaxCapacity =
      (FixedArray::kMaxLength - kHashTableStartIndex)
      / (1 + (kEntrySize * kLoadFactor));
};


class JSSetIterator;


class OrderedHashSet: public OrderedHashTable<
    OrderedHashSet, JSSetIterator, 1> {
 public:
  DECLARE_CAST(OrderedHashSet)
};


class JSMapIterator;


class OrderedHashMap
    : public OrderedHashTable<OrderedHashMap, JSMapIterator, 2> {
 public:
  DECLARE_CAST(OrderedHashMap)

  Object* ValueAt(int entry) {
    return get(EntryToIndex(entry) + kValueOffset);
  }

  static const int kValueOffset = 1;
};


template <int entrysize>
class WeakHashTableShape : public BaseShape<Handle<Object> > {
 public:
  static inline bool IsMatch(Handle<Object> key, Object* other);
  static inline uint32_t Hash(Handle<Object> key);
  static inline uint32_t HashForObject(Handle<Object> key, Object* object);
  static inline Handle<Object> AsHandle(Isolate* isolate, Handle<Object> key);
  static const int kPrefixSize = 0;
  static const int kEntrySize = entrysize;
};


// WeakHashTable maps keys that are arbitrary heap objects to heap object
// values. The table wraps the keys in weak cells and store values directly.
// Thus it references keys weakly and values strongly.
class WeakHashTable: public HashTable<WeakHashTable,
                                      WeakHashTableShape<2>,
                                      Handle<Object> > {
  typedef HashTable<
      WeakHashTable, WeakHashTableShape<2>, Handle<Object> > DerivedHashTable;
 public:
  DECLARE_CAST(WeakHashTable)

  // Looks up the value associated with the given key. The hole value is
  // returned in case the key is not present.
  Object* Lookup(Handle<HeapObject> key);

  // Adds (or overwrites) the value associated with the given key. Mapping a
  // key to the hole value causes removal of the whole entry.
  MUST_USE_RESULT static Handle<WeakHashTable> Put(Handle<WeakHashTable> table,
                                                   Handle<HeapObject> key,
                                                   Handle<HeapObject> value);

 private:
  friend class MarkCompactCollector;

  void AddEntry(int entry, Handle<WeakCell> key, Handle<HeapObject> value);

  // Returns the index to the value of an entry.
  static inline int EntryToValueIndex(int entry) {
    return EntryToIndex(entry) + 1;
  }
};


// JSFunctionResultCache caches results of some JSFunction invocation.
// It is a fixed array with fixed structure:
//   [0]: factory function
//   [1]: finger index
//   [2]: current cache size
//   [3]: dummy field.
// The rest of array are key/value pairs.
class JSFunctionResultCache: public FixedArray {
 public:
  static const int kFactoryIndex = 0;
  static const int kFingerIndex = kFactoryIndex + 1;
  static const int kCacheSizeIndex = kFingerIndex + 1;
  static const int kDummyIndex = kCacheSizeIndex + 1;
  static const int kEntriesIndex = kDummyIndex + 1;

  static const int kEntrySize = 2;  // key + value

  static const int kFactoryOffset = kHeaderSize;
  static const int kFingerOffset = kFactoryOffset + kPointerSize;
  static const int kCacheSizeOffset = kFingerOffset + kPointerSize;

  inline void MakeZeroSize();
  inline void Clear();

  inline int size();
  inline void set_size(int size);
  inline int finger_index();
  inline void set_finger_index(int finger_index);

  DECLARE_CAST(JSFunctionResultCache)

  DECLARE_VERIFIER(JSFunctionResultCache)
};


// ScopeInfo represents information about different scopes of a source
// program  and the allocation of the scope's variables. Scope information
// is stored in a compressed form in ScopeInfo objects and is used
// at runtime (stack dumps, deoptimization, etc.).

// This object provides quick access to scope info details for runtime
// routines.
class ScopeInfo : public FixedArray {
 public:
  DECLARE_CAST(ScopeInfo)

  // Return the type of this scope.
  ScopeType scope_type();

  // Does this scope call eval?
  bool CallsEval();

  // Return the language mode of this scope.
  LanguageMode language_mode();

  // Does this scope make a sloppy eval call?
  bool CallsSloppyEval() { return CallsEval() && is_sloppy(language_mode()); }

  // Return the total number of locals allocated on the stack and in the
  // context. This includes the parameters that are allocated in the context.
  int LocalCount();

  // Return the number of stack slots for code. This number consists of two
  // parts:
  //  1. One stack slot per stack allocated local.
  //  2. One stack slot for the function name if it is stack allocated.
  int StackSlotCount();

  // Return the number of context slots for code if a context is allocated. This
  // number consists of three parts:
  //  1. Size of fixed header for every context: Context::MIN_CONTEXT_SLOTS
  //  2. One context slot per context allocated local.
  //  3. One context slot for the function name if it is context allocated.
  // Parameters allocated in the context count as context allocated locals. If
  // no contexts are allocated for this scope ContextLength returns 0.
  int ContextLength();

  // Is this scope the scope of a named function expression?
  bool HasFunctionName();

  // Return if this has context allocated locals.
  bool HasHeapAllocatedLocals();

  // Return if contexts are allocated for this scope.
  bool HasContext();

  // Return if this is a function scope with "use asm".
  bool IsAsmModule() { return AsmModuleField::decode(Flags()); }

  // Return if this is a nested function within an asm module scope.
  bool IsAsmFunction() { return AsmFunctionField::decode(Flags()); }

  bool IsSimpleParameterList() {
    return IsSimpleParameterListField::decode(Flags());
  }

  // Return the function_name if present.
  String* FunctionName();

  // Return the name of the given parameter.
  String* ParameterName(int var);

  // Return the name of the given local.
  String* LocalName(int var);

  // Return the name of the given stack local.
  String* StackLocalName(int var);

  // Return the name of the given stack local.
  int StackLocalIndex(int var);

  // Return the name of the given context local.
  String* ContextLocalName(int var);

  // Return the mode of the given context local.
  VariableMode ContextLocalMode(int var);

  // Return the initialization flag of the given context local.
  InitializationFlag ContextLocalInitFlag(int var);

  // Return the initialization flag of the given context local.
  MaybeAssignedFlag ContextLocalMaybeAssignedFlag(int var);

  // Return true if this local was introduced by the compiler, and should not be
  // exposed to the user in a debugger.
  bool LocalIsSynthetic(int var);

  String* StrongModeFreeVariableName(int var);
  int StrongModeFreeVariableStartPosition(int var);
  int StrongModeFreeVariableEndPosition(int var);

  // Lookup support for serialized scope info. Returns the
  // the stack slot index for a given slot name if the slot is
  // present; otherwise returns a value < 0. The name must be an internalized
  // string.
  int StackSlotIndex(String* name);

  // Lookup support for serialized scope info. Returns the
  // context slot index for a given slot name if the slot is present; otherwise
  // returns a value < 0. The name must be an internalized string.
  // If the slot is present and mode != NULL, sets *mode to the corresponding
  // mode for that variable.
  static int ContextSlotIndex(Handle<ScopeInfo> scope_info, Handle<String> name,
                              VariableMode* mode, InitializationFlag* init_flag,
                              MaybeAssignedFlag* maybe_assigned_flag);

  // Lookup support for serialized scope info. Returns the
  // parameter index for a given parameter name if the parameter is present;
  // otherwise returns a value < 0. The name must be an internalized string.
  int ParameterIndex(String* name);

  // Lookup support for serialized scope info. Returns the function context
  // slot index if the function name is present and context-allocated (named
  // function expressions, only), otherwise returns a value < 0. The name
  // must be an internalized string.
  int FunctionContextSlotIndex(String* name, VariableMode* mode);

  bool block_scope_is_class_scope();
  FunctionKind function_kind();

  // Copies all the context locals into an object used to materialize a scope.
  static bool CopyContextLocalsToScopeObject(Handle<ScopeInfo> scope_info,
                                             Handle<Context> context,
                                             Handle<JSObject> scope_object);


  static Handle<ScopeInfo> Create(Isolate* isolate, Zone* zone, Scope* scope);

  // Serializes empty scope info.
  static ScopeInfo* Empty(Isolate* isolate);

#ifdef DEBUG
  void Print();
#endif

  // The layout of the static part of a ScopeInfo is as follows. Each entry is
  // numeric and occupies one array slot.
  // 1. A set of properties of the scope
  // 2. The number of parameters. This only applies to function scopes. For
  //    non-function scopes this is 0.
  // 3. The number of non-parameter variables allocated on the stack.
  // 4. The number of non-parameter and parameter variables allocated in the
  //    context.
#define FOR_EACH_NUMERIC_FIELD(V) \
  V(Flags)                        \
  V(ParameterCount)               \
  V(StackLocalCount)              \
  V(ContextLocalCount)            \
  V(StrongModeFreeVariableCount)

#define FIELD_ACCESSORS(name)                            \
  void Set##name(int value) {                            \
    set(k##name, Smi::FromInt(value));                   \
  }                                                      \
  int name() {                                           \
    if (length() > 0) {                                  \
      return Smi::cast(get(k##name))->value();           \
    } else {                                             \
      return 0;                                          \
    }                                                    \
  }
  FOR_EACH_NUMERIC_FIELD(FIELD_ACCESSORS)
#undef FIELD_ACCESSORS

 private:
  enum {
#define DECL_INDEX(name) k##name,
  FOR_EACH_NUMERIC_FIELD(DECL_INDEX)
#undef DECL_INDEX
#undef FOR_EACH_NUMERIC_FIELD
    kVariablePartIndex
  };

  // The layout of the variable part of a ScopeInfo is as follows:
  // 1. ParameterEntries:
  //    This part stores the names of the parameters for function scopes. One
  //    slot is used per parameter, so in total this part occupies
  //    ParameterCount() slots in the array. For other scopes than function
  //    scopes ParameterCount() is 0.
  // 2. StackLocalFirstSlot:
  //    Index of a first stack slot for stack local. Stack locals belonging to
  //    this scope are located on a stack at slots starting from this index.
  // 3. StackLocalEntries:
  //    Contains the names of local variables that are allocated on the stack,
  //    in increasing order of the stack slot index. First local variable has
  //    a stack slot index defined in StackLocalFirstSlot (point 2 above).
  //    One slot is used per stack local, so in total this part occupies
  //    StackLocalCount() slots in the array.
  // 4. ContextLocalNameEntries:
  //    Contains the names of local variables and parameters that are allocated
  //    in the context. They are stored in increasing order of the context slot
  //    index starting with Context::MIN_CONTEXT_SLOTS. One slot is used per
  //    context local, so in total this part occupies ContextLocalCount() slots
  //    in the array.
  // 5. ContextLocalInfoEntries:
  //    Contains the variable modes and initialization flags corresponding to
  //    the context locals in ContextLocalNameEntries. One slot is used per
  //    context local, so in total this part occupies ContextLocalCount()
  //    slots in the array.
  // 6. StrongModeFreeVariableNameEntries:
  //    Stores the names of strong mode free variables.
  // 7. StrongModeFreeVariablePositionEntries:
  //    Stores the locations (start and end position) of strong mode free
  //    variables.
  // 8. FunctionNameEntryIndex:
  //    If the scope belongs to a named function expression this part contains
  //    information about the function variable. It always occupies two array
  //    slots:  a. The name of the function variable.
  //            b. The context or stack slot index for the variable.
  int ParameterEntriesIndex();
  int StackLocalFirstSlotIndex();
  int StackLocalEntriesIndex();
  int ContextLocalNameEntriesIndex();
  int ContextLocalInfoEntriesIndex();
  int StrongModeFreeVariableNameEntriesIndex();
  int StrongModeFreeVariablePositionEntriesIndex();
  int FunctionNameEntryIndex();

  // Location of the function variable for named function expressions.
  enum FunctionVariableInfo {
    NONE,     // No function name present.
    STACK,    // Function
    CONTEXT,
    UNUSED
  };

  // Properties of scopes.
  class ScopeTypeField : public BitField<ScopeType, 0, 4> {};
  class CallsEvalField : public BitField<bool, 4, 1> {};
  STATIC_ASSERT(LANGUAGE_END == 3);
  class LanguageModeField : public BitField<LanguageMode, 5, 2> {};
  class FunctionVariableField : public BitField<FunctionVariableInfo, 7, 2> {};
  class FunctionVariableMode : public BitField<VariableMode, 9, 3> {};
  class AsmModuleField : public BitField<bool, 12, 1> {};
  class AsmFunctionField : public BitField<bool, 13, 1> {};
  class IsSimpleParameterListField
      : public BitField<bool, AsmFunctionField::kNext, 1> {};
  class BlockScopeIsClassScopeField
      : public BitField<bool, IsSimpleParameterListField::kNext, 1> {};
  class FunctionKindField
      : public BitField<FunctionKind, BlockScopeIsClassScopeField::kNext, 8> {};

  // BitFields representing the encoded information for context locals in the
  // ContextLocalInfoEntries part.
  class ContextLocalMode:      public BitField<VariableMode,         0, 3> {};
  class ContextLocalInitFlag:  public BitField<InitializationFlag,   3, 1> {};
  class ContextLocalMaybeAssignedFlag
      : public BitField<MaybeAssignedFlag, 4, 1> {};
};


// The cache for maps used by normalized (dictionary mode) objects.
// Such maps do not have property descriptors, so a typical program
// needs very limited number of distinct normalized maps.
class NormalizedMapCache: public FixedArray {
 public:
  static Handle<NormalizedMapCache> New(Isolate* isolate);

  MUST_USE_RESULT MaybeHandle<Map> Get(Handle<Map> fast_map,
                                       PropertyNormalizationMode mode);
  void Set(Handle<Map> fast_map, Handle<Map> normalized_map);

  void Clear();

  DECLARE_CAST(NormalizedMapCache)

  static inline bool IsNormalizedMapCache(const Object* obj);

  DECLARE_VERIFIER(NormalizedMapCache)
 private:
  static const int kEntries = 64;

  static inline int GetIndex(Handle<Map> map);

  // The following declarations hide base class methods.
  Object* get(int index);
  void set(int index, Object* value);
};


// ByteArray represents fixed sized byte arrays.  Used for the relocation info
// that is attached to code objects.
class ByteArray: public FixedArrayBase {
 public:
  inline int Size() { return RoundUp(length() + kHeaderSize, kPointerSize); }

  // Setter and getter.
  inline byte get(int index);
  inline void set(int index, byte value);

  // Treat contents as an int array.
  inline int get_int(int index);

  static int SizeFor(int length) {
    return OBJECT_POINTER_ALIGN(kHeaderSize + length);
  }
  // We use byte arrays for free blocks in the heap.  Given a desired size in
  // bytes that is a multiple of the word size and big enough to hold a byte
  // array, this function returns the number of elements a byte array should
  // have.
  static int LengthFor(int size_in_bytes) {
    DCHECK(IsAligned(size_in_bytes, kPointerSize));
    DCHECK(size_in_bytes >= kHeaderSize);
    return size_in_bytes - kHeaderSize;
  }

  // Returns data start address.
  inline Address GetDataStartAddress();

  // Returns a pointer to the ByteArray object for a given data start address.
  static inline ByteArray* FromDataStartAddress(Address address);

  DECLARE_CAST(ByteArray)

  // Dispatched behavior.
  inline int ByteArraySize() {
    return SizeFor(this->length());
  }
  DECLARE_PRINTER(ByteArray)
  DECLARE_VERIFIER(ByteArray)

  // Layout description.
  static const int kAlignedSize = OBJECT_POINTER_ALIGN(kHeaderSize);

  // Maximal memory consumption for a single ByteArray.
  static const int kMaxSize = 512 * MB;
  // Maximal length of a single ByteArray.
  static const int kMaxLength = kMaxSize - kHeaderSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ByteArray);
};


// FreeSpace are fixed-size free memory blocks used by the heap and GC.
// They look like heap objects (are heap object tagged and have a map) so that
// the heap remains iterable.  They have a size and a next pointer.
// The next pointer is the raw address of the next FreeSpace object (or NULL)
// in the free list.
class FreeSpace: public HeapObject {
 public:
  // [size]: size of the free space including the header.
  inline int size() const;
  inline void set_size(int value);

  inline int nobarrier_size() const;
  inline void nobarrier_set_size(int value);

  inline int Size() { return size(); }

  // Accessors for the next field.
  inline FreeSpace* next();
  inline FreeSpace** next_address();
  inline void set_next(FreeSpace* next);

  inline static FreeSpace* cast(HeapObject* obj);

  // Dispatched behavior.
  DECLARE_PRINTER(FreeSpace)
  DECLARE_VERIFIER(FreeSpace)

  // Layout description.
  // Size is smi tagged when it is stored.
  static const int kSizeOffset = HeapObject::kHeaderSize;
  static const int kNextOffset = POINTER_SIZE_ALIGN(kSizeOffset + kPointerSize);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(FreeSpace);
};


// V has parameters (Type, type, TYPE, C type, element_size)
#define TYPED_ARRAYS(V) \
  V(Uint8, uint8, UINT8, uint8_t, 1)                                           \
  V(Int8, int8, INT8, int8_t, 1)                                               \
  V(Uint16, uint16, UINT16, uint16_t, 2)                                       \
  V(Int16, int16, INT16, int16_t, 2)                                           \
  V(Uint32, uint32, UINT32, uint32_t, 4)                                       \
  V(Int32, int32, INT32, int32_t, 4)                                           \
  V(Float32, float32, FLOAT32, float, 4)                                       \
  V(Float64, float64, FLOAT64, double, 8)                                      \
  V(Uint8Clamped, uint8_clamped, UINT8_CLAMPED, uint8_t, 1)



// An ExternalArray represents a fixed-size array of primitive values
// which live outside the JavaScript heap. Its subclasses are used to
// implement the CanvasArray types being defined in the WebGL
// specification. As of this writing the first public draft is not yet
// available, but Khronos members can access the draft at:
//   https://cvs.khronos.org/svn/repos/3dweb/trunk/doc/spec/WebGL-spec.html
//
// The semantics of these arrays differ from CanvasPixelArray.
// Out-of-range values passed to the setter are converted via a C
// cast, not clamping. Out-of-range indices cause exceptions to be
// raised rather than being silently ignored.
class ExternalArray: public FixedArrayBase {
 public:
  inline bool is_the_hole(int index) { return false; }

  // [external_pointer]: The pointer to the external memory area backing this
  // external array.
  DECL_ACCESSORS(external_pointer, void)  // Pointer to the data store.

  DECLARE_CAST(ExternalArray)

  // Maximal acceptable length for an external array.
  static const int kMaxLength = 0x3fffffff;

  // ExternalArray headers are not quadword aligned.
  static const int kExternalPointerOffset =
      POINTER_SIZE_ALIGN(FixedArrayBase::kLengthOffset + kPointerSize);
  static const int kSize = kExternalPointerOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalArray);
};


// A ExternalUint8ClampedArray represents a fixed-size byte array with special
// semantics used for implementing the CanvasPixelArray object. Please see the
// specification at:

// http://www.whatwg.org/specs/web-apps/current-work/
//                      multipage/the-canvas-element.html#canvaspixelarray
// In particular, write access clamps the value written to 0 or 255 if the
// value written is outside this range.
class ExternalUint8ClampedArray: public ExternalArray {
 public:
  inline uint8_t* external_uint8_clamped_pointer();

  // Setter and getter.
  inline uint8_t get_scalar(int index);
  static inline Handle<Object> get(Handle<ExternalUint8ClampedArray> array,
                                   int index);
  inline void set(int index, uint8_t value);

  // This accessor applies the correct conversion from Smi, HeapNumber
  // and undefined and clamps the converted value between 0 and 255.
  static Handle<Object> SetValue(Handle<JSObject> holder,
                                 Handle<ExternalUint8ClampedArray> array,
                                 uint32_t index, Handle<Object> value);

  DECLARE_CAST(ExternalUint8ClampedArray)

  // Dispatched behavior.
  DECLARE_PRINTER(ExternalUint8ClampedArray)
  DECLARE_VERIFIER(ExternalUint8ClampedArray)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint8ClampedArray);
};


class ExternalInt8Array: public ExternalArray {
 public:
  // Setter and getter.
  inline int8_t get_scalar(int index);
  static inline Handle<Object> get(Handle<ExternalInt8Array> array, int index);
  inline void set(int index, int8_t value);

  // This accessor applies the correct conversion from Smi, HeapNumber
  // and undefined.
  static Handle<Object> SetValue(Handle<JSObject> holder,
                                 Handle<ExternalInt8Array> array,
                                 uint32_t index, Handle<Object> value);

  DECLARE_CAST(ExternalInt8Array)

  // Dispatched behavior.
  DECLARE_PRINTER(ExternalInt8Array)
  DECLARE_VERIFIER(ExternalInt8Array)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalInt8Array);
};


class ExternalUint8Array: public ExternalArray {
 public:
  // Setter and getter.
  inline uint8_t get_scalar(int index);
  static inline Handle<Object> get(Handle<ExternalUint8Array> array, int index);
  inline void set(int index, uint8_t value);

  // This accessor applies the correct conversion from Smi, HeapNumber
  // and undefined.
  static Handle<Object> SetValue(Handle<JSObject> holder,
                                 Handle<ExternalUint8Array> array,
                                 uint32_t index, Handle<Object> value);

  DECLARE_CAST(ExternalUint8Array)

  // Dispatched behavior.
  DECLARE_PRINTER(ExternalUint8Array)
  DECLARE_VERIFIER(ExternalUint8Array)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint8Array);
};


class ExternalInt16Array: public ExternalArray {
 public:
  // Setter and getter.
  inline int16_t get_scalar(int index);
  static inline Handle<Object> get(Handle<ExternalInt16Array> array, int index);
  inline void set(int index, int16_t value);

  // This accessor applies the correct conversion from Smi, HeapNumber
  // and undefined.
  static Handle<Object> SetValue(Handle<JSObject> holder,
                                 Handle<ExternalInt16Array> array,
                                 uint32_t index, Handle<Object> value);

  DECLARE_CAST(ExternalInt16Array)

  // Dispatched behavior.
  DECLARE_PRINTER(ExternalInt16Array)
  DECLARE_VERIFIER(ExternalInt16Array)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalInt16Array);
};


class ExternalUint16Array: public ExternalArray {
 public:
  // Setter and getter.
  inline uint16_t get_scalar(int index);
  static inline Handle<Object> get(Handle<ExternalUint16Array> array,
                                   int index);
  inline void set(int index, uint16_t value);

  // This accessor applies the correct conversion from Smi, HeapNumber
  // and undefined.
  static Handle<Object> SetValue(Handle<JSObject> holder,
                                 Handle<ExternalUint16Array> array,
                                 uint32_t index, Handle<Object> value);

  DECLARE_CAST(ExternalUint16Array)

  // Dispatched behavior.
  DECLARE_PRINTER(ExternalUint16Array)
  DECLARE_VERIFIER(ExternalUint16Array)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint16Array);
};


class ExternalInt32Array: public ExternalArray {
 public:
  // Setter and getter.
  inline int32_t get_scalar(int index);
  static inline Handle<Object> get(Handle<ExternalInt32Array> array, int index);
  inline void set(int index, int32_t value);

  // This accessor applies the correct conversion from Smi, HeapNumber
  // and undefined.
  static Handle<Object> SetValue(Handle<JSObject> holder,
                                 Handle<ExternalInt32Array> array,
                                 uint32_t index, Handle<Object> value);

  DECLARE_CAST(ExternalInt32Array)

  // Dispatched behavior.
  DECLARE_PRINTER(ExternalInt32Array)
  DECLARE_VERIFIER(ExternalInt32Array)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalInt32Array);
};


class ExternalUint32Array: public ExternalArray {
 public:
  // Setter and getter.
  inline uint32_t get_scalar(int index);
  static inline Handle<Object> get(Handle<ExternalUint32Array> array,
                                   int index);
  inline void set(int index, uint32_t value);

  // This accessor applies the correct conversion from Smi, HeapNumber
  // and undefined.
  static Handle<Object> SetValue(Handle<JSObject> holder,
                                 Handle<ExternalUint32Array> array,
                                 uint32_t index, Handle<Object> value);

  DECLARE_CAST(ExternalUint32Array)

  // Dispatched behavior.
  DECLARE_PRINTER(ExternalUint32Array)
  DECLARE_VERIFIER(ExternalUint32Array)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalUint32Array);
};


class ExternalFloat32Array: public ExternalArray {
 public:
  // Setter and getter.
  inline float get_scalar(int index);
  static inline Handle<Object> get(Handle<ExternalFloat32Array> array,
                                   int index);
  inline void set(int index, float value);

  // This accessor applies the correct conversion from Smi, HeapNumber
  // and undefined.
  static Handle<Object> SetValue(Handle<JSObject> holder,
                                 Handle<ExternalFloat32Array> array,
                                 uint32_t index, Handle<Object> value);

  DECLARE_CAST(ExternalFloat32Array)

  // Dispatched behavior.
  DECLARE_PRINTER(ExternalFloat32Array)
  DECLARE_VERIFIER(ExternalFloat32Array)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloat32Array);
};


class ExternalFloat64Array: public ExternalArray {
 public:
  // Setter and getter.
  inline double get_scalar(int index);
  static inline Handle<Object> get(Handle<ExternalFloat64Array> array,
                                   int index);
  inline void set(int index, double value);

  // This accessor applies the correct conversion from Smi, HeapNumber
  // and undefined.
  static Handle<Object> SetValue(Handle<JSObject> holder,
                                 Handle<ExternalFloat64Array> array,
                                 uint32_t index, Handle<Object> value);

  DECLARE_CAST(ExternalFloat64Array)

  // Dispatched behavior.
  DECLARE_PRINTER(ExternalFloat64Array)
  DECLARE_VERIFIER(ExternalFloat64Array)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalFloat64Array);
};


class FixedTypedArrayBase: public FixedArrayBase {
 public:
  DECLARE_CAST(FixedTypedArrayBase)

  static const int kDataOffset = DOUBLE_POINTER_ALIGN(kHeaderSize);

  inline int size();

  static inline int TypedArraySize(InstanceType type, int length);
  inline int TypedArraySize(InstanceType type);

  // Use with care: returns raw pointer into heap.
  inline void* DataPtr();

  inline int DataSize();

 private:
  static inline int ElementSize(InstanceType type);

  inline int DataSize(InstanceType type);

  DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArrayBase);
};


template <class Traits>
class FixedTypedArray: public FixedTypedArrayBase {
 public:
  typedef typename Traits::ElementType ElementType;
  static const InstanceType kInstanceType = Traits::kInstanceType;

  DECLARE_CAST(FixedTypedArray<Traits>)

  inline ElementType get_scalar(int index);
  static inline Handle<Object> get(Handle<FixedTypedArray> array, int index);
  inline void set(int index, ElementType value);

  static inline ElementType from_int(int value);
  static inline ElementType from_double(double value);

  // This accessor applies the correct conversion from Smi, HeapNumber
  // and undefined.
  static Handle<Object> SetValue(Handle<JSObject> holder,
                                 Handle<FixedTypedArray<Traits> > array,
                                 uint32_t index, Handle<Object> value);

  DECLARE_PRINTER(FixedTypedArray)
  DECLARE_VERIFIER(FixedTypedArray)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(FixedTypedArray);
};

#define FIXED_TYPED_ARRAY_TRAITS(Type, type, TYPE, elementType, size)         \
  class Type##ArrayTraits {                                                   \
   public:   /* NOLINT */                                                     \
    typedef elementType ElementType;                                          \
    static const InstanceType kInstanceType = FIXED_##TYPE##_ARRAY_TYPE;      \
    static const char* Designator() { return #type " array"; }                \
    static inline Handle<Object> ToHandle(Isolate* isolate,                   \
                                          elementType scalar);                \
    static inline elementType defaultValue();                                 \
  };                                                                          \
                                                                              \
  typedef FixedTypedArray<Type##ArrayTraits> Fixed##Type##Array;

TYPED_ARRAYS(FIXED_TYPED_ARRAY_TRAITS)

#undef FIXED_TYPED_ARRAY_TRAITS


// DeoptimizationInputData is a fixed array used to hold the deoptimization
// data for code generated by the Hydrogen/Lithium compiler.  It also
// contains information about functions that were inlined.  If N different
// functions were inlined then first N elements of the literal array will
// contain these functions.
//
// It can be empty.
class DeoptimizationInputData: public FixedArray {
 public:
  // Layout description.  Indices in the array.
  static const int kTranslationByteArrayIndex = 0;
  static const int kInlinedFunctionCountIndex = 1;
  static const int kLiteralArrayIndex = 2;
  static const int kOsrAstIdIndex = 3;
  static const int kOsrPcOffsetIndex = 4;
  static const int kOptimizationIdIndex = 5;
  static const int kSharedFunctionInfoIndex = 6;
  static const int kWeakCellCacheIndex = 7;
  static const int kFirstDeoptEntryIndex = 8;

  // Offsets of deopt entry elements relative to the start of the entry.
  static const int kAstIdRawOffset = 0;
  static const int kTranslationIndexOffset = 1;
  static const int kArgumentsStackHeightOffset = 2;
  static const int kPcOffset = 3;
  static const int kDeoptEntrySize = 4;

  // Simple element accessors.
#define DEFINE_ELEMENT_ACCESSORS(name, type)      \
  type* name() {                                  \
    return type::cast(get(k##name##Index));       \
  }                                               \
  void Set##name(type* value) {                   \
    set(k##name##Index, value);                   \
  }

  DEFINE_ELEMENT_ACCESSORS(TranslationByteArray, ByteArray)
  DEFINE_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
  DEFINE_ELEMENT_ACCESSORS(LiteralArray, FixedArray)
  DEFINE_ELEMENT_ACCESSORS(OsrAstId, Smi)
  DEFINE_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
  DEFINE_ELEMENT_ACCESSORS(OptimizationId, Smi)
  DEFINE_ELEMENT_ACCESSORS(SharedFunctionInfo, Object)
  DEFINE_ELEMENT_ACCESSORS(WeakCellCache, Object)

#undef DEFINE_ELEMENT_ACCESSORS

  // Accessors for elements of the ith deoptimization entry.
#define DEFINE_ENTRY_ACCESSORS(name, type)                      \
  type* name(int i) {                                           \
    return type::cast(get(IndexForEntry(i) + k##name##Offset)); \
  }                                                             \
  void Set##name(int i, type* value) {                          \
    set(IndexForEntry(i) + k##name##Offset, value);             \
  }

  DEFINE_ENTRY_ACCESSORS(AstIdRaw, Smi)
  DEFINE_ENTRY_ACCESSORS(TranslationIndex, Smi)
  DEFINE_ENTRY_ACCESSORS(ArgumentsStackHeight, Smi)
  DEFINE_ENTRY_ACCESSORS(Pc, Smi)

#undef DEFINE_DEOPT_ENTRY_ACCESSORS

  BailoutId AstId(int i) {
    return BailoutId(AstIdRaw(i)->value());
  }

  void SetAstId(int i, BailoutId value) {
    SetAstIdRaw(i, Smi::FromInt(value.ToInt()));
  }

  int DeoptCount() {
    return (length() - kFirstDeoptEntryIndex) / kDeoptEntrySize;
  }

  // Allocates a DeoptimizationInputData.
  static Handle<DeoptimizationInputData> New(Isolate* isolate,
                                             int deopt_entry_count,
                                             PretenureFlag pretenure);

  DECLARE_CAST(DeoptimizationInputData)

#ifdef ENABLE_DISASSEMBLER
  void DeoptimizationInputDataPrint(std::ostream& os);  // NOLINT
#endif

 private:
  static int IndexForEntry(int i) {
    return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
  }


  static int LengthFor(int entry_count) { return IndexForEntry(entry_count); }
};


// DeoptimizationOutputData is a fixed array used to hold the deoptimization
// data for code generated by the full compiler.
// The format of the these objects is
//   [i * 2]: Ast ID for ith deoptimization.
//   [i * 2 + 1]: PC and state of ith deoptimization
class DeoptimizationOutputData: public FixedArray {
 public:
  int DeoptPoints() { return length() / 2; }

  BailoutId AstId(int index) {
    return BailoutId(Smi::cast(get(index * 2))->value());
  }

  void SetAstId(int index, BailoutId id) {
    set(index * 2, Smi::FromInt(id.ToInt()));
  }

  Smi* PcAndState(int index) { return Smi::cast(get(1 + index * 2)); }
  void SetPcAndState(int index, Smi* offset) { set(1 + index * 2, offset); }

  static int LengthOfFixedArray(int deopt_points) {
    return deopt_points * 2;
  }

  // Allocates a DeoptimizationOutputData.
  static Handle<DeoptimizationOutputData> New(Isolate* isolate,
                                              int number_of_deopt_points,
                                              PretenureFlag pretenure);

  DECLARE_CAST(DeoptimizationOutputData)

#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
  void DeoptimizationOutputDataPrint(std::ostream& os);  // NOLINT
#endif
};


// HandlerTable is a fixed array containing entries for exception handlers in
// the code object it is associated with. The tables comes in two flavors:
// 1) Based on ranges: Used for unoptimized code. Contains one entry per
//    exception handler and a range representing the try-block covered by that
//    handler. Layout looks as follows:
//      [ range-start , range-end , handler-offset , stack-depth ]
// 2) Based on return addresses: Used for turbofanned code. Contains one entry
//    per call-site that could throw an exception. Layout looks as follows:
//      [ return-address-offset , handler-offset ]
class HandlerTable : public FixedArray {
 public:
  // Accessors for handler table based on ranges.
  void SetRangeStart(int index, int value) {
    set(index * kRangeEntrySize + kRangeStartIndex, Smi::FromInt(value));
  }
  void SetRangeEnd(int index, int value) {
    set(index * kRangeEntrySize + kRangeEndIndex, Smi::FromInt(value));
  }
  void SetRangeHandler(int index, int value) {
    set(index * kRangeEntrySize + kRangeHandlerIndex, Smi::FromInt(value));
  }
  void SetRangeDepth(int index, int value) {
    set(index * kRangeEntrySize + kRangeDepthIndex, Smi::FromInt(value));
  }

  // Accessors for handler table based on return addresses.
  void SetReturnOffset(int index, int value) {
    set(index * kReturnEntrySize + kReturnOffsetIndex, Smi::FromInt(value));
  }
  void SetReturnHandler(int index, int value) {
    set(index * kReturnEntrySize + kReturnHandlerIndex, Smi::FromInt(value));
  }

  // Lookup handler in a table based on ranges.
  int LookupRange(int pc_offset, int* stack_depth);

  // Lookup handler in a table based on return addresses.
  int LookupReturn(int pc_offset);

  // Returns the required length of the underlying fixed array.
  static int LengthForRange(int entries) { return entries * kRangeEntrySize; }
  static int LengthForReturn(int entries) { return entries * kReturnEntrySize; }

  DECLARE_CAST(HandlerTable)

#if defined(OBJECT_PRINT) || defined(ENABLE_DISASSEMBLER)
  void HandlerTableRangePrint(std::ostream& os);   // NOLINT
  void HandlerTableReturnPrint(std::ostream& os);  // NOLINT
#endif

 private:
  // Layout description for handler table based on ranges.
  static const int kRangeStartIndex = 0;
  static const int kRangeEndIndex = 1;
  static const int kRangeHandlerIndex = 2;
  static const int kRangeDepthIndex = 3;
  static const int kRangeEntrySize = 4;

  // Layout description for handler table based on return addresses.
  static const int kReturnOffsetIndex = 0;
  static const int kReturnHandlerIndex = 1;
  static const int kReturnEntrySize = 2;
};


// Forward declaration.
class Cell;
class PropertyCell;
class SafepointEntry;
class TypeFeedbackInfo;

// Code describes objects with on-the-fly generated machine code.
class Code: public HeapObject {
 public:
  // Opaque data type for encapsulating code flags like kind, inline
  // cache state, and arguments count.
  typedef uint32_t Flags;

#define NON_IC_KIND_LIST(V) \
  V(FUNCTION)               \
  V(OPTIMIZED_FUNCTION)     \
  V(STUB)                   \
  V(HANDLER)                \
  V(BUILTIN)                \
  V(REGEXP)

#define IC_KIND_LIST(V) \
  V(LOAD_IC)            \
  V(KEYED_LOAD_IC)      \
  V(CALL_IC)            \
  V(STORE_IC)           \
  V(KEYED_STORE_IC)     \
  V(BINARY_OP_IC)       \
  V(COMPARE_IC)         \
  V(COMPARE_NIL_IC)     \
  V(TO_BOOLEAN_IC)

#define CODE_KIND_LIST(V) \
  NON_IC_KIND_LIST(V)     \
  IC_KIND_LIST(V)

  enum Kind {
#define DEFINE_CODE_KIND_ENUM(name) name,
    CODE_KIND_LIST(DEFINE_CODE_KIND_ENUM)
#undef DEFINE_CODE_KIND_ENUM
    NUMBER_OF_KINDS
  };

  // No more than 16 kinds. The value is currently encoded in four bits in
  // Flags.
  STATIC_ASSERT(NUMBER_OF_KINDS <= 16);

  static const char* Kind2String(Kind kind);

  // Types of stubs.
  enum StubType {
    NORMAL,
    FAST
  };

  static const int kPrologueOffsetNotSet = -1;

#ifdef ENABLE_DISASSEMBLER
  // Printing
  static const char* ICState2String(InlineCacheState state);
  static const char* StubType2String(StubType type);
  static void PrintExtraICState(std::ostream& os,  // NOLINT
                                Kind kind, ExtraICState extra);
  void Disassemble(const char* name, std::ostream& os);  // NOLINT
#endif  // ENABLE_DISASSEMBLER

  // [instruction_size]: Size of the native instructions
  inline int instruction_size() const;
  inline void set_instruction_size(int value);

  // [relocation_info]: Code relocation information
  DECL_ACCESSORS(relocation_info, ByteArray)
  void InvalidateRelocation();
  void InvalidateEmbeddedObjects();

  // [handler_table]: Fixed array containing offsets of exception handlers.
  DECL_ACCESSORS(handler_table, FixedArray)

  // [deoptimization_data]: Array containing data for deopt.
  DECL_ACCESSORS(deoptimization_data, FixedArray)

  // [raw_type_feedback_info]: This field stores various things, depending on
  // the kind of the code object.
  //   FUNCTION           => type feedback information.
  //   STUB and ICs       => major/minor key as Smi.
  DECL_ACCESSORS(raw_type_feedback_info, Object)
  inline Object* type_feedback_info();
  inline void set_type_feedback_info(
      Object* value, WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
  inline uint32_t stub_key();
  inline void set_stub_key(uint32_t key);

  // [next_code_link]: Link for lists of optimized or deoptimized code.
  // Note that storage for this field is overlapped with typefeedback_info.
  DECL_ACCESSORS(next_code_link, Object)

  // [gc_metadata]: Field used to hold GC related metadata. The contents of this
  // field does not have to be traced during garbage collection since
  // it is only used by the garbage collector itself.
  DECL_ACCESSORS(gc_metadata, Object)

  // [ic_age]: Inline caching age: the value of the Heap::global_ic_age
  // at the moment when this object was created.
  inline void set_ic_age(int count);
  inline int ic_age() const;

  // [prologue_offset]: Offset of the function prologue, used for aging
  // FUNCTIONs and OPTIMIZED_FUNCTIONs.
  inline int prologue_offset() const;
  inline void set_prologue_offset(int offset);

  // Unchecked accessors to be used during GC.
  inline ByteArray* unchecked_relocation_info();

  inline int relocation_size();

  // [flags]: Various code flags.
  inline Flags flags();
  inline void set_flags(Flags flags);

  // [flags]: Access to specific code flags.
  inline Kind kind();
  inline InlineCacheState ic_state();  // Only valid for IC stubs.
  inline ExtraICState extra_ic_state();  // Only valid for IC stubs.

  inline StubType type();  // Only valid for monomorphic IC stubs.

  // Testers for IC stub kinds.
  inline bool is_inline_cache_stub();
  inline bool is_debug_stub();
  inline bool is_handler() { return kind() == HANDLER; }
  inline bool is_load_stub() { return kind() == LOAD_IC; }
  inline bool is_keyed_load_stub() { return kind() == KEYED_LOAD_IC; }
  inline bool is_store_stub() { return kind() == STORE_IC; }
  inline bool is_keyed_store_stub() { return kind() == KEYED_STORE_IC; }
  inline bool is_call_stub() { return kind() == CALL_IC; }
  inline bool is_binary_op_stub() { return kind() == BINARY_OP_IC; }
  inline bool is_compare_ic_stub() { return kind() == COMPARE_IC; }
  inline bool is_compare_nil_ic_stub() { return kind() == COMPARE_NIL_IC; }
  inline bool is_to_boolean_ic_stub() { return kind() == TO_BOOLEAN_IC; }
  inline bool is_keyed_stub();
  inline bool is_optimized_code() { return kind() == OPTIMIZED_FUNCTION; }
  inline bool embeds_maps_weakly() {
    Kind k = kind();
    return (k == LOAD_IC || k == STORE_IC || k == KEYED_LOAD_IC ||
            k == KEYED_STORE_IC || k == COMPARE_NIL_IC) &&
           ic_state() == MONOMORPHIC;
  }

  inline bool IsCodeStubOrIC();

  inline void set_raw_kind_specific_flags1(int value);
  inline void set_raw_kind_specific_flags2(int value);

  // [is_crankshafted]: For kind STUB or ICs, tells whether or not a code
  // object was generated by either the hydrogen or the TurboFan optimizing
  // compiler (but it may not be an optimized function).
  inline bool is_crankshafted();
  inline bool is_hydrogen_stub();  // Crankshafted, but not a function.
  inline void set_is_crankshafted(bool value);

  // [is_turbofanned]: For kind STUB or OPTIMIZED_FUNCTION, tells whether the
  // code object was generated by the TurboFan optimizing compiler.
  inline bool is_turbofanned();
  inline void set_is_turbofanned(bool value);

  // [can_have_weak_objects]: For kind OPTIMIZED_FUNCTION, tells whether the
  // embedded objects in code should be treated weakly.
  inline bool can_have_weak_objects();
  inline void set_can_have_weak_objects(bool value);

  // [optimizable]: For FUNCTION kind, tells if it is optimizable.
  inline bool optimizable();
  inline void set_optimizable(bool value);

  // [has_deoptimization_support]: For FUNCTION kind, tells if it has
  // deoptimization support.
  inline bool has_deoptimization_support();
  inline void set_has_deoptimization_support(bool value);

  // [has_debug_break_slots]: For FUNCTION kind, tells if it has
  // been compiled with debug break slots.
  inline bool has_debug_break_slots();
  inline void set_has_debug_break_slots(bool value);

  // [compiled_with_optimizing]: For FUNCTION kind, tells if it has
  // been compiled with IsOptimizing set to true.
  inline bool is_compiled_optimizable();
  inline void set_compiled_optimizable(bool value);

  // [has_reloc_info_for_serialization]: For FUNCTION kind, tells if its
  // reloc info includes runtime and external references to support
  // serialization/deserialization.
  inline bool has_reloc_info_for_serialization();
  inline void set_has_reloc_info_for_serialization(bool value);

  // [allow_osr_at_loop_nesting_level]: For FUNCTION kind, tells for
  // how long the function has been marked for OSR and therefore which
  // level of loop nesting we are willing to do on-stack replacement
  // for.
  inline void set_allow_osr_at_loop_nesting_level(int level);
  inline int allow_osr_at_loop_nesting_level();

  // [profiler_ticks]: For FUNCTION kind, tells for how many profiler ticks
  // the code object was seen on the stack with no IC patching going on.
  inline int profiler_ticks();
  inline void set_profiler_ticks(int ticks);

  // [builtin_index]: For BUILTIN kind, tells which builtin index it has.
  // For builtins, tells which builtin index it has.
  // Note that builtins can have a code kind other than BUILTIN, which means
  // that for arbitrary code objects, this index value may be random garbage.
  // To verify in that case, compare the code object to the indexed builtin.
  inline int builtin_index();
  inline void set_builtin_index(int id);

  // [stack_slots]: For kind OPTIMIZED_FUNCTION, the number of stack slots
  // reserved in the code prologue.
  inline unsigned stack_slots();
  inline void set_stack_slots(unsigned slots);

  // [safepoint_table_start]: For kind OPTIMIZED_FUNCTION, the offset in
  // the instruction stream where the safepoint table starts.
  inline unsigned safepoint_table_offset();
  inline void set_safepoint_table_offset(unsigned offset);

  // [back_edge_table_start]: For kind FUNCTION, the offset in the
  // instruction stream where the back edge table starts.
  inline unsigned back_edge_table_offset();
  inline void set_back_edge_table_offset(unsigned offset);

  inline bool back_edges_patched_for_osr();

  // [to_boolean_foo]: For kind TO_BOOLEAN_IC tells what state the stub is in.
  inline byte to_boolean_state();

  // [has_function_cache]: For kind STUB tells whether there is a function
  // cache is passed to the stub.
  inline bool has_function_cache();
  inline void set_has_function_cache(bool flag);


  // [marked_for_deoptimization]: For kind OPTIMIZED_FUNCTION tells whether
  // the code is going to be deoptimized because of dead embedded maps.
  inline bool marked_for_deoptimization();
  inline void set_marked_for_deoptimization(bool flag);

  // [constant_pool]: The constant pool for this function.
  inline ConstantPoolArray* constant_pool();
  inline void set_constant_pool(Object* constant_pool);

  // Get the safepoint entry for the given pc.
  SafepointEntry GetSafepointEntry(Address pc);

  // Find an object in a stub with a specified map
  Object* FindNthObject(int n, Map* match_map);

  // Find the first allocation site in an IC stub.
  AllocationSite* FindFirstAllocationSite();

  // Find the first map in an IC stub.
  Map* FindFirstMap();
  void FindAllMaps(MapHandleList* maps);

  // Find the first handler in an IC stub.
  Code* FindFirstHandler();

  // Find |length| handlers and put them into |code_list|. Returns false if not
  // enough handlers can be found.
  bool FindHandlers(CodeHandleList* code_list, int length = -1);

  // Find the handler for |map|.
  MaybeHandle<Code> FindHandlerForMap(Map* map);

  // Find the first name in an IC stub.
  Name* FindFirstName();

  class FindAndReplacePattern;
  // For each (map-to-find, object-to-replace) pair in the pattern, this
  // function replaces the corresponding placeholder in the code with the
  // object-to-replace. The function assumes that pairs in the pattern come in
  // the same order as the placeholders in the code.
  // If the placeholder is a weak cell, then the value of weak cell is matched
  // against the map-to-find.
  void FindAndReplace(const FindAndReplacePattern& pattern);

  // The entire code object including its header is copied verbatim to the
  // snapshot so that it can be written in one, fast, memcpy during
  // deserialization. The deserializer will overwrite some pointers, rather
  // like a runtime linker, but the random allocation addresses used in the
  // mksnapshot process would still be present in the unlinked snapshot data,
  // which would make snapshot production non-reproducible. This method wipes
  // out the to-be-overwritten header data for reproducible snapshots.
  inline void WipeOutHeader();

  // Flags operations.
  static inline Flags ComputeFlags(
      Kind kind, InlineCacheState ic_state = UNINITIALIZED,
      ExtraICState extra_ic_state = kNoExtraICState, StubType type = NORMAL,
      CacheHolderFlag holder = kCacheOnReceiver);

  static inline Flags ComputeMonomorphicFlags(
      Kind kind, ExtraICState extra_ic_state = kNoExtraICState,
      CacheHolderFlag holder = kCacheOnReceiver, StubType type = NORMAL);

  static inline Flags ComputeHandlerFlags(
      Kind handler_kind, StubType type = NORMAL,
      CacheHolderFlag holder = kCacheOnReceiver);

  static inline InlineCacheState ExtractICStateFromFlags(Flags flags);
  static inline StubType ExtractTypeFromFlags(Flags flags);
  static inline CacheHolderFlag ExtractCacheHolderFromFlags(Flags flags);
  static inline Kind ExtractKindFromFlags(Flags flags);
  static inline ExtraICState ExtractExtraICStateFromFlags(Flags flags);

  static inline Flags RemoveTypeFromFlags(Flags flags);
  static inline Flags RemoveTypeAndHolderFromFlags(Flags flags);

  // Convert a target address into a code object.
  static inline Code* GetCodeFromTargetAddress(Address address);

  // Convert an entry address into an object.
  static inline Object* GetObjectFromEntryAddress(Address location_of_address);

  // Returns the address of the first instruction.
  inline byte* instruction_start();

  // Returns the address right after the last instruction.
  inline byte* instruction_end();

  // Returns the size of the instructions, padding, and relocation information.
  inline int body_size();

  // Returns the address of the first relocation info (read backwards!).
  inline byte* relocation_start();

  // Code entry point.
  inline byte* entry();

  // Returns true if pc is inside this object's instructions.
  inline bool contains(byte* pc);

  // Relocate the code by delta bytes. Called to signal that this code
  // object has been moved by delta bytes.
  void Relocate(intptr_t delta);

  // Migrate code described by desc.
  void CopyFrom(const CodeDesc& desc);

  // Returns the object size for a given body (used for allocation).
  static int SizeFor(int body_size) {
    DCHECK_SIZE_TAG_ALIGNED(body_size);
    return RoundUp(kHeaderSize + body_size, kCodeAlignment);
  }

  // Calculate the size of the code object to report for log events. This takes
  // the layout of the code object into account.
  int ExecutableSize() {
    // Check that the assumptions about the layout of the code object holds.
    DCHECK_EQ(static_cast<int>(instruction_start() - address()),
              Code::kHeaderSize);
    return instruction_size() + Code::kHeaderSize;
  }

  // Locating source position.
  int SourcePosition(Address pc);
  int SourceStatementPosition(Address pc);

  DECLARE_CAST(Code)

  // Dispatched behavior.
  int CodeSize() { return SizeFor(body_size()); }
  inline void CodeIterateBody(ObjectVisitor* v);

  template<typename StaticVisitor>
  inline void CodeIterateBody(Heap* heap);

  DECLARE_PRINTER(Code)
  DECLARE_VERIFIER(Code)

  void ClearInlineCaches();
  void ClearInlineCaches(Kind kind);

  BailoutId TranslatePcOffsetToAstId(uint32_t pc_offset);
  uint32_t TranslateAstIdToPcOffset(BailoutId ast_id);

#define DECLARE_CODE_AGE_ENUM(X) k##X##CodeAge,
  enum Age {
    kToBeExecutedOnceCodeAge = -3,
    kNotExecutedCodeAge = -2,
    kExecutedOnceCodeAge = -1,
    kNoAgeCodeAge = 0,
    CODE_AGE_LIST(DECLARE_CODE_AGE_ENUM)
    kAfterLastCodeAge,
    kFirstCodeAge = kToBeExecutedOnceCodeAge,
    kLastCodeAge = kAfterLastCodeAge - 1,
    kCodeAgeCount = kAfterLastCodeAge - kFirstCodeAge - 1,
    kIsOldCodeAge = kSexagenarianCodeAge,
    kPreAgedCodeAge = kIsOldCodeAge - 1
  };
#undef DECLARE_CODE_AGE_ENUM

  // Code aging.  Indicates how many full GCs this code has survived without
  // being entered through the prologue.  Used to determine when it is
  // relatively safe to flush this code object and replace it with the lazy
  // compilation stub.
  static void MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate);
  static void MarkCodeAsExecuted(byte* sequence, Isolate* isolate);
  void MakeYoung(Isolate* isolate);
  void MarkToBeExecutedOnce(Isolate* isolate);
  void MakeOlder(MarkingParity);
  static bool IsYoungSequence(Isolate* isolate, byte* sequence);
  bool IsOld();
  Age GetAge();
  static inline Code* GetPreAgedCodeAgeStub(Isolate* isolate) {
    return GetCodeAgeStub(isolate, kNotExecutedCodeAge, NO_MARKING_PARITY);
  }

  void PrintDeoptLocation(FILE* out, Address pc);
  bool CanDeoptAt(Address pc);

#ifdef VERIFY_HEAP
  void VerifyEmbeddedObjectsDependency();
#endif

#ifdef DEBUG
  enum VerifyMode { kNoContextSpecificPointers, kNoContextRetainingPointers };
  void VerifyEmbeddedObjects(VerifyMode mode = kNoContextRetainingPointers);
#endif  // DEBUG

  inline bool CanContainWeakObjects() {
    // is_turbofanned() implies !can_have_weak_objects().
    DCHECK(!is_optimized_code() || !is_turbofanned() ||
           !can_have_weak_objects());
    return is_optimized_code() && can_have_weak_objects();
  }

  inline bool IsWeakObject(Object* object) {
    return (CanContainWeakObjects() && IsWeakObjectInOptimizedCode(object));
  }

  static inline bool IsWeakObjectInOptimizedCode(Object* object);

  static Handle<WeakCell> WeakCellFor(Handle<Code> code);
  WeakCell* CachedWeakCell();

  // Max loop nesting marker used to postpose OSR. We don't take loop
  // nesting that is deeper than 5 levels into account.
  static const int kMaxLoopNestingMarker = 6;

  // Layout description.
  static const int kRelocationInfoOffset = HeapObject::kHeaderSize;
  static const int kHandlerTableOffset = kRelocationInfoOffset + kPointerSize;
  static const int kDeoptimizationDataOffset =
      kHandlerTableOffset + kPointerSize;
  // For FUNCTION kind, we store the type feedback info here.
  static const int kTypeFeedbackInfoOffset =
      kDeoptimizationDataOffset + kPointerSize;
  static const int kNextCodeLinkOffset = kTypeFeedbackInfoOffset + kPointerSize;
  static const int kGCMetadataOffset = kNextCodeLinkOffset + kPointerSize;
  static const int kInstructionSizeOffset = kGCMetadataOffset + kPointerSize;
  static const int kICAgeOffset = kInstructionSizeOffset + kIntSize;
  static const int kFlagsOffset = kICAgeOffset + kIntSize;
  static const int kKindSpecificFlags1Offset = kFlagsOffset + kIntSize;
  static const int kKindSpecificFlags2Offset =
      kKindSpecificFlags1Offset + kIntSize;
  // Note: We might be able to squeeze this into the flags above.
  static const int kPrologueOffset = kKindSpecificFlags2Offset + kIntSize;
  static const int kConstantPoolOffset = kPrologueOffset + kIntSize;

  static const int kHeaderPaddingStart = kConstantPoolOffset + kPointerSize;

  // Add padding to align the instruction start following right after
  // the Code object header.
  static const int kHeaderSize =
      (kHeaderPaddingStart + kCodeAlignmentMask) & ~kCodeAlignmentMask;
  // Ensure that the slot for the constant pool pointer is aligned.
  STATIC_ASSERT((kConstantPoolOffset & kPointerAlignmentMask) == 0);

  // Byte offsets within kKindSpecificFlags1Offset.
  static const int kOptimizableOffset = kKindSpecificFlags1Offset;

  static const int kFullCodeFlags = kOptimizableOffset + 1;
  class FullCodeFlagsHasDeoptimizationSupportField:
      public BitField<bool, 0, 1> {};  // NOLINT
  class FullCodeFlagsHasDebugBreakSlotsField: public BitField<bool, 1, 1> {};
  class FullCodeFlagsIsCompiledOptimizable: public BitField<bool, 2, 1> {};
  class FullCodeFlagsHasRelocInfoForSerialization
      : public BitField<bool, 3, 1> {};

  static const int kProfilerTicksOffset = kFullCodeFlags + 1;

  // Flags layout.  BitField<type, shift, size>.
  class ICStateField : public BitField<InlineCacheState, 0, 4> {};
  class TypeField : public BitField<StubType, 4, 1> {};
  class CacheHolderField : public BitField<CacheHolderFlag, 5, 2> {};
  class KindField : public BitField<Kind, 7, 4> {};
  class ExtraICStateField: public BitField<ExtraICState, 11,
      PlatformSmiTagging::kSmiValueSize - 11 + 1> {};  // NOLINT

  // KindSpecificFlags1 layout (STUB and OPTIMIZED_FUNCTION)
  static const int kStackSlotsFirstBit = 0;
  static const int kStackSlotsBitCount = 24;
  static const int kHasFunctionCacheBit =
      kStackSlotsFirstBit + kStackSlotsBitCount;
  static const int kMarkedForDeoptimizationBit = kHasFunctionCacheBit + 1;
  static const int kIsTurbofannedBit = kMarkedForDeoptimizationBit + 1;
  static const int kCanHaveWeakObjects = kIsTurbofannedBit + 1;

  STATIC_ASSERT(kStackSlotsFirstBit + kStackSlotsBitCount <= 32);
  STATIC_ASSERT(kCanHaveWeakObjects + 1 <= 32);

  class StackSlotsField: public BitField<int,
      kStackSlotsFirstBit, kStackSlotsBitCount> {};  // NOLINT
  class HasFunctionCacheField : public BitField<bool, kHasFunctionCacheBit, 1> {
  };  // NOLINT
  class MarkedForDeoptimizationField
      : public BitField<bool, kMarkedForDeoptimizationBit, 1> {};   // NOLINT
  class IsTurbofannedField : public BitField<bool, kIsTurbofannedBit, 1> {
  };  // NOLINT
  class CanHaveWeakObjectsField
      : public BitField<bool, kCanHaveWeakObjects, 1> {};  // NOLINT

  // KindSpecificFlags2 layout (ALL)
  static const int kIsCrankshaftedBit = 0;
  class IsCrankshaftedField: public BitField<bool,
      kIsCrankshaftedBit, 1> {};  // NOLINT

  // KindSpecificFlags2 layout (STUB and OPTIMIZED_FUNCTION)
  static const int kSafepointTableOffsetFirstBit = kIsCrankshaftedBit + 1;
  static const int kSafepointTableOffsetBitCount = 24;

  STATIC_ASSERT(kSafepointTableOffsetFirstBit +
                kSafepointTableOffsetBitCount <= 32);
  STATIC_ASSERT(1 + kSafepointTableOffsetBitCount <= 32);

  class SafepointTableOffsetField: public BitField<int,
      kSafepointTableOffsetFirstBit,
      kSafepointTableOffsetBitCount> {};  // NOLINT

  // KindSpecificFlags2 layout (FUNCTION)
  class BackEdgeTableOffsetField: public BitField<int,
      kIsCrankshaftedBit + 1, 27> {};  // NOLINT
  class AllowOSRAtLoopNestingLevelField: public BitField<int,
      kIsCrankshaftedBit + 1 + 27, 4> {};  // NOLINT
  STATIC_ASSERT(AllowOSRAtLoopNestingLevelField::kMax >= kMaxLoopNestingMarker);

  static const int kArgumentsBits = 16;
  static const int kMaxArguments = (1 << kArgumentsBits) - 1;

  // This constant should be encodable in an ARM instruction.
  static const int kFlagsNotUsedInLookup =
      TypeField::kMask | CacheHolderField::kMask;

 private:
  friend class RelocIterator;
  friend class Deoptimizer;  // For FindCodeAgeSequence.

  void ClearInlineCaches(Kind* kind);

  // Code aging
  byte* FindCodeAgeSequence();
  static void GetCodeAgeAndParity(Code* code, Age* age,
                                  MarkingParity* parity);
  static void GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
                                  MarkingParity* parity);
  static Code* GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity);

  // Code aging -- platform-specific
  static void PatchPlatformCodeAge(Isolate* isolate,
                                   byte* sequence, Age age,
                                   MarkingParity parity);

  DISALLOW_IMPLICIT_CONSTRUCTORS(Code);
};


// This class describes the layout of dependent codes array of a map. The
// array is partitioned into several groups of dependent codes. Each group
// contains codes with the same dependency on the map. The array has the
// following layout for n dependency groups:
//
// +----+----+-----+----+---------+----------+-----+---------+-----------+
// | C1 | C2 | ... | Cn | group 1 |  group 2 | ... | group n | undefined |
// +----+----+-----+----+---------+----------+-----+---------+-----------+
//
// The first n elements are Smis, each of them specifies the number of codes
// in the corresponding group. The subsequent elements contain grouped code
// objects in weak cells. The suffix of the array can be filled with the
// undefined value if the number of codes is less than the length of the
// array. The order of the code objects within a group is not preserved.
//
// All code indexes used in the class are counted starting from the first
// code object of the first group. In other words, code index 0 corresponds
// to array index n = kCodesStartIndex.

class DependentCode: public FixedArray {
 public:
  enum DependencyGroup {
    // Group of code that weakly embed this map and depend on being
    // deoptimized when the map is garbage collected.
    kWeakCodeGroup,
    // Group of code that embed a transition to this map, and depend on being
    // deoptimized when the transition is replaced by a new version.
    kTransitionGroup,
    // Group of code that omit run-time prototype checks for prototypes
    // described by this map. The group is deoptimized whenever an object
    // described by this map changes shape (and transitions to a new map),
    // possibly invalidating the assumptions embedded in the code.
    kPrototypeCheckGroup,
    // Group of code that depends on global property values in property cells
    // not being changed.
    kPropertyCellChangedGroup,
    // Group of code that omit run-time type checks for the field(s) introduced
    // by this map.
    kFieldTypeGroup,
    // Group of code that omit run-time type checks for initial maps of
    // constructors.
    kInitialMapChangedGroup,
    // Group of code that depends on tenuring information in AllocationSites
    // not being changed.
    kAllocationSiteTenuringChangedGroup,
    // Group of code that depends on element transition information in
    // AllocationSites not being changed.
    kAllocationSiteTransitionChangedGroup
  };

  static const int kGroupCount = kAllocationSiteTransitionChangedGroup + 1;

  // Array for holding the index of the first code object of each group.
  // The last element stores the total number of code objects.
  class GroupStartIndexes {
   public:
    explicit GroupStartIndexes(DependentCode* entries);
    void Recompute(DependentCode* entries);
    int at(int i) { return start_indexes_[i]; }
    int number_of_entries() { return start_indexes_[kGroupCount]; }
   private:
    int start_indexes_[kGroupCount + 1];
  };

  bool Contains(DependencyGroup group, WeakCell* code_cell);

  static Handle<DependentCode> InsertCompilationDependencies(
      Handle<DependentCode> entries, DependencyGroup group,
      Handle<Foreign> info);

  static Handle<DependentCode> InsertWeakCode(Handle<DependentCode> entries,
                                              DependencyGroup group,
                                              Handle<WeakCell> code_cell);

  void UpdateToFinishedCode(DependencyGroup group, Foreign* info,
                            WeakCell* code_cell);

  void RemoveCompilationDependencies(DependentCode::DependencyGroup group,
                                     Foreign* info);

  void DeoptimizeDependentCodeGroup(Isolate* isolate,
                                    DependentCode::DependencyGroup group);

  bool MarkCodeForDeoptimization(Isolate* isolate,
                                 DependentCode::DependencyGroup group);

  // The following low-level accessors should only be used by this class
  // and the mark compact collector.
  inline int number_of_entries(DependencyGroup group);
  inline void set_number_of_entries(DependencyGroup group, int value);
  inline Object* object_at(int i);
  inline void set_object_at(int i, Object* object);
  inline void clear_at(int i);
  inline void copy(int from, int to);
  DECLARE_CAST(DependentCode)

  static const char* DependencyGroupName(DependencyGroup group);
  static void SetMarkedForDeoptimization(Code* code, DependencyGroup group);

 private:
  static Handle<DependentCode> Insert(Handle<DependentCode> entries,
                                      DependencyGroup group,
                                      Handle<Object> object);
  static Handle<DependentCode> EnsureSpace(Handle<DependentCode> entries);
  // Make a room at the end of the given group by moving out the first
  // code objects of the subsequent groups.
  inline void ExtendGroup(DependencyGroup group);
  // Compact by removing cleared weak cells and return true if there was
  // any cleared weak cell.
  bool Compact();
  static int Grow(int number_of_entries) {
    if (number_of_entries < 5) return number_of_entries + 1;
    return number_of_entries * 5 / 4;
  }
  static const int kCodesStartIndex = kGroupCount;
};


class PrototypeInfo;


// All heap objects have a Map that describes their structure.
//  A Map contains information about:
//  - Size information about the object
//  - How to iterate over an object (for garbage collection)
class Map: public HeapObject {
 public:
  // Instance size.
  // Size in bytes or kVariableSizeSentinel if instances do not have
  // a fixed size.
  inline int instance_size();
  inline void set_instance_size(int value);

  // Count of properties allocated in the object.
  inline int inobject_properties();
  inline void set_inobject_properties(int value);

  // Count of property fields pre-allocated in the object when first allocated.
  inline int pre_allocated_property_fields();
  inline void set_pre_allocated_property_fields(int value);

  // Instance type.
  inline InstanceType instance_type();
  inline void set_instance_type(InstanceType value);

  // Tells how many unused property fields are available in the
  // instance (only used for JSObject in fast mode).
  inline int unused_property_fields();
  inline void set_unused_property_fields(int value);

  // Bit field.
  inline byte bit_field() const;
  inline void set_bit_field(byte value);

  // Bit field 2.
  inline byte bit_field2() const;
  inline void set_bit_field2(byte value);

  // Bit field 3.
  inline uint32_t bit_field3() const;
  inline void set_bit_field3(uint32_t bits);

  class EnumLengthBits:             public BitField<int,
      0, kDescriptorIndexBitCount> {};  // NOLINT
  class NumberOfOwnDescriptorsBits: public BitField<int,
      kDescriptorIndexBitCount, kDescriptorIndexBitCount> {};  // NOLINT
  STATIC_ASSERT(kDescriptorIndexBitCount + kDescriptorIndexBitCount == 20);
  class DictionaryMap : public BitField<bool, 20, 1> {};
  class OwnsDescriptors : public BitField<bool, 21, 1> {};
  class HasInstanceCallHandler : public BitField<bool, 22, 1> {};
  class Deprecated : public BitField<bool, 23, 1> {};
  class IsUnstable : public BitField<bool, 24, 1> {};
  class IsMigrationTarget : public BitField<bool, 25, 1> {};
  // Bits 26 and 27 are free.

  // Keep this bit field at the very end for better code in
  // Builtins::kJSConstructStubGeneric stub.
  // This counter is used for in-object slack tracking and for map aging.
  // The in-object slack tracking is considered enabled when the counter is
  // in the range [kSlackTrackingCounterStart, kSlackTrackingCounterEnd].
  class Counter : public BitField<int, 28, 4> {};
  static const int kSlackTrackingCounterStart = 14;
  static const int kSlackTrackingCounterEnd = 8;
  static const int kRetainingCounterStart = kSlackTrackingCounterEnd - 1;
  static const int kRetainingCounterEnd = 0;

  // Tells whether the object in the prototype property will be used
  // for instances created from this function.  If the prototype
  // property is set to a value that is not a JSObject, the prototype
  // property will not be used to create instances of the function.
  // See ECMA-262, 13.2.2.
  inline void set_non_instance_prototype(bool value);
  inline bool has_non_instance_prototype();

  // Tells whether function has special prototype property. If not, prototype
  // property will not be created when accessed (will return undefined),
  // and construction from this function will not be allowed.
  inline void set_function_with_prototype(bool value);
  inline bool function_with_prototype();

  // Tells whether the instance with this map should be ignored by the
  // Object.getPrototypeOf() function and the __proto__ accessor.
  inline void set_is_hidden_prototype() {
    set_bit_field(bit_field() | (1 << kIsHiddenPrototype));
  }

  inline bool is_hidden_prototype() {
    return ((1 << kIsHiddenPrototype) & bit_field()) != 0;
  }

  // Records and queries whether the instance has a named interceptor.
  inline void set_has_named_interceptor() {
    set_bit_field(bit_field() | (1 << kHasNamedInterceptor));
  }

  inline bool has_named_interceptor() {
    return ((1 << kHasNamedInterceptor) & bit_field()) != 0;
  }

  // Records and queries whether the instance has an indexed interceptor.
  inline void set_has_indexed_interceptor() {
    set_bit_field(bit_field() | (1 << kHasIndexedInterceptor));
  }

  inline bool has_indexed_interceptor() {
    return ((1 << kHasIndexedInterceptor) & bit_field()) != 0;
  }

  // Tells whether the instance is undetectable.
  // An undetectable object is a special class of JSObject: 'typeof' operator
  // returns undefined, ToBoolean returns false. Otherwise it behaves like
  // a normal JS object.  It is useful for implementing undetectable
  // document.all in Firefox & Safari.
  // See https://bugzilla.mozilla.org/show_bug.cgi?id=248549.
  inline void set_is_undetectable() {
    set_bit_field(bit_field() | (1 << kIsUndetectable));
  }

  inline bool is_undetectable() {
    return ((1 << kIsUndetectable) & bit_field()) != 0;
  }

  // Tells whether the instance has a call-as-function handler.
  inline void set_is_observed() {
    set_bit_field(bit_field() | (1 << kIsObserved));
  }

  inline bool is_observed() {
    return ((1 << kIsObserved) & bit_field()) != 0;
  }

  inline void set_is_extensible(bool value);
  inline bool is_extensible();
  inline void set_is_prototype_map(bool value);
  inline bool is_prototype_map() const;

  inline void set_elements_kind(ElementsKind elements_kind) {
    DCHECK(static_cast<int>(elements_kind) < kElementsKindCount);
    DCHECK(kElementsKindCount <= (1 << Map::ElementsKindBits::kSize));
    set_bit_field2(Map::ElementsKindBits::update(bit_field2(), elements_kind));
    DCHECK(this->elements_kind() == elements_kind);
  }

  inline ElementsKind elements_kind() {
    return Map::ElementsKindBits::decode(bit_field2());
  }

  // Tells whether the instance has fast elements that are only Smis.
  inline bool has_fast_smi_elements() {
    return IsFastSmiElementsKind(elements_kind());
  }

  // Tells whether the instance has fast elements.
  inline bool has_fast_object_elements() {
    return IsFastObjectElementsKind(elements_kind());
  }

  inline bool has_fast_smi_or_object_elements() {
    return IsFastSmiOrObjectElementsKind(elements_kind());
  }

  inline bool has_fast_double_elements() {
    return IsFastDoubleElementsKind(elements_kind());
  }

  inline bool has_fast_elements() {
    return IsFastElementsKind(elements_kind());
  }

  inline bool has_sloppy_arguments_elements() {
    return elements_kind() == SLOPPY_ARGUMENTS_ELEMENTS;
  }

  inline bool has_external_array_elements() {
    return IsExternalArrayElementsKind(elements_kind());
  }

  inline bool has_fixed_typed_array_elements() {
    return IsFixedTypedArrayElementsKind(elements_kind());
  }

  inline bool has_dictionary_elements() {
    return IsDictionaryElementsKind(elements_kind());
  }

  inline bool has_slow_elements_kind() {
    return elements_kind() == DICTIONARY_ELEMENTS
        || elements_kind() == SLOPPY_ARGUMENTS_ELEMENTS;
  }

  static bool IsValidElementsTransition(ElementsKind from_kind,
                                        ElementsKind to_kind);

  // Returns true if the current map doesn't have DICTIONARY_ELEMENTS but if a
  // map with DICTIONARY_ELEMENTS was found in the prototype chain.
  bool DictionaryElementsInPrototypeChainOnly();

  inline Map* ElementsTransitionMap();

  inline FixedArrayBase* GetInitialElements();

  // [raw_transitions]: Provides access to the transitions storage field.
  // Don't call set_raw_transitions() directly to overwrite transitions, use
  // the TransitionArray::ReplaceTransitions() wrapper instead!
  DECL_ACCESSORS(raw_transitions, Object)
  // [prototype_info]: Per-prototype metadata. Aliased with transitions
  // (which prototype maps don't have).
  DECL_ACCESSORS(prototype_info, Object)
  // PrototypeInfo is created lazily using this helper (which installs it on
  // the given prototype's map).
  static Handle<PrototypeInfo> GetOrCreatePrototypeInfo(
      Handle<JSObject> prototype, Isolate* isolate);

  // [prototype chain validity cell]: Associated with a prototype object,
  // stored in that object's map's PrototypeInfo, indicates that prototype
  // chains through this object are currently valid. The cell will be
  // invalidated and replaced when the prototype chain changes.
  static Handle<Cell> GetOrCreatePrototypeChainValidityCell(Handle<Map> map,
                                                            Isolate* isolate);
  static const int kPrototypeChainValid = 0;
  static const int kPrototypeChainInvalid = 1;

  Map* FindRootMap();
  Map* FindFieldOwner(int descriptor);

  inline int GetInObjectPropertyOffset(int index);

  int NumberOfFields();

  // TODO(ishell): candidate with JSObject::MigrateToMap().
  bool InstancesNeedRewriting(Map* target, int target_number_of_fields,
                              int target_inobject, int target_unused,
                              int* old_number_of_fields);
  // TODO(ishell): moveit!
  static Handle<Map> GeneralizeAllFieldRepresentations(Handle<Map> map);
  MUST_USE_RESULT static Handle<HeapType> GeneralizeFieldType(
      Handle<HeapType> type1,
      Handle<HeapType> type2,
      Isolate* isolate);
  static void GeneralizeFieldType(Handle<Map> map, int modify_index,
                                  Representation new_representation,
                                  Handle<HeapType> new_field_type);
  static Handle<Map> ReconfigureProperty(Handle<Map> map, int modify_index,
                                         PropertyKind new_kind,
                                         PropertyAttributes new_attributes,
                                         Representation new_representation,
                                         Handle<HeapType> new_field_type,
                                         StoreMode store_mode);
  static Handle<Map> CopyGeneralizeAllRepresentations(
      Handle<Map> map, int modify_index, StoreMode store_mode,
      PropertyKind kind, PropertyAttributes attributes, const char* reason);

  static Handle<Map> PrepareForDataProperty(Handle<Map> old_map,
                                            int descriptor_number,
                                            Handle<Object> value);

  static Handle<Map> Normalize(Handle<Map> map, PropertyNormalizationMode mode,
                               const char* reason);

  // Returns the constructor name (the name (possibly, inferred name) of the
  // function that was used to instantiate the object).
  String* constructor_name();

  // Tells whether the map is used for JSObjects in dictionary mode (ie
  // normalized objects, ie objects for which HasFastProperties returns false).
  // A map can never be used for both dictionary mode and fast mode JSObjects.
  // False by default and for HeapObjects that are not JSObjects.
  inline void set_dictionary_map(bool value);
  inline bool is_dictionary_map();

  // Tells whether the instance needs security checks when accessing its
  // properties.
  inline void set_is_access_check_needed(bool access_check_needed);
  inline bool is_access_check_needed();

  // Returns true if map has a non-empty stub code cache.
  inline bool has_code_cache();

  // [prototype]: implicit prototype object.
  DECL_ACCESSORS(prototype, Object)
  // TODO(jkummerow): make set_prototype private.
  static void SetPrototype(
      Handle<Map> map, Handle<Object> prototype,
      PrototypeOptimizationMode proto_mode = FAST_PROTOTYPE);

  // [constructor]: points back to the function responsible for this map.
  // The field overlaps with the back pointer. All maps in a transition tree
  // have the same constructor, so maps with back pointers can walk the
  // back pointer chain until they find the map holding their constructor.
  DECL_ACCESSORS(constructor_or_backpointer, Object)
  inline Object* GetConstructor() const;
  inline void SetConstructor(Object* constructor,
                             WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
  // [back pointer]: points back to the parent map from which a transition
  // leads to this map. The field overlaps with the constructor (see above).
  inline Object* GetBackPointer();
  inline void SetBackPointer(Object* value,
                             WriteBarrierMode mode = UPDATE_WRITE_BARRIER);

  // [instance descriptors]: describes the object.
  DECL_ACCESSORS(instance_descriptors, DescriptorArray)

  // [layout descriptor]: describes the object layout.
  DECL_ACCESSORS(layout_descriptor, LayoutDescriptor)
  // |layout descriptor| accessor which can be used from GC.
  inline LayoutDescriptor* layout_descriptor_gc_safe();
  inline bool HasFastPointerLayout() const;

  // |layout descriptor| accessor that is safe to call even when
  // FLAG_unbox_double_fields is disabled (in this case Map does not contain
  // |layout_descriptor| field at all).
  inline LayoutDescriptor* GetLayoutDescriptor();

  inline void UpdateDescriptors(DescriptorArray* descriptors,
                                LayoutDescriptor* layout_descriptor);
  inline void InitializeDescriptors(DescriptorArray* descriptors,
                                    LayoutDescriptor* layout_descriptor);

  // [stub cache]: contains stubs compiled for this map.
  DECL_ACCESSORS(code_cache, Object)

  // [dependent code]: list of optimized codes that weakly embed this map.
  DECL_ACCESSORS(dependent_code, DependentCode)

  // [weak cell cache]: cache that stores a weak cell pointing to this map.
  DECL_ACCESSORS(weak_cell_cache, Object)

  inline PropertyDetails GetLastDescriptorDetails();

  int LastAdded() {
    int number_of_own_descriptors = NumberOfOwnDescriptors();
    DCHECK(number_of_own_descriptors > 0);
    return number_of_own_descriptors - 1;
  }

  int NumberOfOwnDescriptors() {
    return NumberOfOwnDescriptorsBits::decode(bit_field3());
  }

  void SetNumberOfOwnDescriptors(int number) {
    DCHECK(number <= instance_descriptors()->number_of_descriptors());
    set_bit_field3(NumberOfOwnDescriptorsBits::update(bit_field3(), number));
  }

  inline Cell* RetrieveDescriptorsPointer();

  int EnumLength() {
    return EnumLengthBits::decode(bit_field3());
  }

  void SetEnumLength(int length) {
    if (length != kInvalidEnumCacheSentinel) {
      DCHECK(length >= 0);
      DCHECK(length == 0 || instance_descriptors()->HasEnumCache());
      DCHECK(length <= NumberOfOwnDescriptors());
    }
    set_bit_field3(EnumLengthBits::update(bit_field3(), length));
  }

  inline bool owns_descriptors();
  inline void set_owns_descriptors(bool owns_descriptors);
  inline bool has_instance_call_handler();
  inline void set_has_instance_call_handler();
  inline void mark_unstable();
  inline bool is_stable();
  inline void set_migration_target(bool value);
  inline bool is_migration_target();
  inline void set_counter(int value);
  inline int counter();
  inline void deprecate();
  inline bool is_deprecated();
  inline bool CanBeDeprecated();
  // Returns a non-deprecated version of the input. If the input was not
  // deprecated, it is directly returned. Otherwise, the non-deprecated version
  // is found by re-transitioning from the root of the transition tree using the
  // descriptor array of the map. Returns MaybeHandle<Map>() if no updated map
  // is found.
  static MaybeHandle<Map> TryUpdate(Handle<Map> map) WARN_UNUSED_RESULT;

  // Returns a non-deprecated version of the input. This method may deprecate
  // existing maps along the way if encodings conflict. Not for use while
  // gathering type feedback. Use TryUpdate in those cases instead.
  static Handle<Map> Update(Handle<Map> map);

  static Handle<Map> CopyDropDescriptors(Handle<Map> map);
  static Handle<Map> CopyInsertDescriptor(Handle<Map> map,
                                          Descriptor* descriptor,
                                          TransitionFlag flag);

  MUST_USE_RESULT static MaybeHandle<Map> CopyWithField(
      Handle<Map> map,
      Handle<Name> name,
      Handle<HeapType> type,
      PropertyAttributes attributes,
      Representation representation,
      TransitionFlag flag);

  MUST_USE_RESULT static MaybeHandle<Map> CopyWithConstant(
      Handle<Map> map,
      Handle<Name> name,
      Handle<Object> constant,
      PropertyAttributes attributes,
      TransitionFlag flag);

  // Returns a new map with all transitions dropped from the given map and
  // the ElementsKind set.
  static Handle<Map> TransitionElementsTo(Handle<Map> map,
                                          ElementsKind to_kind);

  static Handle<Map> AsElementsKind(Handle<Map> map, ElementsKind kind);

  static Handle<Map> CopyAsElementsKind(Handle<Map> map,
                                        ElementsKind kind,
                                        TransitionFlag flag);

  static Handle<Map> CopyForObserved(Handle<Map> map);

  static Handle<Map> CopyForPreventExtensions(Handle<Map> map,
                                              PropertyAttributes attrs_to_add,
                                              Handle<Symbol> transition_marker,
                                              const char* reason);
  // Maximal number of fast properties. Used to restrict the number of map
  // transitions to avoid an explosion in the number of maps for objects used as
  // dictionaries.
  inline bool TooManyFastProperties(StoreFromKeyed store_mode);
  static Handle<Map> TransitionToDataProperty(Handle<Map> map,
                                              Handle<Name> name,
                                              Handle<Object> value,
                                              PropertyAttributes attributes,
                                              StoreFromKeyed store_mode);
  static Handle<Map> TransitionToAccessorProperty(
      Handle<Map> map, Handle<Name> name, AccessorComponent component,
      Handle<Object> accessor, PropertyAttributes attributes);
  static Handle<Map> ReconfigureExistingProperty(Handle<Map> map,
                                                 int descriptor,
                                                 PropertyKind kind,
                                                 PropertyAttributes attributes);

  inline void AppendDescriptor(Descriptor* desc);

  // Returns a copy of the map, prepared for inserting into the transition
  // tree (if the |map| owns descriptors then the new one will share
  // descriptors with |map|).
  static Handle<Map> CopyForTransition(Handle<Map> map, const char* reason);

  // Returns a copy of the map, with all transitions dropped from the
  // instance descriptors.
  static Handle<Map> Copy(Handle<Map> map, const char* reason);
  static Handle<Map> Create(Isolate* isolate, int inobject_properties);

  // Returns the next free property index (only valid for FAST MODE).
  int NextFreePropertyIndex();

  // Returns the number of properties described in instance_descriptors
  // filtering out properties with the specified attributes.
  int NumberOfDescribedProperties(DescriptorFlag which = OWN_DESCRIPTORS,
                                  PropertyAttributes filter = NONE);

  // Returns the number of slots allocated for the initial properties
  // backing storage for instances of this map.
  int InitialPropertiesLength() {
    return pre_allocated_property_fields() + unused_property_fields() -
        inobject_properties();
  }

  DECLARE_CAST(Map)

  // Code cache operations.

  // Clears the code cache.
  inline void ClearCodeCache(Heap* heap);

  // Update code cache.
  static void UpdateCodeCache(Handle<Map> map,
                              Handle<Name> name,
                              Handle<Code> code);

  // Extend the descriptor array of the map with the list of descriptors.
  // In case of duplicates, the latest descriptor is used.
  static void AppendCallbackDescriptors(Handle<Map> map,
                                        Handle<Object> descriptors);

  static inline int SlackForArraySize(int old_size, int size_limit);

  static void EnsureDescriptorSlack(Handle<Map> map, int slack);

  // Returns the found code or undefined if absent.
  Object* FindInCodeCache(Name* name, Code::Flags flags);

  // Returns the non-negative index of the code object if it is in the
  // cache and -1 otherwise.
  int IndexInCodeCache(Object* name, Code* code);

  // Removes a code object from the code cache at the given index.
  void RemoveFromCodeCache(Name* name, Code* code, int index);

  // Computes a hash value for this map, to be used in HashTables and such.
  int Hash();

  // Returns the map that this map transitions to if its elements_kind
  // is changed to |elements_kind|, or NULL if no such map is cached yet.
  // |safe_to_add_transitions| is set to false if adding transitions is not
  // allowed.
  Map* LookupElementsTransitionMap(ElementsKind elements_kind);

  // Returns the transitioned map for this map with the most generic
  // elements_kind that's found in |candidates|, or null handle if no match is
  // found at all.
  Handle<Map> FindTransitionedMap(MapHandleList* candidates);

  bool CanTransition() {
    // Only JSObject and subtypes have map transitions and back pointers.
    STATIC_ASSERT(LAST_TYPE == LAST_JS_OBJECT_TYPE);
    return instance_type() >= FIRST_JS_OBJECT_TYPE;
  }

  bool IsJSObjectMap() {
    return instance_type() >= FIRST_JS_OBJECT_TYPE;
  }
  bool IsStringMap() { return instance_type() < FIRST_NONSTRING_TYPE; }
  bool IsJSProxyMap() {
    InstanceType type = instance_type();
    return FIRST_JS_PROXY_TYPE <= type && type <= LAST_JS_PROXY_TYPE;
  }
  bool IsJSGlobalProxyMap() {
    return instance_type() == JS_GLOBAL_PROXY_TYPE;
  }
  bool IsJSGlobalObjectMap() {
    return instance_type() == JS_GLOBAL_OBJECT_TYPE;
  }
  bool IsGlobalObjectMap() {
    const InstanceType type = instance_type();
    return type == JS_GLOBAL_OBJECT_TYPE || type == JS_BUILTINS_OBJECT_TYPE;
  }

  inline bool CanOmitMapChecks();

  static void AddDependentCode(Handle<Map> map,
                               DependentCode::DependencyGroup group,
                               Handle<Code> code);

  bool IsMapInArrayPrototypeChain();

  static Handle<WeakCell> WeakCellForMap(Handle<Map> map);

  // Dispatched behavior.
  DECLARE_PRINTER(Map)
  DECLARE_VERIFIER(Map)

#ifdef VERIFY_HEAP
  void DictionaryMapVerify();
  void VerifyOmittedMapChecks();
#endif

  inline int visitor_id();
  inline void set_visitor_id(int visitor_id);

  static Handle<Map> TransitionToPrototype(Handle<Map> map,
                                           Handle<Object> prototype,
                                           PrototypeOptimizationMode mode);

  static const int kMaxPreAllocatedPropertyFields = 255;

  // Layout description.
  static const int kInstanceSizesOffset = HeapObject::kHeaderSize;
  static const int kInstanceAttributesOffset = kInstanceSizesOffset + kIntSize;
  static const int kBitField3Offset = kInstanceAttributesOffset + kIntSize;
  static const int kPrototypeOffset = kBitField3Offset + kPointerSize;
  static const int kConstructorOrBackPointerOffset =
      kPrototypeOffset + kPointerSize;
  // When there is only one transition, it is stored directly in this field;
  // otherwise a transition array is used.
  // For prototype maps, this slot is used to store this map's PrototypeInfo
  // struct.
  static const int kTransitionsOrPrototypeInfoOffset =
      kConstructorOrBackPointerOffset + kPointerSize;
  static const int kDescriptorsOffset =
      kTransitionsOrPrototypeInfoOffset + kPointerSize;
#if V8_DOUBLE_FIELDS_UNBOXING
  static const int kLayoutDecriptorOffset = kDescriptorsOffset + kPointerSize;
  static const int kCodeCacheOffset = kLayoutDecriptorOffset + kPointerSize;
#else
  static const int kLayoutDecriptorOffset = 1;  // Must not be ever accessed.
  static const int kCodeCacheOffset = kDescriptorsOffset + kPointerSize;
#endif
  static const int kDependentCodeOffset = kCodeCacheOffset + kPointerSize;
  static const int kWeakCellCacheOffset = kDependentCodeOffset + kPointerSize;
  static const int kSize = kWeakCellCacheOffset + kPointerSize;

  // Layout of pointer fields. Heap iteration code relies on them
  // being continuously allocated.
  static const int kPointerFieldsBeginOffset = Map::kPrototypeOffset;
  static const int kPointerFieldsEndOffset = kSize;

  // Byte offsets within kInstanceSizesOffset.
  static const int kInstanceSizeOffset = kInstanceSizesOffset + 0;
  static const int kInObjectPropertiesByte = 1;
  static const int kInObjectPropertiesOffset =
      kInstanceSizesOffset + kInObjectPropertiesByte;
  static const int kPreAllocatedPropertyFieldsByte = 2;
  static const int kPreAllocatedPropertyFieldsOffset =
      kInstanceSizesOffset + kPreAllocatedPropertyFieldsByte;
  static const int kVisitorIdByte = 3;
  static const int kVisitorIdOffset = kInstanceSizesOffset + kVisitorIdByte;

  // Byte offsets within kInstanceAttributesOffset attributes.
#if V8_TARGET_LITTLE_ENDIAN
  // Order instance type and bit field together such that they can be loaded
  // together as a 16-bit word with instance type in the lower 8 bits regardless
  // of endianess. Also provide endian-independent offset to that 16-bit word.
  static const int kInstanceTypeOffset = kInstanceAttributesOffset + 0;
  static const int kBitFieldOffset = kInstanceAttributesOffset + 1;
#else
  static const int kBitFieldOffset = kInstanceAttributesOffset + 0;
  static const int kInstanceTypeOffset = kInstanceAttributesOffset + 1;
#endif
  static const int kInstanceTypeAndBitFieldOffset =
      kInstanceAttributesOffset + 0;
  static const int kBitField2Offset = kInstanceAttributesOffset + 2;
  static const int kUnusedPropertyFieldsOffset = kInstanceAttributesOffset + 3;

  STATIC_ASSERT(kInstanceTypeAndBitFieldOffset ==
                Internals::kMapInstanceTypeAndBitFieldOffset);

  // Bit positions for bit field.
  static const int kHasNonInstancePrototype = 0;
  static const int kIsHiddenPrototype = 1;
  static const int kHasNamedInterceptor = 2;
  static const int kHasIndexedInterceptor = 3;
  static const int kIsUndetectable = 4;
  static const int kIsObserved = 5;
  static const int kIsAccessCheckNeeded = 6;
  class FunctionWithPrototype: public BitField<bool, 7,  1> {};

  // Bit positions for bit field 2
  static const int kIsExtensible = 0;
  static const int kStringWrapperSafeForDefaultValueOf = 1;
  class IsPrototypeMapBits : public BitField<bool, 2, 1> {};
  class ElementsKindBits: public BitField<ElementsKind, 3, 5> {};

  // Derived values from bit field 2
  static const int8_t kMaximumBitField2FastElementValue = static_cast<int8_t>(
      (FAST_ELEMENTS + 1) << Map::ElementsKindBits::kShift) - 1;
  static const int8_t kMaximumBitField2FastSmiElementValue =
      static_cast<int8_t>((FAST_SMI_ELEMENTS + 1) <<
                          Map::ElementsKindBits::kShift) - 1;
  static const int8_t kMaximumBitField2FastHoleyElementValue =
      static_cast<int8_t>((FAST_HOLEY_ELEMENTS + 1) <<
                          Map::ElementsKindBits::kShift) - 1;
  static const int8_t kMaximumBitField2FastHoleySmiElementValue =
      static_cast<int8_t>((FAST_HOLEY_SMI_ELEMENTS + 1) <<
                          Map::ElementsKindBits::kShift) - 1;

  typedef FixedBodyDescriptor<kPointerFieldsBeginOffset,
                              kPointerFieldsEndOffset,
                              kSize> BodyDescriptor;

  // Compares this map to another to see if they describe equivalent objects.
  // If |mode| is set to CLEAR_INOBJECT_PROPERTIES, |other| is treated as if
  // it had exactly zero inobject properties.
  // The "shared" flags of both this map and |other| are ignored.
  bool EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode);

  // Returns true if given field is unboxed double.
  inline bool IsUnboxedDoubleField(FieldIndex index);

#if TRACE_MAPS
  static void TraceTransition(const char* what, Map* from, Map* to, Name* name);
  static void TraceAllTransitions(Map* map);
#endif

  static inline Handle<Map> CopyInstallDescriptorsForTesting(
      Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
      Handle<LayoutDescriptor> layout_descriptor);

 private:
  static void ConnectElementsTransition(Handle<Map> parent, Handle<Map> child);
  static void ConnectTransition(Handle<Map> parent, Handle<Map> child,
                                Handle<Name> name, SimpleTransitionFlag flag);

  bool EquivalentToForTransition(Map* other);
  static Handle<Map> RawCopy(Handle<Map> map, int instance_size);
  static Handle<Map> ShareDescriptor(Handle<Map> map,
                                     Handle<DescriptorArray> descriptors,
                                     Descriptor* descriptor);
  static Handle<Map> CopyInstallDescriptors(
      Handle<Map> map, int new_descriptor, Handle<DescriptorArray> descriptors,
      Handle<LayoutDescriptor> layout_descriptor);
  static Handle<Map> CopyAddDescriptor(Handle<Map> map,
                                       Descriptor* descriptor,
                                       TransitionFlag flag);
  static Handle<Map> CopyReplaceDescriptors(
      Handle<Map> map, Handle<DescriptorArray> descriptors,
      Handle<LayoutDescriptor> layout_descriptor, TransitionFlag flag,
      MaybeHandle<Name> maybe_name, const char* reason,
      SimpleTransitionFlag simple_flag);

  static Handle<Map> CopyReplaceDescriptor(Handle<Map> map,
                                           Handle<DescriptorArray> descriptors,
                                           Descriptor* descriptor,
                                           int index,
                                           TransitionFlag flag);
  static MUST_USE_RESULT MaybeHandle<Map> TryReconfigureExistingProperty(
      Handle<Map> map, int descriptor, PropertyKind kind,
      PropertyAttributes attributes, const char** reason);

  static Handle<Map> CopyNormalized(Handle<Map> map,
                                    PropertyNormalizationMode mode);

  // Fires when the layout of an object with a leaf map changes.
  // This includes adding transitions to the leaf map or changing
  // the descriptor array.
  inline void NotifyLeafMapLayoutChange();

  static Handle<Map> TransitionElementsToSlow(Handle<Map> object,
                                              ElementsKind to_kind);

  void DeprecateTransitionTree();
  bool DeprecateTarget(PropertyKind kind, Name* key,
                       PropertyAttributes attributes,
                       DescriptorArray* new_descriptors,
                       LayoutDescriptor* new_layout_descriptor);

  Map* FindLastMatchMap(int verbatim, int length, DescriptorArray* descriptors);

  // Update field type of the given descriptor to new representation and new
  // type. The type must be prepared for storing in descriptor array:
  // it must be either a simple type or a map wrapped in a weak cell.
  void UpdateFieldType(int descriptor_number, Handle<Name> name,
                       Representation new_representation,
                       Handle<Object> new_wrapped_type);

  void PrintReconfiguration(FILE* file, int modify_index, PropertyKind kind,
                            PropertyAttributes attributes);
  void PrintGeneralization(FILE* file,
                           const char* reason,
                           int modify_index,
                           int split,
                           int descriptors,
                           bool constant_to_field,
                           Representation old_representation,
                           Representation new_representation,
                           HeapType* old_field_type,
                           HeapType* new_field_type);

  static const int kFastPropertiesSoftLimit = 12;
  static const int kMaxFastProperties = 128;

  DISALLOW_IMPLICIT_CONSTRUCTORS(Map);
};


// An abstract superclass, a marker class really, for simple structure classes.
// It doesn't carry much functionality but allows struct classes to be
// identified in the type system.
class Struct: public HeapObject {
 public:
  inline void InitializeBody(int object_size);
  DECLARE_CAST(Struct)
};


// A simple one-element struct, useful where smis need to be boxed.
class Box : public Struct {
 public:
  // [value]: the boxed contents.
  DECL_ACCESSORS(value, Object)

  DECLARE_CAST(Box)

  // Dispatched behavior.
  DECLARE_PRINTER(Box)
  DECLARE_VERIFIER(Box)

  static const int kValueOffset = HeapObject::kHeaderSize;
  static const int kSize = kValueOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(Box);
};


// Container for metadata stored on each prototype map.
class PrototypeInfo : public Struct {
 public:
  // [prototype_users]: WeakFixedArray containing maps using this prototype,
  // or Smi(0) if uninitialized.
  DECL_ACCESSORS(prototype_users, Object)
  // [validity_cell]: Cell containing the validity bit for prototype chains
  // going through this object, or Smi(0) if uninitialized.
  DECL_ACCESSORS(validity_cell, Object)
  // [constructor_name]: User-friendly name of the original constructor.
  DECL_ACCESSORS(constructor_name, Object)

  DECLARE_CAST(PrototypeInfo)

  // Dispatched behavior.
  DECLARE_PRINTER(PrototypeInfo)
  DECLARE_VERIFIER(PrototypeInfo)

  static const int kPrototypeUsersOffset = HeapObject::kHeaderSize;
  static const int kValidityCellOffset = kPrototypeUsersOffset + kPointerSize;
  static const int kConstructorNameOffset = kValidityCellOffset + kPointerSize;
  static const int kSize = kConstructorNameOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(PrototypeInfo);
};


// Script describes a script which has been added to the VM.
class Script: public Struct {
 public:
  // Script types.
  enum Type {
    TYPE_NATIVE = 0,
    TYPE_EXTENSION = 1,
    TYPE_NORMAL = 2
  };

  // Script compilation types.
  enum CompilationType {
    COMPILATION_TYPE_HOST = 0,
    COMPILATION_TYPE_EVAL = 1
  };

  // Script compilation state.
  enum CompilationState {
    COMPILATION_STATE_INITIAL = 0,
    COMPILATION_STATE_COMPILED = 1
  };

  // [source]: the script source.
  DECL_ACCESSORS(source, Object)

  // [name]: the script name.
  DECL_ACCESSORS(name, Object)

  // [id]: the script id.
  DECL_ACCESSORS(id, Smi)

  // [line_offset]: script line offset in resource from where it was extracted.
  DECL_ACCESSORS(line_offset, Smi)

  // [column_offset]: script column offset in resource from where it was
  // extracted.
  DECL_ACCESSORS(column_offset, Smi)

  // [context_data]: context data for the context this script was compiled in.
  DECL_ACCESSORS(context_data, Object)

  // [wrapper]: the wrapper cache.  This is either undefined or a WeakCell.
  DECL_ACCESSORS(wrapper, HeapObject)

  // [type]: the script type.
  DECL_ACCESSORS(type, Smi)

  // [line_ends]: FixedArray of line ends positions.
  DECL_ACCESSORS(line_ends, Object)

  // [eval_from_shared]: for eval scripts the shared funcion info for the
  // function from which eval was called.
  DECL_ACCESSORS(eval_from_shared, Object)

  // [eval_from_instructions_offset]: the instruction offset in the code for the
  // function from which eval was called where eval was called.
  DECL_ACCESSORS(eval_from_instructions_offset, Smi)

  // [flags]: Holds an exciting bitfield.
  DECL_ACCESSORS(flags, Smi)

  // [source_url]: sourceURL from magic comment
  DECL_ACCESSORS(source_url, Object)

  // [source_url]: sourceMappingURL magic comment
  DECL_ACCESSORS(source_mapping_url, Object)

  // [compilation_type]: how the the script was compiled. Encoded in the
  // 'flags' field.
  inline CompilationType compilation_type();
  inline void set_compilation_type(CompilationType type);

  // [compilation_state]: determines whether the script has already been
  // compiled. Encoded in the 'flags' field.
  inline CompilationState compilation_state();
  inline void set_compilation_state(CompilationState state);

  // [is_embedder_debug_script]: An opaque boolean set by the embedder via
  // ScriptOrigin, and used by the embedder to make decisions about the
  // script's origin. V8 just passes this through. Encoded in
  // the 'flags' field.
  DECL_BOOLEAN_ACCESSORS(is_embedder_debug_script)

  // [is_shared_cross_origin]: An opaque boolean set by the embedder via
  // ScriptOrigin, and used by the embedder to make decisions about the
  // script's level of privilege. V8 just passes this through. Encoded in
  // the 'flags' field.
  DECL_BOOLEAN_ACCESSORS(is_shared_cross_origin)

  DECLARE_CAST(Script)

  // If script source is an external string, check that the underlying
  // resource is accessible. Otherwise, always return true.
  inline bool HasValidSource();

  // Convert code position into column number.
  static int GetColumnNumber(Handle<Script> script, int code_pos);

  // Convert code position into (zero-based) line number.
  // The non-handlified version does not allocate, but may be much slower.
  static int GetLineNumber(Handle<Script> script, int code_pos);
  int GetLineNumber(int code_pos);

  static Handle<Object> GetNameOrSourceURL(Handle<Script> script);

  // Init line_ends array with code positions of line ends inside script source.
  static void InitLineEnds(Handle<Script> script);

  // Get the JS object wrapping the given script; create it if none exists.
  static Handle<JSObject> GetWrapper(Handle<Script> script);

  // Dispatched behavior.
  DECLARE_PRINTER(Script)
  DECLARE_VERIFIER(Script)

  static const int kSourceOffset = HeapObject::kHeaderSize;
  static const int kNameOffset = kSourceOffset + kPointerSize;
  static const int kLineOffsetOffset = kNameOffset + kPointerSize;
  static const int kColumnOffsetOffset = kLineOffsetOffset + kPointerSize;
  static const int kContextOffset = kColumnOffsetOffset + kPointerSize;
  static const int kWrapperOffset = kContextOffset + kPointerSize;
  static const int kTypeOffset = kWrapperOffset + kPointerSize;
  static const int kLineEndsOffset = kTypeOffset + kPointerSize;
  static const int kIdOffset = kLineEndsOffset + kPointerSize;
  static const int kEvalFromSharedOffset = kIdOffset + kPointerSize;
  static const int kEvalFrominstructionsOffsetOffset =
      kEvalFromSharedOffset + kPointerSize;
  static const int kFlagsOffset =
      kEvalFrominstructionsOffsetOffset + kPointerSize;
  static const int kSourceUrlOffset = kFlagsOffset + kPointerSize;
  static const int kSourceMappingUrlOffset = kSourceUrlOffset + kPointerSize;
  static const int kSize = kSourceMappingUrlOffset + kPointerSize;

 private:
  int GetLineNumberWithArray(int code_pos);

  // Bit positions in the flags field.
  static const int kCompilationTypeBit = 0;
  static const int kCompilationStateBit = 1;
  static const int kIsEmbedderDebugScriptBit = 2;
  static const int kIsSharedCrossOriginBit = 3;

  DISALLOW_IMPLICIT_CONSTRUCTORS(Script);
};


// List of builtin functions we want to identify to improve code
// generation.
//
// Each entry has a name of a global object property holding an object
// optionally followed by ".prototype", a name of a builtin function
// on the object (the one the id is set for), and a label.
//
// Installation of ids for the selected builtin functions is handled
// by the bootstrapper.
#define FUNCTIONS_WITH_ID_LIST(V)                   \
  V(Array.prototype, indexOf, ArrayIndexOf)         \
  V(Array.prototype, lastIndexOf, ArrayLastIndexOf) \
  V(Array.prototype, push, ArrayPush)               \
  V(Array.prototype, pop, ArrayPop)                 \
  V(Array.prototype, shift, ArrayShift)             \
  V(Function.prototype, apply, FunctionApply)       \
  V(Function.prototype, call, FunctionCall)         \
  V(String.prototype, charCodeAt, StringCharCodeAt) \
  V(String.prototype, charAt, StringCharAt)         \
  V(String, fromCharCode, StringFromCharCode)       \
  V(Math, random, MathRandom)                       \
  V(Math, floor, MathFloor)                         \
  V(Math, round, MathRound)                         \
  V(Math, ceil, MathCeil)                           \
  V(Math, abs, MathAbs)                             \
  V(Math, log, MathLog)                             \
  V(Math, exp, MathExp)                             \
  V(Math, sqrt, MathSqrt)                           \
  V(Math, pow, MathPow)                             \
  V(Math, max, MathMax)                             \
  V(Math, min, MathMin)                             \
  V(Math, cos, MathCos)                             \
  V(Math, sin, MathSin)                             \
  V(Math, tan, MathTan)                             \
  V(Math, acos, MathAcos)                           \
  V(Math, asin, MathAsin)                           \
  V(Math, atan, MathAtan)                           \
  V(Math, atan2, MathAtan2)                         \
  V(Math, imul, MathImul)                           \
  V(Math, clz32, MathClz32)                         \
  V(Math, fround, MathFround)

enum BuiltinFunctionId {
  kArrayCode,
#define DECLARE_FUNCTION_ID(ignored1, ignore2, name)    \
  k##name,
  FUNCTIONS_WITH_ID_LIST(DECLARE_FUNCTION_ID)
#undef DECLARE_FUNCTION_ID
  // Fake id for a special case of Math.pow. Note, it continues the
  // list of math functions.
  kMathPowHalf
};


// SharedFunctionInfo describes the JSFunction information that can be
// shared by multiple instances of the function.
class SharedFunctionInfo: public HeapObject {
 public:
  // [name]: Function name.
  DECL_ACCESSORS(name, Object)

  // [code]: Function code.
  DECL_ACCESSORS(code, Code)
  inline void ReplaceCode(Code* code);

  // [optimized_code_map]: Map from native context to optimized code
  // and a shared literals array or Smi(0) if none.
  DECL_ACCESSORS(optimized_code_map, Object)

  // Returns index i of the entry with the specified context and OSR entry.
  // At position i - 1 is the context, position i the code, and i + 1 the
  // literals array.  Returns -1 when no matching entry is found.
  int SearchOptimizedCodeMap(Context* native_context, BailoutId osr_ast_id);

  // Installs optimized code from the code map on the given closure. The
  // index has to be consistent with a search result as defined above.
  FixedArray* GetLiteralsFromOptimizedCodeMap(int index);

  Code* GetCodeFromOptimizedCodeMap(int index);

  // Clear optimized code map.
  void ClearOptimizedCodeMap();

  // Removed a specific optimized code object from the optimized code map.
  void EvictFromOptimizedCodeMap(Code* optimized_code, const char* reason);

  // Unconditionally clear the type feedback vector (including vector ICs).
  void ClearTypeFeedbackInfo();

  // Clear the type feedback vector with a more subtle policy at GC time.
  void ClearTypeFeedbackInfoAtGCTime();

  // Trims the optimized code map after entries have been removed.
  void TrimOptimizedCodeMap(int shrink_by);

  // Initialize a SharedFunctionInfo from a parsed function literal.
  static void InitFromFunctionLiteral(Handle<SharedFunctionInfo> shared_info,
                                      FunctionLiteral* lit);

  // Add a new entry to the optimized code map.
  static void AddToOptimizedCodeMap(Handle<SharedFunctionInfo> shared,
                                    Handle<Context> native_context,
                                    Handle<Code> code,
                                    Handle<FixedArray> literals,
                                    BailoutId osr_ast_id);

  // Layout description of the optimized code map.
  static const int kNextMapIndex = 0;
  static const int kEntriesStart = 1;
  static const int kContextOffset = 0;
  static const int kCachedCodeOffset = 1;
  static const int kLiteralsOffset = 2;
  static const int kOsrAstIdOffset = 3;
  static const int kEntryLength = 4;
  static const int kInitialLength = kEntriesStart + kEntryLength;

  // [scope_info]: Scope info.
  DECL_ACCESSORS(scope_info, ScopeInfo)

  // [construct stub]: Code stub for constructing instances of this function.
  DECL_ACCESSORS(construct_stub, Code)

  // Returns if this function has been compiled to native code yet.
  inline bool is_compiled();

  // [length]: The function length - usually the number of declared parameters.
  // Use up to 2^30 parameters.
  inline int length() const;
  inline void set_length(int value);

  // [internal formal parameter count]: The declared number of parameters.
  // For subclass constructors, also includes new.target.
  // The size of function's frame is internal_formal_parameter_count + 1.
  inline int internal_formal_parameter_count() const;
  inline void set_internal_formal_parameter_count(int value);

  // Set the formal parameter count so the function code will be
  // called without using argument adaptor frames.
  inline void DontAdaptArguments();

  // [expected_nof_properties]: Expected number of properties for the function.
  inline int expected_nof_properties() const;
  inline void set_expected_nof_properties(int value);

  // [feedback_vector] - accumulates ast node feedback from full-codegen and
  // (increasingly) from crankshafted code where sufficient feedback isn't
  // available.
  DECL_ACCESSORS(feedback_vector, TypeFeedbackVector)

#if TRACE_MAPS
  // [unique_id] - For --trace-maps purposes, an identifier that's persistent
  // even if the GC moves this SharedFunctionInfo.
  inline int unique_id() const;
  inline void set_unique_id(int value);
#endif

  // [instance class name]: class name for instances.
  DECL_ACCESSORS(instance_class_name, Object)

  // [function data]: This field holds some additional data for function.
  // Currently it either has FunctionTemplateInfo to make benefit the API
  // or Smi identifying a builtin function.
  // In the long run we don't want all functions to have this field but
  // we can fix that when we have a better model for storing hidden data
  // on objects.
  DECL_ACCESSORS(function_data, Object)

  inline bool IsApiFunction();
  inline FunctionTemplateInfo* get_api_func_data();
  inline bool HasBuiltinFunctionId();
  inline BuiltinFunctionId builtin_function_id();

  // [script info]: Script from which the function originates.
  DECL_ACCESSORS(script, Object)

  // [num_literals]: Number of literals used by this function.
  inline int num_literals() const;
  inline void set_num_literals(int value);

  // [start_position_and_type]: Field used to store both the source code
  // position, whether or not the function is a function expression,
  // and whether or not the function is a toplevel function. The two
  // least significants bit indicates whether the function is an
  // expression and the rest contains the source code position.
  inline int start_position_and_type() const;
  inline void set_start_position_and_type(int value);

  // [debug info]: Debug information.
  DECL_ACCESSORS(debug_info, Object)

  // [inferred name]: Name inferred from variable or property
  // assignment of this function. Used to facilitate debugging and
  // profiling of JavaScript code written in OO style, where almost
  // all functions are anonymous but are assigned to object
  // properties.
  DECL_ACCESSORS(inferred_name, String)

  // The function's name if it is non-empty, otherwise the inferred name.
  String* DebugName();

  // Position of the 'function' token in the script source.
  inline int function_token_position() const;
  inline void set_function_token_position(int function_token_position);

  // Position of this function in the script source.
  inline int start_position() const;
  inline void set_start_position(int start_position);

  // End position of this function in the script source.
  inline int end_position() const;
  inline void set_end_position(int end_position);

  // Is this function a function expression in the source code.
  DECL_BOOLEAN_ACCESSORS(is_expression)

  // Is this function a top-level function (scripts, evals).
  DECL_BOOLEAN_ACCESSORS(is_toplevel)

  // Bit field containing various information collected by the compiler to
  // drive optimization.
  inline int compiler_hints() const;
  inline void set_compiler_hints(int value);

  inline int ast_node_count() const;
  inline void set_ast_node_count(int count);

  inline int profiler_ticks() const;
  inline void set_profiler_ticks(int ticks);

  // Inline cache age is used to infer whether the function survived a context
  // disposal or not. In the former case we reset the opt_count.
  inline int ic_age();
  inline void set_ic_age(int age);

  // Indicates if this function can be lazy compiled.
  // This is used to determine if we can safely flush code from a function
  // when doing GC if we expect that the function will no longer be used.
  DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation)

  // Indicates if this function can be lazy compiled without a context.
  // This is used to determine if we can force compilation without reaching
  // the function through program execution but through other means (e.g. heap
  // iteration by the debugger).
  DECL_BOOLEAN_ACCESSORS(allows_lazy_compilation_without_context)

  // Indicates whether optimizations have been disabled for this
  // shared function info. If a function is repeatedly optimized or if
  // we cannot optimize the function we disable optimization to avoid
  // spending time attempting to optimize it again.
  DECL_BOOLEAN_ACCESSORS(optimization_disabled)

  // Indicates the language mode.
  inline LanguageMode language_mode();
  inline void set_language_mode(LanguageMode language_mode);

  // False if the function definitely does not allocate an arguments object.
  DECL_BOOLEAN_ACCESSORS(uses_arguments)

  // Indicates that this function uses a super property.
  // This is needed to set up the [[HomeObject]] on the function instance.
  DECL_BOOLEAN_ACCESSORS(uses_super_property)

  // True if the function has any duplicated parameter names.
  DECL_BOOLEAN_ACCESSORS(has_duplicate_parameters)

  // Indicates whether the function is a native function.
  // These needs special treatment in .call and .apply since
  // null passed as the receiver should not be translated to the
  // global object.
  DECL_BOOLEAN_ACCESSORS(native)

  // Indicate that this builtin needs to be inlined in crankshaft.
  DECL_BOOLEAN_ACCESSORS(inline_builtin)

  // Indicates that the function was created by the Function function.
  // Though it's anonymous, toString should treat it as if it had the name
  // "anonymous".  We don't set the name itself so that the system does not
  // see a binding for it.
  DECL_BOOLEAN_ACCESSORS(name_should_print_as_anonymous)

  // Indicates whether the function is a bound function created using
  // the bind function.
  DECL_BOOLEAN_ACCESSORS(bound)

  // Indicates that the function is anonymous (the name field can be set
  // through the API, which does not change this flag).
  DECL_BOOLEAN_ACCESSORS(is_anonymous)

  // Is this a function or top-level/eval code.
  DECL_BOOLEAN_ACCESSORS(is_function)

  // Indicates that code for this function cannot be cached.
  DECL_BOOLEAN_ACCESSORS(dont_cache)

  // Indicates that code for this function cannot be flushed.
  DECL_BOOLEAN_ACCESSORS(dont_flush)

  // Indicates that this function is a generator.
  DECL_BOOLEAN_ACCESSORS(is_generator)

  // Indicates that this function is an arrow function.
  DECL_BOOLEAN_ACCESSORS(is_arrow)

  // Indicates that this function is a concise method.
  DECL_BOOLEAN_ACCESSORS(is_concise_method)

  // Indicates that this function is an accessor (getter or setter).
  DECL_BOOLEAN_ACCESSORS(is_accessor_function)

  // Indicates that this function is a default constructor.
  DECL_BOOLEAN_ACCESSORS(is_default_constructor)

  // Indicates that this function is an asm function.
  DECL_BOOLEAN_ACCESSORS(asm_function)

  // Indicates that the the shared function info is deserialized from cache.
  DECL_BOOLEAN_ACCESSORS(deserialized)

  inline FunctionKind kind();
  inline void set_kind(FunctionKind kind);

  // Indicates whether or not the code in the shared function support
  // deoptimization.
  inline bool has_deoptimization_support();

  // Enable deoptimization support through recompiled code.
  void EnableDeoptimizationSupport(Code* recompiled);

  // Disable (further) attempted optimization of all functions sharing this
  // shared function info.
  void DisableOptimization(BailoutReason reason);

  inline BailoutReason disable_optimization_reason();

  // Lookup the bailout ID and DCHECK that it exists in the non-optimized
  // code, returns whether it asserted (i.e., always true if assertions are
  // disabled).
  bool VerifyBailoutId(BailoutId id);

  // [source code]: Source code for the function.
  bool HasSourceCode() const;
  Handle<Object> GetSourceCode();

  // Number of times the function was optimized.
  inline int opt_count();
  inline void set_opt_count(int opt_count);

  // Number of times the function was deoptimized.
  inline void set_deopt_count(int value);
  inline int deopt_count();
  inline void increment_deopt_count();

  // Number of time we tried to re-enable optimization after it
  // was disabled due to high number of deoptimizations.
  inline void set_opt_reenable_tries(int value);
  inline int opt_reenable_tries();

  inline void TryReenableOptimization();

  // Stores deopt_count, opt_reenable_tries and ic_age as bit-fields.
  inline void set_counters(int value);
  inline int counters() const;

  // Stores opt_count and bailout_reason as bit-fields.
  inline void set_opt_count_and_bailout_reason(int value);
  inline int opt_count_and_bailout_reason() const;

  void set_disable_optimization_reason(BailoutReason reason) {
    set_opt_count_and_bailout_reason(
        DisabledOptimizationReasonBits::update(opt_count_and_bailout_reason(),
                                               reason));
  }

  // Check whether or not this function is inlineable.
  bool IsInlineable();

  // Source size of this function.
  int SourceSize();

  // Calculate the instance size.
  int CalculateInstanceSize();

  // Calculate the number of in-object properties.
  int CalculateInObjectProperties();

  inline bool is_simple_parameter_list();

  // Dispatched behavior.
  DECLARE_PRINTER(SharedFunctionInfo)
  DECLARE_VERIFIER(SharedFunctionInfo)

  void ResetForNewContext(int new_ic_age);

  DECLARE_CAST(SharedFunctionInfo)

  // Constants.
  static const int kDontAdaptArgumentsSentinel = -1;

  // Layout description.
  // Pointer fields.
  static const int kNameOffset = HeapObject::kHeaderSize;
  static const int kCodeOffset = kNameOffset + kPointerSize;
  static const int kOptimizedCodeMapOffset = kCodeOffset + kPointerSize;
  static const int kScopeInfoOffset = kOptimizedCodeMapOffset + kPointerSize;
  static const int kConstructStubOffset = kScopeInfoOffset + kPointerSize;
  static const int kInstanceClassNameOffset =
      kConstructStubOffset + kPointerSize;
  static const int kFunctionDataOffset =
      kInstanceClassNameOffset + kPointerSize;
  static const int kScriptOffset = kFunctionDataOffset + kPointerSize;
  static const int kDebugInfoOffset = kScriptOffset + kPointerSize;
  static const int kInferredNameOffset = kDebugInfoOffset + kPointerSize;
  static const int kFeedbackVectorOffset =
      kInferredNameOffset + kPointerSize;
#if TRACE_MAPS
  static const int kUniqueIdOffset = kFeedbackVectorOffset + kPointerSize;
  static const int kLastPointerFieldOffset = kUniqueIdOffset;
#else
  // Just to not break the postmortrem support with conditional offsets
  static const int kUniqueIdOffset = kFeedbackVectorOffset;
  static const int kLastPointerFieldOffset = kFeedbackVectorOffset;
#endif

#if V8_HOST_ARCH_32_BIT
  // Smi fields.
  static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
  static const int kFormalParameterCountOffset = kLengthOffset + kPointerSize;
  static const int kExpectedNofPropertiesOffset =
      kFormalParameterCountOffset + kPointerSize;
  static const int kNumLiteralsOffset =
      kExpectedNofPropertiesOffset + kPointerSize;
  static const int kStartPositionAndTypeOffset =
      kNumLiteralsOffset + kPointerSize;
  static const int kEndPositionOffset =
      kStartPositionAndTypeOffset + kPointerSize;
  static const int kFunctionTokenPositionOffset =
      kEndPositionOffset + kPointerSize;
  static const int kCompilerHintsOffset =
      kFunctionTokenPositionOffset + kPointerSize;
  static const int kOptCountAndBailoutReasonOffset =
      kCompilerHintsOffset + kPointerSize;
  static const int kCountersOffset =
      kOptCountAndBailoutReasonOffset + kPointerSize;
  static const int kAstNodeCountOffset =
      kCountersOffset + kPointerSize;
  static const int kProfilerTicksOffset =
      kAstNodeCountOffset + kPointerSize;

  // Total size.
  static const int kSize = kProfilerTicksOffset + kPointerSize;
#else
  // The only reason to use smi fields instead of int fields
  // is to allow iteration without maps decoding during
  // garbage collections.
  // To avoid wasting space on 64-bit architectures we use
  // the following trick: we group integer fields into pairs
// The least significant integer in each pair is shifted left by 1.
// By doing this we guarantee that LSB of each kPointerSize aligned
// word is not set and thus this word cannot be treated as pointer
// to HeapObject during old space traversal.
#if V8_TARGET_LITTLE_ENDIAN
  static const int kLengthOffset = kLastPointerFieldOffset + kPointerSize;
  static const int kFormalParameterCountOffset =
      kLengthOffset + kIntSize;

  static const int kExpectedNofPropertiesOffset =
      kFormalParameterCountOffset + kIntSize;
  static const int kNumLiteralsOffset =
      kExpectedNofPropertiesOffset + kIntSize;

  static const int kEndPositionOffset =
      kNumLiteralsOffset + kIntSize;
  static const int kStartPositionAndTypeOffset =
      kEndPositionOffset + kIntSize;

  static const int kFunctionTokenPositionOffset =
      kStartPositionAndTypeOffset + kIntSize;
  static const int kCompilerHintsOffset =
      kFunctionTokenPositionOffset + kIntSize;

  static const int kOptCountAndBailoutReasonOffset =
      kCompilerHintsOffset + kIntSize;
  static const int kCountersOffset =
      kOptCountAndBailoutReasonOffset + kIntSize;

  static const int kAstNodeCountOffset =
      kCountersOffset + kIntSize;
  static const int kProfilerTicksOffset =
      kAstNodeCountOffset + kIntSize;

  // Total size.
  static const int kSize = kProfilerTicksOffset + kIntSize;

#elif V8_TARGET_BIG_ENDIAN
  static const int kFormalParameterCountOffset =
      kLastPointerFieldOffset + kPointerSize;
  static const int kLengthOffset = kFormalParameterCountOffset + kIntSize;

  static const int kNumLiteralsOffset = kLengthOffset + kIntSize;
  static const int kExpectedNofPropertiesOffset = kNumLiteralsOffset + kIntSize;

  static const int kStartPositionAndTypeOffset =
      kExpectedNofPropertiesOffset + kIntSize;
  static const int kEndPositionOffset = kStartPositionAndTypeOffset + kIntSize;

  static const int kCompilerHintsOffset = kEndPositionOffset + kIntSize;
  static const int kFunctionTokenPositionOffset =
      kCompilerHintsOffset + kIntSize;

  static const int kCountersOffset = kFunctionTokenPositionOffset + kIntSize;
  static const int kOptCountAndBailoutReasonOffset = kCountersOffset + kIntSize;

  static const int kProfilerTicksOffset =
      kOptCountAndBailoutReasonOffset + kIntSize;
  static const int kAstNodeCountOffset = kProfilerTicksOffset + kIntSize;

  // Total size.
  static const int kSize = kAstNodeCountOffset + kIntSize;

#else
#error Unknown byte ordering
#endif  // Big endian
#endif  // 64-bit


  static const int kAlignedSize = POINTER_SIZE_ALIGN(kSize);

  typedef FixedBodyDescriptor<kNameOffset,
                              kLastPointerFieldOffset + kPointerSize,
                              kSize> BodyDescriptor;

  // Bit positions in start_position_and_type.
  // The source code start position is in the 30 most significant bits of
  // the start_position_and_type field.
  static const int kIsExpressionBit    = 0;
  static const int kIsTopLevelBit      = 1;
  static const int kStartPositionShift = 2;
  static const int kStartPositionMask  = ~((1 << kStartPositionShift) - 1);

  // Bit positions in compiler_hints.
  enum CompilerHints {
    kAllowLazyCompilation,
    kAllowLazyCompilationWithoutContext,
    kOptimizationDisabled,
    kStrictModeFunction,
    kStrongModeFunction,
    kUsesArguments,
    kUsesSuperProperty,
    kHasDuplicateParameters,
    kNative,
    kInlineBuiltin,
    kBoundFunction,
    kIsAnonymous,
    kNameShouldPrintAsAnonymous,
    kIsFunction,
    kDontCache,
    kDontFlush,
    kIsArrow,
    kIsGenerator,
    kIsConciseMethod,
    kIsAccessorFunction,
    kIsDefaultConstructor,
    kIsSubclassConstructor,
    kIsBaseConstructor,
    kInClassLiteral,
    kIsAsmFunction,
    kDeserialized,
    kCompilerHintsCount  // Pseudo entry
  };
  // Add hints for other modes when they're added.
  STATIC_ASSERT(LANGUAGE_END == 3);

  class FunctionKindBits : public BitField<FunctionKind, kIsArrow, 8> {};

  class DeoptCountBits : public BitField<int, 0, 4> {};
  class OptReenableTriesBits : public BitField<int, 4, 18> {};
  class ICAgeBits : public BitField<int, 22, 8> {};

  class OptCountBits : public BitField<int, 0, 22> {};
  class DisabledOptimizationReasonBits : public BitField<int, 22, 8> {};

 private:
#if V8_HOST_ARCH_32_BIT
  // On 32 bit platforms, compiler hints is a smi.
  static const int kCompilerHintsSmiTagSize = kSmiTagSize;
  static const int kCompilerHintsSize = kPointerSize;
#else
  // On 64 bit platforms, compiler hints is not a smi, see comment above.
  static const int kCompilerHintsSmiTagSize = 0;
  static const int kCompilerHintsSize = kIntSize;
#endif

  STATIC_ASSERT(SharedFunctionInfo::kCompilerHintsCount <=
                SharedFunctionInfo::kCompilerHintsSize * kBitsPerByte);

 public:
  // Constants for optimizing codegen for strict mode function and
  // native tests.
  // Allows to use byte-width instructions.
  static const int kStrictModeBitWithinByte =
      (kStrictModeFunction + kCompilerHintsSmiTagSize) % kBitsPerByte;

  static const int kNativeBitWithinByte =
      (kNative + kCompilerHintsSmiTagSize) % kBitsPerByte;

#if defined(V8_TARGET_LITTLE_ENDIAN)
  static const int kStrictModeByteOffset = kCompilerHintsOffset +
      (kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte;
  static const int kNativeByteOffset = kCompilerHintsOffset +
      (kNative + kCompilerHintsSmiTagSize) / kBitsPerByte;
#elif defined(V8_TARGET_BIG_ENDIAN)
  static const int kStrictModeByteOffset = kCompilerHintsOffset +
      (kCompilerHintsSize - 1) -
      ((kStrictModeFunction + kCompilerHintsSmiTagSize) / kBitsPerByte);
  static const int kNativeByteOffset = kCompilerHintsOffset +
      (kCompilerHintsSize - 1) -
      ((kNative + kCompilerHintsSmiTagSize) / kBitsPerByte);
#else
#error Unknown byte ordering
#endif

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(SharedFunctionInfo);
};


// Printing support.
struct SourceCodeOf {
  explicit SourceCodeOf(SharedFunctionInfo* v, int max = -1)
      : value(v), max_length(max) {}
  const SharedFunctionInfo* value;
  int max_length;
};


std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v);


class JSGeneratorObject: public JSObject {
 public:
  // [function]: The function corresponding to this generator object.
  DECL_ACCESSORS(function, JSFunction)

  // [context]: The context of the suspended computation.
  DECL_ACCESSORS(context, Context)

  // [receiver]: The receiver of the suspended computation.
  DECL_ACCESSORS(receiver, Object)

  // [continuation]: Offset into code of continuation.
  //
  // A positive offset indicates a suspended generator.  The special
  // kGeneratorExecuting and kGeneratorClosed values indicate that a generator
  // cannot be resumed.
  inline int continuation() const;
  inline void set_continuation(int continuation);
  inline bool is_closed();
  inline bool is_executing();
  inline bool is_suspended();

  // [operand_stack]: Saved operand stack.
  DECL_ACCESSORS(operand_stack, FixedArray)

  DECLARE_CAST(JSGeneratorObject)

  // Dispatched behavior.
  DECLARE_PRINTER(JSGeneratorObject)
  DECLARE_VERIFIER(JSGeneratorObject)

  // Magic sentinel values for the continuation.
  static const int kGeneratorExecuting = -1;
  static const int kGeneratorClosed = 0;

  // Layout description.
  static const int kFunctionOffset = JSObject::kHeaderSize;
  static const int kContextOffset = kFunctionOffset + kPointerSize;
  static const int kReceiverOffset = kContextOffset + kPointerSize;
  static const int kContinuationOffset = kReceiverOffset + kPointerSize;
  static const int kOperandStackOffset = kContinuationOffset + kPointerSize;
  static const int kSize = kOperandStackOffset + kPointerSize;

  // Resume mode, for use by runtime functions.
  enum ResumeMode { NEXT, THROW };

  // Yielding from a generator returns an object with the following inobject
  // properties.  See Context::iterator_result_map() for the map.
  static const int kResultValuePropertyIndex = 0;
  static const int kResultDonePropertyIndex = 1;
  static const int kResultPropertyCount = 2;

  static const int kResultValuePropertyOffset = JSObject::kHeaderSize;
  static const int kResultDonePropertyOffset =
      kResultValuePropertyOffset + kPointerSize;
  static const int kResultSize = kResultDonePropertyOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGeneratorObject);
};


// Representation for module instance objects.
class JSModule: public JSObject {
 public:
  // [context]: the context holding the module's locals, or undefined if none.
  DECL_ACCESSORS(context, Object)

  // [scope_info]: Scope info.
  DECL_ACCESSORS(scope_info, ScopeInfo)

  DECLARE_CAST(JSModule)

  // Dispatched behavior.
  DECLARE_PRINTER(JSModule)
  DECLARE_VERIFIER(JSModule)

  // Layout description.
  static const int kContextOffset = JSObject::kHeaderSize;
  static const int kScopeInfoOffset = kContextOffset + kPointerSize;
  static const int kSize = kScopeInfoOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSModule);
};


// JSFunction describes JavaScript functions.
class JSFunction: public JSObject {
 public:
  // [prototype_or_initial_map]:
  DECL_ACCESSORS(prototype_or_initial_map, Object)

  // [shared]: The information about the function that
  // can be shared by instances.
  DECL_ACCESSORS(shared, SharedFunctionInfo)

  // [context]: The context for this function.
  inline Context* context();
  inline void set_context(Object* context);
  inline JSObject* global_proxy();

  // [code]: The generated code object for this function.  Executed
  // when the function is invoked, e.g. foo() or new foo(). See
  // [[Call]] and [[Construct]] description in ECMA-262, section
  // 8.6.2, page 27.
  inline Code* code();
  inline void set_code(Code* code);
  inline void set_code_no_write_barrier(Code* code);
  inline void ReplaceCode(Code* code);

  // Tells whether this function is builtin.
  inline bool IsBuiltin();

  // Tells whether this function is defined in a native script.
  inline bool IsFromNativeScript();

  // Tells whether this function is defined in an extension script.
  inline bool IsFromExtensionScript();

  // Tells whether or not the function needs arguments adaption.
  inline bool NeedsArgumentsAdaption();

  // Tells whether or not this function has been optimized.
  inline bool IsOptimized();

  // Tells whether or not this function can be optimized.
  inline bool IsOptimizable();

  // Mark this function for lazy recompilation. The function will be
  // recompiled the next time it is executed.
  void MarkForOptimization();
  void AttemptConcurrentOptimization();

  // Tells whether or not the function is already marked for lazy
  // recompilation.
  inline bool IsMarkedForOptimization();
  inline bool IsMarkedForConcurrentOptimization();

  // Tells whether or not the function is on the concurrent recompilation queue.
  inline bool IsInOptimizationQueue();

  // Inobject slack tracking is the way to reclaim unused inobject space.
  //
  // The instance size is initially determined by adding some slack to
  // expected_nof_properties (to allow for a few extra properties added
  // after the constructor). There is no guarantee that the extra space
  // will not be wasted.
  //
  // Here is the algorithm to reclaim the unused inobject space:
  // - Detect the first constructor call for this JSFunction.
  //   When it happens enter the "in progress" state: initialize construction
  //   counter in the initial_map.
  // - While the tracking is in progress create objects filled with
  //   one_pointer_filler_map instead of undefined_value. This way they can be
  //   resized quickly and safely.
  // - Once enough objects have been created  compute the 'slack'
  //   (traverse the map transition tree starting from the
  //   initial_map and find the lowest value of unused_property_fields).
  // - Traverse the transition tree again and decrease the instance size
  //   of every map. Existing objects will resize automatically (they are
  //   filled with one_pointer_filler_map). All further allocations will
  //   use the adjusted instance size.
  // - SharedFunctionInfo's expected_nof_properties left unmodified since
  //   allocations made using different closures could actually create different
  //   kind of objects (see prototype inheritance pattern).
  //
  //  Important: inobject slack tracking is not attempted during the snapshot
  //  creation.

  // True if the initial_map is set and the object constructions countdown
  // counter is not zero.
  static const int kGenerousAllocationCount =
      Map::kSlackTrackingCounterStart - Map::kSlackTrackingCounterEnd + 1;
  inline bool IsInobjectSlackTrackingInProgress();

  // Starts the tracking.
  // Initializes object constructions countdown counter in the initial map.
  void StartInobjectSlackTracking();

  // Completes the tracking.
  void CompleteInobjectSlackTracking();

  // [literals_or_bindings]: Fixed array holding either
  // the materialized literals or the bindings of a bound function.
  //
  // If the function contains object, regexp or array literals, the
  // literals array prefix contains the object, regexp, and array
  // function to be used when creating these literals.  This is
  // necessary so that we do not dynamically lookup the object, regexp
  // or array functions.  Performing a dynamic lookup, we might end up
  // using the functions from a new context that we should not have
  // access to.
  //
  // On bound functions, the array is a (copy-on-write) fixed-array containing
  // the function that was bound, bound this-value and any bound
  // arguments. Bound functions never contain literals.
  DECL_ACCESSORS(literals_or_bindings, FixedArray)

  inline FixedArray* literals();
  inline void set_literals(FixedArray* literals);

  inline FixedArray* function_bindings();
  inline void set_function_bindings(FixedArray* bindings);

  // The initial map for an object created by this constructor.
  inline Map* initial_map();
  static void SetInitialMap(Handle<JSFunction> function, Handle<Map> map,
                            Handle<Object> prototype);
  inline bool has_initial_map();
  static void EnsureHasInitialMap(Handle<JSFunction> function);

  // Get and set the prototype property on a JSFunction. If the
  // function has an initial map the prototype is set on the initial
  // map. Otherwise, the prototype is put in the initial map field
  // until an initial map is needed.
  inline bool has_prototype();
  inline bool has_instance_prototype();
  inline Object* prototype();
  inline Object* instance_prototype();
  static void SetPrototype(Handle<JSFunction> function,
                           Handle<Object> value);
  static void SetInstancePrototype(Handle<JSFunction> function,
                                   Handle<Object> value);

  // Creates a new closure for the fucntion with the same bindings,
  // bound values, and prototype. An equivalent of spec operations
  // ``CloneMethod`` and ``CloneBoundFunction``.
  static Handle<JSFunction> CloneClosure(Handle<JSFunction> function);

  // After prototype is removed, it will not be created when accessed, and
  // [[Construct]] from this function will not be allowed.
  bool RemovePrototype();
  inline bool should_have_prototype();

  // Accessor for this function's initial map's [[class]]
  // property. This is primarily used by ECMA native functions.  This
  // method sets the class_name field of this function's initial map
  // to a given value. It creates an initial map if this function does
  // not have one. Note that this method does not copy the initial map
  // if it has one already, but simply replaces it with the new value.
  // Instances created afterwards will have a map whose [[class]] is
  // set to 'value', but there is no guarantees on instances created
  // before.
  void SetInstanceClassName(String* name);

  // Returns if this function has been compiled to native code yet.
  inline bool is_compiled();

  // Returns `false` if formal parameters include rest parameters, optional
  // parameters, or destructuring parameters.
  // TODO(caitp): make this a flag set during parsing
  inline bool is_simple_parameter_list();

  // [next_function_link]: Links functions into various lists, e.g. the list
  // of optimized functions hanging off the native_context. The CodeFlusher
  // uses this link to chain together flushing candidates. Treated weakly
  // by the garbage collector.
  DECL_ACCESSORS(next_function_link, Object)

  // Prints the name of the function using PrintF.
  void PrintName(FILE* out = stdout);

  DECLARE_CAST(JSFunction)

  // Iterates the objects, including code objects indirectly referenced
  // through pointers to the first instruction in the code object.
  void JSFunctionIterateBody(int object_size, ObjectVisitor* v);

  // Dispatched behavior.
  DECLARE_PRINTER(JSFunction)
  DECLARE_VERIFIER(JSFunction)

  // Returns the number of allocated literals.
  inline int NumberOfLiterals();

  // Used for flags such as --hydrogen-filter.
  bool PassesFilter(const char* raw_filter);

  // The function's name if it is configured, otherwise shared function info
  // debug name.
  static Handle<String> GetDebugName(Handle<JSFunction> function);

  // Layout descriptors. The last property (from kNonWeakFieldsEndOffset to
  // kSize) is weak and has special handling during garbage collection.
  static const int kCodeEntryOffset = JSObject::kHeaderSize;
  static const int kPrototypeOrInitialMapOffset =
      kCodeEntryOffset + kPointerSize;
  static const int kSharedFunctionInfoOffset =
      kPrototypeOrInitialMapOffset + kPointerSize;
  static const int kContextOffset = kSharedFunctionInfoOffset + kPointerSize;
  static const int kLiteralsOffset = kContextOffset + kPointerSize;
  static const int kNonWeakFieldsEndOffset = kLiteralsOffset + kPointerSize;
  static const int kNextFunctionLinkOffset = kNonWeakFieldsEndOffset;
  static const int kSize = kNextFunctionLinkOffset + kPointerSize;

  // Layout of the bound-function binding array.
  static const int kBoundFunctionIndex = 0;
  static const int kBoundThisIndex = 1;
  static const int kBoundArgumentsStartIndex = 2;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunction);
};


// JSGlobalProxy's prototype must be a JSGlobalObject or null,
// and the prototype is hidden. JSGlobalProxy always delegates
// property accesses to its prototype if the prototype is not null.
//
// A JSGlobalProxy can be reinitialized which will preserve its identity.
//
// Accessing a JSGlobalProxy requires security check.

class JSGlobalProxy : public JSObject {
 public:
  // [native_context]: the owner native context of this global proxy object.
  // It is null value if this object is not used by any context.
  DECL_ACCESSORS(native_context, Object)

  // [hash]: The hash code property (undefined if not initialized yet).
  DECL_ACCESSORS(hash, Object)

  DECLARE_CAST(JSGlobalProxy)

  inline bool IsDetachedFrom(GlobalObject* global) const;

  // Dispatched behavior.
  DECLARE_PRINTER(JSGlobalProxy)
  DECLARE_VERIFIER(JSGlobalProxy)

  // Layout description.
  static const int kNativeContextOffset = JSObject::kHeaderSize;
  static const int kHashOffset = kNativeContextOffset + kPointerSize;
  static const int kSize = kHashOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalProxy);
};


// Forward declaration.
class JSBuiltinsObject;

// Common super class for JavaScript global objects and the special
// builtins global objects.
class GlobalObject: public JSObject {
 public:
  // [builtins]: the object holding the runtime routines written in JS.
  DECL_ACCESSORS(builtins, JSBuiltinsObject)

  // [native context]: the natives corresponding to this global object.
  DECL_ACCESSORS(native_context, Context)

  // [global proxy]: the global proxy object of the context
  DECL_ACCESSORS(global_proxy, JSObject)

  DECLARE_CAST(GlobalObject)

  static void InvalidatePropertyCell(Handle<GlobalObject> object,
                                     Handle<Name> name);
  // Ensure that the global object has a cell for the given property name.
  static Handle<PropertyCell> EnsurePropertyCell(Handle<GlobalObject> global,
                                                 Handle<Name> name);

  // Layout description.
  static const int kBuiltinsOffset = JSObject::kHeaderSize;
  static const int kNativeContextOffset = kBuiltinsOffset + kPointerSize;
  static const int kGlobalProxyOffset = kNativeContextOffset + kPointerSize;
  static const int kHeaderSize = kGlobalProxyOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(GlobalObject);
};


// JavaScript global object.
class JSGlobalObject: public GlobalObject {
 public:
  DECLARE_CAST(JSGlobalObject)

  inline bool IsDetached();

  // Dispatched behavior.
  DECLARE_PRINTER(JSGlobalObject)
  DECLARE_VERIFIER(JSGlobalObject)

  // Layout description.
  static const int kSize = GlobalObject::kHeaderSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSGlobalObject);
};


// Builtins global object which holds the runtime routines written in
// JavaScript.
class JSBuiltinsObject: public GlobalObject {
 public:
  // Accessors for the runtime routines written in JavaScript.
  inline Object* javascript_builtin(Builtins::JavaScript id);
  inline void set_javascript_builtin(Builtins::JavaScript id, Object* value);

  DECLARE_CAST(JSBuiltinsObject)

  // Dispatched behavior.
  DECLARE_PRINTER(JSBuiltinsObject)
  DECLARE_VERIFIER(JSBuiltinsObject)

  // Layout description.  The size of the builtins object includes
  // room for two pointers per runtime routine written in javascript
  // (function and code object).
  static const int kJSBuiltinsCount = Builtins::id_count;
  static const int kJSBuiltinsOffset = GlobalObject::kHeaderSize;
  static const int kSize =
      GlobalObject::kHeaderSize + (kJSBuiltinsCount * kPointerSize);

  static int OffsetOfFunctionWithId(Builtins::JavaScript id) {
    return kJSBuiltinsOffset + id * kPointerSize;
  }

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSBuiltinsObject);
};


// Representation for JS Wrapper objects, String, Number, Boolean, etc.
class JSValue: public JSObject {
 public:
  // [value]: the object being wrapped.
  DECL_ACCESSORS(value, Object)

  DECLARE_CAST(JSValue)

  // Dispatched behavior.
  DECLARE_PRINTER(JSValue)
  DECLARE_VERIFIER(JSValue)

  // Layout description.
  static const int kValueOffset = JSObject::kHeaderSize;
  static const int kSize = kValueOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSValue);
};


class DateCache;

// Representation for JS date objects.
class JSDate: public JSObject {
 public:
  // If one component is NaN, all of them are, indicating a NaN time value.
  // [value]: the time value.
  DECL_ACCESSORS(value, Object)
  // [year]: caches year. Either undefined, smi, or NaN.
  DECL_ACCESSORS(year, Object)
  // [month]: caches month. Either undefined, smi, or NaN.
  DECL_ACCESSORS(month, Object)
  // [day]: caches day. Either undefined, smi, or NaN.
  DECL_ACCESSORS(day, Object)
  // [weekday]: caches day of week. Either undefined, smi, or NaN.
  DECL_ACCESSORS(weekday, Object)
  // [hour]: caches hours. Either undefined, smi, or NaN.
  DECL_ACCESSORS(hour, Object)
  // [min]: caches minutes. Either undefined, smi, or NaN.
  DECL_ACCESSORS(min, Object)
  // [sec]: caches seconds. Either undefined, smi, or NaN.
  DECL_ACCESSORS(sec, Object)
  // [cache stamp]: sample of the date cache stamp at the
  // moment when chached fields were cached.
  DECL_ACCESSORS(cache_stamp, Object)

  DECLARE_CAST(JSDate)

  // Returns the date field with the specified index.
  // See FieldIndex for the list of date fields.
  static Object* GetField(Object* date, Smi* index);

  void SetValue(Object* value, bool is_value_nan);


  // Dispatched behavior.
  DECLARE_PRINTER(JSDate)
  DECLARE_VERIFIER(JSDate)

  // The order is important. It must be kept in sync with date macros
  // in macros.py.
  enum FieldIndex {
    kDateValue,
    kYear,
    kMonth,
    kDay,
    kWeekday,
    kHour,
    kMinute,
    kSecond,
    kFirstUncachedField,
    kMillisecond = kFirstUncachedField,
    kDays,
    kTimeInDay,
    kFirstUTCField,
    kYearUTC = kFirstUTCField,
    kMonthUTC,
    kDayUTC,
    kWeekdayUTC,
    kHourUTC,
    kMinuteUTC,
    kSecondUTC,
    kMillisecondUTC,
    kDaysUTC,
    kTimeInDayUTC,
    kTimezoneOffset
  };

  // Layout description.
  static const int kValueOffset = JSObject::kHeaderSize;
  static const int kYearOffset = kValueOffset + kPointerSize;
  static const int kMonthOffset = kYearOffset + kPointerSize;
  static const int kDayOffset = kMonthOffset + kPointerSize;
  static const int kWeekdayOffset = kDayOffset + kPointerSize;
  static const int kHourOffset = kWeekdayOffset  + kPointerSize;
  static const int kMinOffset = kHourOffset + kPointerSize;
  static const int kSecOffset = kMinOffset + kPointerSize;
  static const int kCacheStampOffset = kSecOffset + kPointerSize;
  static const int kSize = kCacheStampOffset + kPointerSize;

 private:
  inline Object* DoGetField(FieldIndex index);

  Object* GetUTCField(FieldIndex index, double value, DateCache* date_cache);

  // Computes and caches the cacheable fields of the date.
  inline void SetCachedFields(int64_t local_time_ms, DateCache* date_cache);


  DISALLOW_IMPLICIT_CONSTRUCTORS(JSDate);
};


// Representation of message objects used for error reporting through
// the API. The messages are formatted in JavaScript so this object is
// a real JavaScript object. The information used for formatting the
// error messages are not directly accessible from JavaScript to
// prevent leaking information to user code called during error
// formatting.
class JSMessageObject: public JSObject {
 public:
  // [type]: the type of error message.
  DECL_ACCESSORS(type, String)

  // [arguments]: the arguments for formatting the error message.
  DECL_ACCESSORS(arguments, JSArray)

  // [script]: the script from which the error message originated.
  DECL_ACCESSORS(script, Object)

  // [stack_frames]: an array of stack frames for this error object.
  DECL_ACCESSORS(stack_frames, Object)

  // [start_position]: the start position in the script for the error message.
  inline int start_position() const;
  inline void set_start_position(int value);

  // [end_position]: the end position in the script for the error message.
  inline int end_position() const;
  inline void set_end_position(int value);

  DECLARE_CAST(JSMessageObject)

  // Dispatched behavior.
  DECLARE_PRINTER(JSMessageObject)
  DECLARE_VERIFIER(JSMessageObject)

  // Layout description.
  static const int kTypeOffset = JSObject::kHeaderSize;
  static const int kArgumentsOffset = kTypeOffset + kPointerSize;
  static const int kScriptOffset = kArgumentsOffset + kPointerSize;
  static const int kStackFramesOffset = kScriptOffset + kPointerSize;
  static const int kStartPositionOffset = kStackFramesOffset + kPointerSize;
  static const int kEndPositionOffset = kStartPositionOffset + kPointerSize;
  static const int kSize = kEndPositionOffset + kPointerSize;

  typedef FixedBodyDescriptor<HeapObject::kMapOffset,
                              kStackFramesOffset + kPointerSize,
                              kSize> BodyDescriptor;
};


// Regular expressions
// The regular expression holds a single reference to a FixedArray in
// the kDataOffset field.
// The FixedArray contains the following data:
// - tag : type of regexp implementation (not compiled yet, atom or irregexp)
// - reference to the original source string
// - reference to the original flag string
// If it is an atom regexp
// - a reference to a literal string to search for
// If it is an irregexp regexp:
// - a reference to code for Latin1 inputs (bytecode or compiled), or a smi
// used for tracking the last usage (used for code flushing).
// - a reference to code for UC16 inputs (bytecode or compiled), or a smi
// used for tracking the last usage (used for code flushing)..
// - max number of registers used by irregexp implementations.
// - number of capture registers (output values) of the regexp.
class JSRegExp: public JSObject {
 public:
  // Meaning of Type:
  // NOT_COMPILED: Initial value. No data has been stored in the JSRegExp yet.
  // ATOM: A simple string to match against using an indexOf operation.
  // IRREGEXP: Compiled with Irregexp.
  // IRREGEXP_NATIVE: Compiled to native code with Irregexp.
  enum Type { NOT_COMPILED, ATOM, IRREGEXP };
  enum Flag {
    NONE = 0,
    GLOBAL = 1,
    IGNORE_CASE = 2,
    MULTILINE = 4,
    STICKY = 8,
    UNICODE_ESCAPES = 16
  };

  class Flags {
   public:
    explicit Flags(uint32_t value) : value_(value) { }
    bool is_global() { return (value_ & GLOBAL) != 0; }
    bool is_ignore_case() { return (value_ & IGNORE_CASE) != 0; }
    bool is_multiline() { return (value_ & MULTILINE) != 0; }
    bool is_sticky() { return (value_ & STICKY) != 0; }
    bool is_unicode() { return (value_ & UNICODE_ESCAPES) != 0; }
    uint32_t value() { return value_; }
   private:
    uint32_t value_;
  };

  DECL_ACCESSORS(data, Object)

  inline Type TypeTag();
  inline int CaptureCount();
  inline Flags GetFlags();
  inline String* Pattern();
  inline Object* DataAt(int index);
  // Set implementation data after the object has been prepared.
  inline void SetDataAt(int index, Object* value);

  static int code_index(bool is_latin1) {
    if (is_latin1) {
      return kIrregexpLatin1CodeIndex;
    } else {
      return kIrregexpUC16CodeIndex;
    }
  }

  static int saved_code_index(bool is_latin1) {
    if (is_latin1) {
      return kIrregexpLatin1CodeSavedIndex;
    } else {
      return kIrregexpUC16CodeSavedIndex;
    }
  }

  DECLARE_CAST(JSRegExp)

  // Dispatched behavior.
  DECLARE_VERIFIER(JSRegExp)

  static const int kDataOffset = JSObject::kHeaderSize;
  static const int kSize = kDataOffset + kPointerSize;

  // Indices in the data array.
  static const int kTagIndex = 0;
  static const int kSourceIndex = kTagIndex + 1;
  static const int kFlagsIndex = kSourceIndex + 1;
  static const int kDataIndex = kFlagsIndex + 1;
  // The data fields are used in different ways depending on the
  // value of the tag.
  // Atom regexps (literal strings).
  static const int kAtomPatternIndex = kDataIndex;

  static const int kAtomDataSize = kAtomPatternIndex + 1;

  // Irregexp compiled code or bytecode for Latin1. If compilation
  // fails, this fields hold an exception object that should be
  // thrown if the regexp is used again.
  static const int kIrregexpLatin1CodeIndex = kDataIndex;
  // Irregexp compiled code or bytecode for UC16.  If compilation
  // fails, this fields hold an exception object that should be
  // thrown if the regexp is used again.
  static const int kIrregexpUC16CodeIndex = kDataIndex + 1;

  // Saved instance of Irregexp compiled code or bytecode for Latin1 that
  // is a potential candidate for flushing.
  static const int kIrregexpLatin1CodeSavedIndex = kDataIndex + 2;
  // Saved instance of Irregexp compiled code or bytecode for UC16 that is
  // a potential candidate for flushing.
  static const int kIrregexpUC16CodeSavedIndex = kDataIndex + 3;

  // Maximal number of registers used by either Latin1 or UC16.
  // Only used to check that there is enough stack space
  static const int kIrregexpMaxRegisterCountIndex = kDataIndex + 4;
  // Number of captures in the compiled regexp.
  static const int kIrregexpCaptureCountIndex = kDataIndex + 5;

  static const int kIrregexpDataSize = kIrregexpCaptureCountIndex + 1;

  // Offsets directly into the data fixed array.
  static const int kDataTagOffset =
      FixedArray::kHeaderSize + kTagIndex * kPointerSize;
  static const int kDataOneByteCodeOffset =
      FixedArray::kHeaderSize + kIrregexpLatin1CodeIndex * kPointerSize;
  static const int kDataUC16CodeOffset =
      FixedArray::kHeaderSize + kIrregexpUC16CodeIndex * kPointerSize;
  static const int kIrregexpCaptureCountOffset =
      FixedArray::kHeaderSize + kIrregexpCaptureCountIndex * kPointerSize;

  // In-object fields.
  static const int kSourceFieldIndex = 0;
  static const int kGlobalFieldIndex = 1;
  static const int kIgnoreCaseFieldIndex = 2;
  static const int kMultilineFieldIndex = 3;
  static const int kLastIndexFieldIndex = 4;
  static const int kInObjectFieldCount = 5;

  // The uninitialized value for a regexp code object.
  static const int kUninitializedValue = -1;

  // The compilation error value for the regexp code object. The real error
  // object is in the saved code field.
  static const int kCompilationErrorValue = -2;

  // When we store the sweep generation at which we moved the code from the
  // code index to the saved code index we mask it of to be in the [0:255]
  // range.
  static const int kCodeAgeMask = 0xff;
};


class CompilationCacheShape : public BaseShape<HashTableKey*> {
 public:
  static inline bool IsMatch(HashTableKey* key, Object* value) {
    return key->IsMatch(value);
  }

  static inline uint32_t Hash(HashTableKey* key) {
    return key->Hash();
  }

  static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
    return key->HashForObject(object);
  }

  static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);

  static const int kPrefixSize = 0;
  static const int kEntrySize = 2;
};


// This cache is used in two different variants. For regexp caching, it simply
// maps identifying info of the regexp to the cached regexp object. Scripts and
// eval code only gets cached after a second probe for the code object. To do
// so, on first "put" only a hash identifying the source is entered into the
// cache, mapping it to a lifetime count of the hash. On each call to Age all
// such lifetimes get reduced, and removed once they reach zero. If a second put
// is called while such a hash is live in the cache, the hash gets replaced by
// an actual cache entry. Age also removes stale live entries from the cache.
// Such entries are identified by SharedFunctionInfos pointing to either the
// recompilation stub, or to "old" code. This avoids memory leaks due to
// premature caching of scripts and eval strings that are never needed later.
class CompilationCacheTable: public HashTable<CompilationCacheTable,
                                              CompilationCacheShape,
                                              HashTableKey*> {
 public:
  // Find cached value for a string key, otherwise return null.
  Handle<Object> Lookup(
      Handle<String> src, Handle<Context> context, LanguageMode language_mode);
  Handle<Object> LookupEval(
      Handle<String> src, Handle<SharedFunctionInfo> shared,
      LanguageMode language_mode, int scope_position);
  Handle<Object> LookupRegExp(Handle<String> source, JSRegExp::Flags flags);
  static Handle<CompilationCacheTable> Put(
      Handle<CompilationCacheTable> cache, Handle<String> src,
      Handle<Context> context, LanguageMode language_mode,
      Handle<Object> value);
  static Handle<CompilationCacheTable> PutEval(
      Handle<CompilationCacheTable> cache, Handle<String> src,
      Handle<SharedFunctionInfo> context, Handle<SharedFunctionInfo> value,
      int scope_position);
  static Handle<CompilationCacheTable> PutRegExp(
      Handle<CompilationCacheTable> cache, Handle<String> src,
      JSRegExp::Flags flags, Handle<FixedArray> value);
  void Remove(Object* value);
  void Age();
  static const int kHashGenerations = 10;

  DECLARE_CAST(CompilationCacheTable)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(CompilationCacheTable);
};


class CodeCache: public Struct {
 public:
  DECL_ACCESSORS(default_cache, FixedArray)
  DECL_ACCESSORS(normal_type_cache, Object)

  // Add the code object to the cache.
  static void Update(
      Handle<CodeCache> cache, Handle<Name> name, Handle<Code> code);

  // Lookup code object in the cache. Returns code object if found and undefined
  // if not.
  Object* Lookup(Name* name, Code::Flags flags);

  // Get the internal index of a code object in the cache. Returns -1 if the
  // code object is not in that cache. This index can be used to later call
  // RemoveByIndex. The cache cannot be modified between a call to GetIndex and
  // RemoveByIndex.
  int GetIndex(Object* name, Code* code);

  // Remove an object from the cache with the provided internal index.
  void RemoveByIndex(Object* name, Code* code, int index);

  DECLARE_CAST(CodeCache)

  // Dispatched behavior.
  DECLARE_PRINTER(CodeCache)
  DECLARE_VERIFIER(CodeCache)

  static const int kDefaultCacheOffset = HeapObject::kHeaderSize;
  static const int kNormalTypeCacheOffset =
      kDefaultCacheOffset + kPointerSize;
  static const int kSize = kNormalTypeCacheOffset + kPointerSize;

 private:
  static void UpdateDefaultCache(
      Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
  static void UpdateNormalTypeCache(
      Handle<CodeCache> code_cache, Handle<Name> name, Handle<Code> code);
  Object* LookupDefaultCache(Name* name, Code::Flags flags);
  Object* LookupNormalTypeCache(Name* name, Code::Flags flags);

  // Code cache layout of the default cache. Elements are alternating name and
  // code objects for non normal load/store/call IC's.
  static const int kCodeCacheEntrySize = 2;
  static const int kCodeCacheEntryNameOffset = 0;
  static const int kCodeCacheEntryCodeOffset = 1;

  DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCache);
};


class CodeCacheHashTableShape : public BaseShape<HashTableKey*> {
 public:
  static inline bool IsMatch(HashTableKey* key, Object* value) {
    return key->IsMatch(value);
  }

  static inline uint32_t Hash(HashTableKey* key) {
    return key->Hash();
  }

  static inline uint32_t HashForObject(HashTableKey* key, Object* object) {
    return key->HashForObject(object);
  }

  static inline Handle<Object> AsHandle(Isolate* isolate, HashTableKey* key);

  static const int kPrefixSize = 0;
  static const int kEntrySize = 2;
};


class CodeCacheHashTable: public HashTable<CodeCacheHashTable,
                                           CodeCacheHashTableShape,
                                           HashTableKey*> {
 public:
  Object* Lookup(Name* name, Code::Flags flags);
  static Handle<CodeCacheHashTable> Put(
      Handle<CodeCacheHashTable> table,
      Handle<Name> name,
      Handle<Code> code);

  int GetIndex(Name* name, Code::Flags flags);
  void RemoveByIndex(int index);

  DECLARE_CAST(CodeCacheHashTable)

  // Initial size of the fixed array backing the hash table.
  static const int kInitialSize = 64;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(CodeCacheHashTable);
};


class PolymorphicCodeCache: public Struct {
 public:
  DECL_ACCESSORS(cache, Object)

  static void Update(Handle<PolymorphicCodeCache> cache,
                     MapHandleList* maps,
                     Code::Flags flags,
                     Handle<Code> code);


  // Returns an undefined value if the entry is not found.
  Handle<Object> Lookup(MapHandleList* maps, Code::Flags flags);

  DECLARE_CAST(PolymorphicCodeCache)

  // Dispatched behavior.
  DECLARE_PRINTER(PolymorphicCodeCache)
  DECLARE_VERIFIER(PolymorphicCodeCache)

  static const int kCacheOffset = HeapObject::kHeaderSize;
  static const int kSize = kCacheOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCache);
};


class PolymorphicCodeCacheHashTable
    : public HashTable<PolymorphicCodeCacheHashTable,
                       CodeCacheHashTableShape,
                       HashTableKey*> {
 public:
  Object* Lookup(MapHandleList* maps, int code_kind);

  static Handle<PolymorphicCodeCacheHashTable> Put(
      Handle<PolymorphicCodeCacheHashTable> hash_table,
      MapHandleList* maps,
      int code_kind,
      Handle<Code> code);

  DECLARE_CAST(PolymorphicCodeCacheHashTable)

  static const int kInitialSize = 64;
 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(PolymorphicCodeCacheHashTable);
};


class TypeFeedbackInfo: public Struct {
 public:
  inline int ic_total_count();
  inline void set_ic_total_count(int count);

  inline int ic_with_type_info_count();
  inline void change_ic_with_type_info_count(int delta);

  inline int ic_generic_count();
  inline void change_ic_generic_count(int delta);

  inline void initialize_storage();

  inline void change_own_type_change_checksum();
  inline int own_type_change_checksum();

  inline void set_inlined_type_change_checksum(int checksum);
  inline bool matches_inlined_type_change_checksum(int checksum);

  DECLARE_CAST(TypeFeedbackInfo)

  // Dispatched behavior.
  DECLARE_PRINTER(TypeFeedbackInfo)
  DECLARE_VERIFIER(TypeFeedbackInfo)

  static const int kStorage1Offset = HeapObject::kHeaderSize;
  static const int kStorage2Offset = kStorage1Offset + kPointerSize;
  static const int kStorage3Offset = kStorage2Offset + kPointerSize;
  static const int kSize = kStorage3Offset + kPointerSize;

 private:
  static const int kTypeChangeChecksumBits = 7;

  class ICTotalCountField: public BitField<int, 0,
      kSmiValueSize - kTypeChangeChecksumBits> {};  // NOLINT
  class OwnTypeChangeChecksum: public BitField<int,
      kSmiValueSize - kTypeChangeChecksumBits,
      kTypeChangeChecksumBits> {};  // NOLINT
  class ICsWithTypeInfoCountField: public BitField<int, 0,
      kSmiValueSize - kTypeChangeChecksumBits> {};  // NOLINT
  class InlinedTypeChangeChecksum: public BitField<int,
      kSmiValueSize - kTypeChangeChecksumBits,
      kTypeChangeChecksumBits> {};  // NOLINT

  DISALLOW_IMPLICIT_CONSTRUCTORS(TypeFeedbackInfo);
};


enum AllocationSiteMode {
  DONT_TRACK_ALLOCATION_SITE,
  TRACK_ALLOCATION_SITE,
  LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE
};


class AllocationSite: public Struct {
 public:
  static const uint32_t kMaximumArrayBytesToPretransition = 8 * 1024;
  static const double kPretenureRatio;
  static const int kPretenureMinimumCreated = 100;

  // Values for pretenure decision field.
  enum PretenureDecision {
    kUndecided = 0,
    kDontTenure = 1,
    kMaybeTenure = 2,
    kTenure = 3,
    kZombie = 4,
    kLastPretenureDecisionValue = kZombie
  };

  const char* PretenureDecisionName(PretenureDecision decision);

  DECL_ACCESSORS(transition_info, Object)
  // nested_site threads a list of sites that represent nested literals
  // walked in a particular order. So [[1, 2], 1, 2] will have one
  // nested_site, but [[1, 2], 3, [4]] will have a list of two.
  DECL_ACCESSORS(nested_site, Object)
  DECL_ACCESSORS(pretenure_data, Smi)
  DECL_ACCESSORS(pretenure_create_count, Smi)
  DECL_ACCESSORS(dependent_code, DependentCode)
  DECL_ACCESSORS(weak_next, Object)

  inline void Initialize();

  // This method is expensive, it should only be called for reporting.
  bool IsNestedSite();

  // transition_info bitfields, for constructed array transition info.
  class ElementsKindBits:       public BitField<ElementsKind, 0,  15> {};
  class UnusedBits:             public BitField<int,          15, 14> {};
  class DoNotInlineBit:         public BitField<bool,         29,  1> {};

  // Bitfields for pretenure_data
  class MementoFoundCountBits:  public BitField<int,               0, 26> {};
  class PretenureDecisionBits:  public BitField<PretenureDecision, 26, 3> {};
  class DeoptDependentCodeBit:  public BitField<bool,              29, 1> {};
  STATIC_ASSERT(PretenureDecisionBits::kMax >= kLastPretenureDecisionValue);

  // Increments the mementos found counter and returns true when the first
  // memento was found for a given allocation site.
  inline bool IncrementMementoFoundCount();

  inline void IncrementMementoCreateCount();

  PretenureFlag GetPretenureMode();

  void ResetPretenureDecision();

  PretenureDecision pretenure_decision() {
    int value = pretenure_data()->value();
    return PretenureDecisionBits::decode(value);
  }

  void set_pretenure_decision(PretenureDecision decision) {
    int value = pretenure_data()->value();
    set_pretenure_data(
        Smi::FromInt(PretenureDecisionBits::update(value, decision)),
        SKIP_WRITE_BARRIER);
  }

  bool deopt_dependent_code() {
    int value = pretenure_data()->value();
    return DeoptDependentCodeBit::decode(value);
  }

  void set_deopt_dependent_code(bool deopt) {
    int value = pretenure_data()->value();
    set_pretenure_data(
        Smi::FromInt(DeoptDependentCodeBit::update(value, deopt)),
        SKIP_WRITE_BARRIER);
  }

  int memento_found_count() {
    int value = pretenure_data()->value();
    return MementoFoundCountBits::decode(value);
  }

  inline void set_memento_found_count(int count);

  int memento_create_count() {
    return pretenure_create_count()->value();
  }

  void set_memento_create_count(int count) {
    set_pretenure_create_count(Smi::FromInt(count), SKIP_WRITE_BARRIER);
  }

  // The pretenuring decision is made during gc, and the zombie state allows
  // us to recognize when an allocation site is just being kept alive because
  // a later traversal of new space may discover AllocationMementos that point
  // to this AllocationSite.
  bool IsZombie() {
    return pretenure_decision() == kZombie;
  }

  bool IsMaybeTenure() {
    return pretenure_decision() == kMaybeTenure;
  }

  inline void MarkZombie();

  inline bool MakePretenureDecision(PretenureDecision current_decision,
                                    double ratio,
                                    bool maximum_size_scavenge);

  inline bool DigestPretenuringFeedback(bool maximum_size_scavenge);

  ElementsKind GetElementsKind() {
    DCHECK(!SitePointsToLiteral());
    int value = Smi::cast(transition_info())->value();
    return ElementsKindBits::decode(value);
  }

  void SetElementsKind(ElementsKind kind) {
    int value = Smi::cast(transition_info())->value();
    set_transition_info(Smi::FromInt(ElementsKindBits::update(value, kind)),
                        SKIP_WRITE_BARRIER);
  }

  bool CanInlineCall() {
    int value = Smi::cast(transition_info())->value();
    return DoNotInlineBit::decode(value) == 0;
  }

  void SetDoNotInlineCall() {
    int value = Smi::cast(transition_info())->value();
    set_transition_info(Smi::FromInt(DoNotInlineBit::update(value, true)),
                        SKIP_WRITE_BARRIER);
  }

  bool SitePointsToLiteral() {
    // If transition_info is a smi, then it represents an ElementsKind
    // for a constructed array. Otherwise, it must be a boilerplate
    // for an object or array literal.
    return transition_info()->IsJSArray() || transition_info()->IsJSObject();
  }

  static void DigestTransitionFeedback(Handle<AllocationSite> site,
                                       ElementsKind to_kind);

  DECLARE_PRINTER(AllocationSite)
  DECLARE_VERIFIER(AllocationSite)

  DECLARE_CAST(AllocationSite)
  static inline AllocationSiteMode GetMode(
      ElementsKind boilerplate_elements_kind);
  static inline AllocationSiteMode GetMode(ElementsKind from, ElementsKind to);
  static inline bool CanTrack(InstanceType type);

  static const int kTransitionInfoOffset = HeapObject::kHeaderSize;
  static const int kNestedSiteOffset = kTransitionInfoOffset + kPointerSize;
  static const int kPretenureDataOffset = kNestedSiteOffset + kPointerSize;
  static const int kPretenureCreateCountOffset =
      kPretenureDataOffset + kPointerSize;
  static const int kDependentCodeOffset =
      kPretenureCreateCountOffset + kPointerSize;
  static const int kWeakNextOffset = kDependentCodeOffset + kPointerSize;
  static const int kSize = kWeakNextOffset + kPointerSize;

  // During mark compact we need to take special care for the dependent code
  // field.
  static const int kPointerFieldsBeginOffset = kTransitionInfoOffset;
  static const int kPointerFieldsEndOffset = kWeakNextOffset;

  // For other visitors, use the fixed body descriptor below.
  typedef FixedBodyDescriptor<HeapObject::kHeaderSize,
                              kDependentCodeOffset + kPointerSize,
                              kSize> BodyDescriptor;

 private:
  bool PretenuringDecisionMade() {
    return pretenure_decision() != kUndecided;
  }

  DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationSite);
};


class AllocationMemento: public Struct {
 public:
  static const int kAllocationSiteOffset = HeapObject::kHeaderSize;
  static const int kSize = kAllocationSiteOffset + kPointerSize;

  DECL_ACCESSORS(allocation_site, Object)

  bool IsValid() {
    return allocation_site()->IsAllocationSite() &&
        !AllocationSite::cast(allocation_site())->IsZombie();
  }
  AllocationSite* GetAllocationSite() {
    DCHECK(IsValid());
    return AllocationSite::cast(allocation_site());
  }

  DECLARE_PRINTER(AllocationMemento)
  DECLARE_VERIFIER(AllocationMemento)

  DECLARE_CAST(AllocationMemento)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(AllocationMemento);
};


// Representation of a slow alias as part of a sloppy arguments objects.
// For fast aliases (if HasSloppyArgumentsElements()):
// - the parameter map contains an index into the context
// - all attributes of the element have default values
// For slow aliases (if HasDictionaryArgumentsElements()):
// - the parameter map contains no fast alias mapping (i.e. the hole)
// - this struct (in the slow backing store) contains an index into the context
// - all attributes are available as part if the property details
class AliasedArgumentsEntry: public Struct {
 public:
  inline int aliased_context_slot() const;
  inline void set_aliased_context_slot(int count);

  DECLARE_CAST(AliasedArgumentsEntry)

  // Dispatched behavior.
  DECLARE_PRINTER(AliasedArgumentsEntry)
  DECLARE_VERIFIER(AliasedArgumentsEntry)

  static const int kAliasedContextSlot = HeapObject::kHeaderSize;
  static const int kSize = kAliasedContextSlot + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(AliasedArgumentsEntry);
};


enum AllowNullsFlag {ALLOW_NULLS, DISALLOW_NULLS};
enum RobustnessFlag {ROBUST_STRING_TRAVERSAL, FAST_STRING_TRAVERSAL};


class StringHasher {
 public:
  explicit inline StringHasher(int length, uint32_t seed);

  template <typename schar>
  static inline uint32_t HashSequentialString(const schar* chars,
                                              int length,
                                              uint32_t seed);

  // Reads all the data, even for long strings and computes the utf16 length.
  static uint32_t ComputeUtf8Hash(Vector<const char> chars,
                                  uint32_t seed,
                                  int* utf16_length_out);

  // Calculated hash value for a string consisting of 1 to
  // String::kMaxArrayIndexSize digits with no leading zeros (except "0").
  // value is represented decimal value.
  static uint32_t MakeArrayIndexHash(uint32_t value, int length);

  // No string is allowed to have a hash of zero.  That value is reserved
  // for internal properties.  If the hash calculation yields zero then we
  // use 27 instead.
  static const int kZeroHash = 27;

  // Reusable parts of the hashing algorithm.
  INLINE(static uint32_t AddCharacterCore(uint32_t running_hash, uint16_t c));
  INLINE(static uint32_t GetHashCore(uint32_t running_hash));
  INLINE(static uint32_t ComputeRunningHash(uint32_t running_hash,
                                            const uc16* chars, int length));
  INLINE(static uint32_t ComputeRunningHashOneByte(uint32_t running_hash,
                                                   const char* chars,
                                                   int length));

 protected:
  // Returns the value to store in the hash field of a string with
  // the given length and contents.
  uint32_t GetHashField();
  // Returns true if the hash of this string can be computed without
  // looking at the contents.
  inline bool has_trivial_hash();
  // Adds a block of characters to the hash.
  template<typename Char>
  inline void AddCharacters(const Char* chars, int len);

 private:
  // Add a character to the hash.
  inline void AddCharacter(uint16_t c);
  // Update index. Returns true if string is still an index.
  inline bool UpdateIndex(uint16_t c);

  int length_;
  uint32_t raw_running_hash_;
  uint32_t array_index_;
  bool is_array_index_;
  bool is_first_char_;
  DISALLOW_COPY_AND_ASSIGN(StringHasher);
};


class IteratingStringHasher : public StringHasher {
 public:
  static inline uint32_t Hash(String* string, uint32_t seed);
  inline void VisitOneByteString(const uint8_t* chars, int length);
  inline void VisitTwoByteString(const uint16_t* chars, int length);

 private:
  inline IteratingStringHasher(int len, uint32_t seed)
      : StringHasher(len, seed) {}
  void VisitConsString(ConsString* cons_string);
  DISALLOW_COPY_AND_ASSIGN(IteratingStringHasher);
};


// The characteristics of a string are stored in its map.  Retrieving these
// few bits of information is moderately expensive, involving two memory
// loads where the second is dependent on the first.  To improve efficiency
// the shape of the string is given its own class so that it can be retrieved
// once and used for several string operations.  A StringShape is small enough
// to be passed by value and is immutable, but be aware that flattening a
// string can potentially alter its shape.  Also be aware that a GC caused by
// something else can alter the shape of a string due to ConsString
// shortcutting.  Keeping these restrictions in mind has proven to be error-
// prone and so we no longer put StringShapes in variables unless there is a
// concrete performance benefit at that particular point in the code.
class StringShape BASE_EMBEDDED {
 public:
  inline explicit StringShape(const String* s);
  inline explicit StringShape(Map* s);
  inline explicit StringShape(InstanceType t);
  inline bool IsSequential();
  inline bool IsExternal();
  inline bool IsCons();
  inline bool IsSliced();
  inline bool IsIndirect();
  inline bool IsExternalOneByte();
  inline bool IsExternalTwoByte();
  inline bool IsSequentialOneByte();
  inline bool IsSequentialTwoByte();
  inline bool IsInternalized();
  inline StringRepresentationTag representation_tag();
  inline uint32_t encoding_tag();
  inline uint32_t full_representation_tag();
  inline uint32_t size_tag();
#ifdef DEBUG
  inline uint32_t type() { return type_; }
  inline void invalidate() { valid_ = false; }
  inline bool valid() { return valid_; }
#else
  inline void invalidate() { }
#endif

 private:
  uint32_t type_;
#ifdef DEBUG
  inline void set_valid() { valid_ = true; }
  bool valid_;
#else
  inline void set_valid() { }
#endif
};


// The Name abstract class captures anything that can be used as a property
// name, i.e., strings and symbols.  All names store a hash value.
class Name: public HeapObject {
 public:
  // Get and set the hash field of the name.
  inline uint32_t hash_field();
  inline void set_hash_field(uint32_t value);

  // Tells whether the hash code has been computed.
  inline bool HasHashCode();

  // Returns a hash value used for the property table
  inline uint32_t Hash();

  // Equality operations.
  inline bool Equals(Name* other);
  inline static bool Equals(Handle<Name> one, Handle<Name> two);

  // Conversion.
  inline bool AsArrayIndex(uint32_t* index);

  // Whether name can only name own properties.
  inline bool IsOwn();

  DECLARE_CAST(Name)

  DECLARE_PRINTER(Name)
#if TRACE_MAPS
  void NameShortPrint();
  int NameShortPrint(Vector<char> str);
#endif

  // Layout description.
  static const int kHashFieldSlot = HeapObject::kHeaderSize;
#if V8_TARGET_LITTLE_ENDIAN || !V8_HOST_ARCH_64_BIT
  static const int kHashFieldOffset = kHashFieldSlot;
#else
  static const int kHashFieldOffset = kHashFieldSlot + kIntSize;
#endif
  static const int kSize = kHashFieldSlot + kPointerSize;

  // Mask constant for checking if a name has a computed hash code
  // and if it is a string that is an array index.  The least significant bit
  // indicates whether a hash code has been computed.  If the hash code has
  // been computed the 2nd bit tells whether the string can be used as an
  // array index.
  static const int kHashNotComputedMask = 1;
  static const int kIsNotArrayIndexMask = 1 << 1;
  static const int kNofHashBitFields = 2;

  // Shift constant retrieving hash code from hash field.
  static const int kHashShift = kNofHashBitFields;

  // Only these bits are relevant in the hash, since the top two are shifted
  // out.
  static const uint32_t kHashBitMask = 0xffffffffu >> kHashShift;

  // Array index strings this short can keep their index in the hash field.
  static const int kMaxCachedArrayIndexLength = 7;

  // For strings which are array indexes the hash value has the string length
  // mixed into the hash, mainly to avoid a hash value of zero which would be
  // the case for the string '0'. 24 bits are used for the array index value.
  static const int kArrayIndexValueBits = 24;
  static const int kArrayIndexLengthBits =
      kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;

  STATIC_ASSERT((kArrayIndexLengthBits > 0));

  class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
      kArrayIndexValueBits> {};  // NOLINT
  class ArrayIndexLengthBits : public BitField<unsigned int,
      kNofHashBitFields + kArrayIndexValueBits,
      kArrayIndexLengthBits> {};  // NOLINT

  // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
  // could use a mask to test if the length of string is less than or equal to
  // kMaxCachedArrayIndexLength.
  STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));

  static const unsigned int kContainsCachedArrayIndexMask =
      (~static_cast<unsigned>(kMaxCachedArrayIndexLength)
       << ArrayIndexLengthBits::kShift) |
      kIsNotArrayIndexMask;

  // Value of empty hash field indicating that the hash is not computed.
  static const int kEmptyHashField =
      kIsNotArrayIndexMask | kHashNotComputedMask;

 protected:
  static inline bool IsHashFieldComputed(uint32_t field);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(Name);
};


// ES6 symbols.
class Symbol: public Name {
 public:
  // [name]: the print name of a symbol, or undefined if none.
  DECL_ACCESSORS(name, Object)

  DECL_ACCESSORS(flags, Smi)

  // [is_private]: whether this is a private symbol.
  DECL_BOOLEAN_ACCESSORS(is_private)

  // [is_own]: whether this is an own symbol, that is, only used to designate
  // own properties of objects.
  DECL_BOOLEAN_ACCESSORS(is_own)

  DECLARE_CAST(Symbol)

  // Dispatched behavior.
  DECLARE_PRINTER(Symbol)
  DECLARE_VERIFIER(Symbol)

  // Layout description.
  static const int kNameOffset = Name::kSize;
  static const int kFlagsOffset = kNameOffset + kPointerSize;
  static const int kSize = kFlagsOffset + kPointerSize;

  typedef FixedBodyDescriptor<kNameOffset, kFlagsOffset, kSize> BodyDescriptor;

  void SymbolShortPrint(std::ostream& os);

 private:
  static const int kPrivateBit = 0;
  static const int kOwnBit = 1;

  const char* PrivateSymbolToName() const;

#if TRACE_MAPS
  friend class Name;  // For PrivateSymbolToName.
#endif

  DISALLOW_IMPLICIT_CONSTRUCTORS(Symbol);
};


class ConsString;

// The String abstract class captures JavaScript string values:
//
// Ecma-262:
//  4.3.16 String Value
//    A string value is a member of the type String and is a finite
//    ordered sequence of zero or more 16-bit unsigned integer values.
//
// All string values have a length field.
class String: public Name {
 public:
  enum Encoding { ONE_BYTE_ENCODING, TWO_BYTE_ENCODING };

  // Array index strings this short can keep their index in the hash field.
  static const int kMaxCachedArrayIndexLength = 7;

  // For strings which are array indexes the hash value has the string length
  // mixed into the hash, mainly to avoid a hash value of zero which would be
  // the case for the string '0'. 24 bits are used for the array index value.
  static const int kArrayIndexValueBits = 24;
  static const int kArrayIndexLengthBits =
      kBitsPerInt - kArrayIndexValueBits - kNofHashBitFields;

  STATIC_ASSERT((kArrayIndexLengthBits > 0));

  class ArrayIndexValueBits : public BitField<unsigned int, kNofHashBitFields,
      kArrayIndexValueBits> {};  // NOLINT
  class ArrayIndexLengthBits : public BitField<unsigned int,
      kNofHashBitFields + kArrayIndexValueBits,
      kArrayIndexLengthBits> {};  // NOLINT

  // Check that kMaxCachedArrayIndexLength + 1 is a power of two so we
  // could use a mask to test if the length of string is less than or equal to
  // kMaxCachedArrayIndexLength.
  STATIC_ASSERT(IS_POWER_OF_TWO(kMaxCachedArrayIndexLength + 1));

  static const unsigned int kContainsCachedArrayIndexMask =
      (~static_cast<unsigned>(kMaxCachedArrayIndexLength)
       << ArrayIndexLengthBits::kShift) |
      kIsNotArrayIndexMask;

  class SubStringRange {
   public:
    explicit SubStringRange(String* string, int first = 0, int length = -1)
        : string_(string),
          first_(first),
          length_(length == -1 ? string->length() : length) {}
    class iterator;
    inline iterator begin();
    inline iterator end();

   private:
    String* string_;
    int first_;
    int length_;
  };

  // Representation of the flat content of a String.
  // A non-flat string doesn't have flat content.
  // A flat string has content that's encoded as a sequence of either
  // one-byte chars or two-byte UC16.
  // Returned by String::GetFlatContent().
  class FlatContent {
   public:
    // Returns true if the string is flat and this structure contains content.
    bool IsFlat() { return state_ != NON_FLAT; }
    // Returns true if the structure contains one-byte content.
    bool IsOneByte() { return state_ == ONE_BYTE; }
    // Returns true if the structure contains two-byte content.
    bool IsTwoByte() { return state_ == TWO_BYTE; }

    // Return the one byte content of the string. Only use if IsOneByte()
    // returns true.
    Vector<const uint8_t> ToOneByteVector() {
      DCHECK_EQ(ONE_BYTE, state_);
      return Vector<const uint8_t>(onebyte_start, length_);
    }
    // Return the two-byte content of the string. Only use if IsTwoByte()
    // returns true.
    Vector<const uc16> ToUC16Vector() {
      DCHECK_EQ(TWO_BYTE, state_);
      return Vector<const uc16>(twobyte_start, length_);
    }

    uc16 Get(int i) {
      DCHECK(i < length_);
      DCHECK(state_ != NON_FLAT);
      if (state_ == ONE_BYTE) return onebyte_start[i];
      return twobyte_start[i];
    }

    bool UsesSameString(const FlatContent& other) const {
      return onebyte_start == other.onebyte_start;
    }

   private:
    enum State { NON_FLAT, ONE_BYTE, TWO_BYTE };

    // Constructors only used by String::GetFlatContent().
    explicit FlatContent(const uint8_t* start, int length)
        : onebyte_start(start), length_(length), state_(ONE_BYTE) {}
    explicit FlatContent(const uc16* start, int length)
        : twobyte_start(start), length_(length), state_(TWO_BYTE) { }
    FlatContent() : onebyte_start(NULL), length_(0), state_(NON_FLAT) { }

    union {
      const uint8_t* onebyte_start;
      const uc16* twobyte_start;
    };
    int length_;
    State state_;

    friend class String;
    friend class IterableSubString;
  };

  template <typename Char>
  INLINE(Vector<const Char> GetCharVector());

  // Get and set the length of the string.
  inline int length() const;
  inline void set_length(int value);

  // Get and set the length of the string using acquire loads and release
  // stores.
  inline int synchronized_length() const;
  inline void synchronized_set_length(int value);

  // Returns whether this string has only one-byte chars, i.e. all of them can
  // be one-byte encoded.  This might be the case even if the string is
  // two-byte.  Such strings may appear when the embedder prefers
  // two-byte external representations even for one-byte data.
  inline bool IsOneByteRepresentation() const;
  inline bool IsTwoByteRepresentation() const;

  // Cons and slices have an encoding flag that may not represent the actual
  // encoding of the underlying string.  This is taken into account here.
  // Requires: this->IsFlat()
  inline bool IsOneByteRepresentationUnderneath();
  inline bool IsTwoByteRepresentationUnderneath();

  // NOTE: this should be considered only a hint.  False negatives are
  // possible.
  inline bool HasOnlyOneByteChars();

  // Get and set individual two byte chars in the string.
  inline void Set(int index, uint16_t value);
  // Get individual two byte char in the string.  Repeated calls
  // to this method are not efficient unless the string is flat.
  INLINE(uint16_t Get(int index));

  // Flattens the string.  Checks first inline to see if it is
  // necessary.  Does nothing if the string is not a cons string.
  // Flattening allocates a sequential string with the same data as
  // the given string and mutates the cons string to a degenerate
  // form, where the first component is the new sequential string and
  // the second component is the empty string.  If allocation fails,
  // this function returns a failure.  If flattening succeeds, this
  // function returns the sequential string that is now the first
  // component of the cons string.
  //
  // Degenerate cons strings are handled specially by the garbage
  // collector (see IsShortcutCandidate).

  static inline Handle<String> Flatten(Handle<String> string,
                                       PretenureFlag pretenure = NOT_TENURED);

  // Tries to return the content of a flat string as a structure holding either
  // a flat vector of char or of uc16.
  // If the string isn't flat, and therefore doesn't have flat content, the
  // returned structure will report so, and can't provide a vector of either
  // kind.
  FlatContent GetFlatContent();

  // Returns the parent of a sliced string or first part of a flat cons string.
  // Requires: StringShape(this).IsIndirect() && this->IsFlat()
  inline String* GetUnderlying();

  // String equality operations.
  inline bool Equals(String* other);
  inline static bool Equals(Handle<String> one, Handle<String> two);
  bool IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match = false);
  bool IsOneByteEqualTo(Vector<const uint8_t> str);
  bool IsTwoByteEqualTo(Vector<const uc16> str);

  // Return a UTF8 representation of the string.  The string is null
  // terminated but may optionally contain nulls.  Length is returned
  // in length_output if length_output is not a null pointer  The string
  // should be nearly flat, otherwise the performance of this method may
  // be very slow (quadratic in the length).  Setting robustness_flag to
  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
  // handles unexpected data without causing assert failures and it does not
  // do any heap allocations.  This is useful when printing stack traces.
  SmartArrayPointer<char> ToCString(AllowNullsFlag allow_nulls,
                                    RobustnessFlag robustness_flag,
                                    int offset,
                                    int length,
                                    int* length_output = 0);
  SmartArrayPointer<char> ToCString(
      AllowNullsFlag allow_nulls = DISALLOW_NULLS,
      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL,
      int* length_output = 0);

  // Return a 16 bit Unicode representation of the string.
  // The string should be nearly flat, otherwise the performance of
  // of this method may be very bad.  Setting robustness_flag to
  // ROBUST_STRING_TRAVERSAL invokes behaviour that is robust  This means it
  // handles unexpected data without causing assert failures and it does not
  // do any heap allocations.  This is useful when printing stack traces.
  SmartArrayPointer<uc16> ToWideCString(
      RobustnessFlag robustness_flag = FAST_STRING_TRAVERSAL);

  bool ComputeArrayIndex(uint32_t* index);

  // Externalization.
  bool MakeExternal(v8::String::ExternalStringResource* resource);
  bool MakeExternal(v8::String::ExternalOneByteStringResource* resource);

  // Conversion.
  inline bool AsArrayIndex(uint32_t* index);

  DECLARE_CAST(String)

  void PrintOn(FILE* out);

  // For use during stack traces.  Performs rudimentary sanity check.
  bool LooksValid();

  // Dispatched behavior.
  void StringShortPrint(StringStream* accumulator);
  void PrintUC16(std::ostream& os, int start = 0, int end = -1);  // NOLINT
#if defined(DEBUG) || defined(OBJECT_PRINT)
  char* ToAsciiArray();
#endif
  DECLARE_PRINTER(String)
  DECLARE_VERIFIER(String)

  inline bool IsFlat();

  // Layout description.
  static const int kLengthOffset = Name::kSize;
  static const int kSize = kLengthOffset + kPointerSize;

  // Maximum number of characters to consider when trying to convert a string
  // value into an array index.
  static const int kMaxArrayIndexSize = 10;
  STATIC_ASSERT(kMaxArrayIndexSize < (1 << kArrayIndexLengthBits));

  // Max char codes.
  static const int32_t kMaxOneByteCharCode = unibrow::Latin1::kMaxChar;
  static const uint32_t kMaxOneByteCharCodeU = unibrow::Latin1::kMaxChar;
  static const int kMaxUtf16CodeUnit = 0xffff;
  static const uint32_t kMaxUtf16CodeUnitU = kMaxUtf16CodeUnit;

  // Value of hash field containing computed hash equal to zero.
  static const int kEmptyStringHash = kIsNotArrayIndexMask;

  // Maximal string length.
  static const int kMaxLength = (1 << 28) - 16;

  // Max length for computing hash. For strings longer than this limit the
  // string length is used as the hash value.
  static const int kMaxHashCalcLength = 16383;

  // Limit for truncation in short printing.
  static const int kMaxShortPrintLength = 1024;

  // Support for regular expressions.
  const uc16* GetTwoByteData(unsigned start);

  // Helper function for flattening strings.
  template <typename sinkchar>
  static void WriteToFlat(String* source,
                          sinkchar* sink,
                          int from,
                          int to);

  // The return value may point to the first aligned word containing the first
  // non-one-byte character, rather than directly to the non-one-byte character.
  // If the return value is >= the passed length, the entire string was
  // one-byte.
  static inline int NonAsciiStart(const char* chars, int length) {
    const char* start = chars;
    const char* limit = chars + length;

    if (length >= kIntptrSize) {
      // Check unaligned bytes.
      while (!IsAligned(reinterpret_cast<intptr_t>(chars), sizeof(uintptr_t))) {
        if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
          return static_cast<int>(chars - start);
        }
        ++chars;
      }
      // Check aligned words.
      DCHECK(unibrow::Utf8::kMaxOneByteChar == 0x7F);
      const uintptr_t non_one_byte_mask = kUintptrAllBitsSet / 0xFF * 0x80;
      while (chars + sizeof(uintptr_t) <= limit) {
        if (*reinterpret_cast<const uintptr_t*>(chars) & non_one_byte_mask) {
          return static_cast<int>(chars - start);
        }
        chars += sizeof(uintptr_t);
      }
    }
    // Check remaining unaligned bytes.
    while (chars < limit) {
      if (static_cast<uint8_t>(*chars) > unibrow::Utf8::kMaxOneByteChar) {
        return static_cast<int>(chars - start);
      }
      ++chars;
    }

    return static_cast<int>(chars - start);
  }

  static inline bool IsAscii(const char* chars, int length) {
    return NonAsciiStart(chars, length) >= length;
  }

  static inline bool IsAscii(const uint8_t* chars, int length) {
    return
        NonAsciiStart(reinterpret_cast<const char*>(chars), length) >= length;
  }

  static inline int NonOneByteStart(const uc16* chars, int length) {
    const uc16* limit = chars + length;
    const uc16* start = chars;
    while (chars < limit) {
      if (*chars > kMaxOneByteCharCodeU) return static_cast<int>(chars - start);
      ++chars;
    }
    return static_cast<int>(chars - start);
  }

  static inline bool IsOneByte(const uc16* chars, int length) {
    return NonOneByteStart(chars, length) >= length;
  }

  template<class Visitor>
  static inline ConsString* VisitFlat(Visitor* visitor,
                                      String* string,
                                      int offset = 0);

  static Handle<FixedArray> CalculateLineEnds(Handle<String> string,
                                              bool include_ending_line);

  // Use the hash field to forward to the canonical internalized string
  // when deserializing an internalized string.
  inline void SetForwardedInternalizedString(String* string);
  inline String* GetForwardedInternalizedString();

 private:
  friend class Name;
  friend class StringTableInsertionKey;

  static Handle<String> SlowFlatten(Handle<ConsString> cons,
                                    PretenureFlag tenure);

  // Slow case of String::Equals.  This implementation works on any strings
  // but it is most efficient on strings that are almost flat.
  bool SlowEquals(String* other);

  static bool SlowEquals(Handle<String> one, Handle<String> two);

  // Slow case of AsArrayIndex.
  bool SlowAsArrayIndex(uint32_t* index);

  // Compute and set the hash code.
  uint32_t ComputeAndSetHash();

  DISALLOW_IMPLICIT_CONSTRUCTORS(String);
};


// The SeqString abstract class captures sequential string values.
class SeqString: public String {
 public:
  DECLARE_CAST(SeqString)

  // Layout description.
  static const int kHeaderSize = String::kSize;

  // Truncate the string in-place if possible and return the result.
  // In case of new_length == 0, the empty string is returned without
  // truncating the original string.
  MUST_USE_RESULT static Handle<String> Truncate(Handle<SeqString> string,
                                                 int new_length);
 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqString);
};


// The OneByteString class captures sequential one-byte string objects.
// Each character in the OneByteString is an one-byte character.
class SeqOneByteString: public SeqString {
 public:
  static const bool kHasOneByteEncoding = true;

  // Dispatched behavior.
  inline uint16_t SeqOneByteStringGet(int index);
  inline void SeqOneByteStringSet(int index, uint16_t value);

  // Get the address of the characters in this string.
  inline Address GetCharsAddress();

  inline uint8_t* GetChars();

  DECLARE_CAST(SeqOneByteString)

  // Garbage collection support.  This method is called by the
  // garbage collector to compute the actual size of an OneByteString
  // instance.
  inline int SeqOneByteStringSize(InstanceType instance_type);

  // Computes the size for an OneByteString instance of a given length.
  static int SizeFor(int length) {
    return OBJECT_POINTER_ALIGN(kHeaderSize + length * kCharSize);
  }

  // Maximal memory usage for a single sequential one-byte string.
  static const int kMaxSize = 512 * MB - 1;
  STATIC_ASSERT((kMaxSize - kHeaderSize) >= String::kMaxLength);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqOneByteString);
};


// The TwoByteString class captures sequential unicode string objects.
// Each character in the TwoByteString is a two-byte uint16_t.
class SeqTwoByteString: public SeqString {
 public:
  static const bool kHasOneByteEncoding = false;

  // Dispatched behavior.
  inline uint16_t SeqTwoByteStringGet(int index);
  inline void SeqTwoByteStringSet(int index, uint16_t value);

  // Get the address of the characters in this string.
  inline Address GetCharsAddress();

  inline uc16* GetChars();

  // For regexp code.
  const uint16_t* SeqTwoByteStringGetData(unsigned start);

  DECLARE_CAST(SeqTwoByteString)

  // Garbage collection support.  This method is called by the
  // garbage collector to compute the actual size of a TwoByteString
  // instance.
  inline int SeqTwoByteStringSize(InstanceType instance_type);

  // Computes the size for a TwoByteString instance of a given length.
  static int SizeFor(int length) {
    return OBJECT_POINTER_ALIGN(kHeaderSize + length * kShortSize);
  }

  // Maximal memory usage for a single sequential two-byte string.
  static const int kMaxSize = 512 * MB - 1;
  STATIC_ASSERT(static_cast<int>((kMaxSize - kHeaderSize)/sizeof(uint16_t)) >=
               String::kMaxLength);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(SeqTwoByteString);
};


// The ConsString class describes string values built by using the
// addition operator on strings.  A ConsString is a pair where the
// first and second components are pointers to other string values.
// One or both components of a ConsString can be pointers to other
// ConsStrings, creating a binary tree of ConsStrings where the leaves
// are non-ConsString string values.  The string value represented by
// a ConsString can be obtained by concatenating the leaf string
// values in a left-to-right depth-first traversal of the tree.
class ConsString: public String {
 public:
  // First string of the cons cell.
  inline String* first();
  // Doesn't check that the result is a string, even in debug mode.  This is
  // useful during GC where the mark bits confuse the checks.
  inline Object* unchecked_first();
  inline void set_first(String* first,
                        WriteBarrierMode mode = UPDATE_WRITE_BARRIER);

  // Second string of the cons cell.
  inline String* second();
  // Doesn't check that the result is a string, even in debug mode.  This is
  // useful during GC where the mark bits confuse the checks.
  inline Object* unchecked_second();
  inline void set_second(String* second,
                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER);

  // Dispatched behavior.
  uint16_t ConsStringGet(int index);

  DECLARE_CAST(ConsString)

  // Layout description.
  static const int kFirstOffset = POINTER_SIZE_ALIGN(String::kSize);
  static const int kSecondOffset = kFirstOffset + kPointerSize;
  static const int kSize = kSecondOffset + kPointerSize;

  // Minimum length for a cons string.
  static const int kMinLength = 13;

  typedef FixedBodyDescriptor<kFirstOffset, kSecondOffset + kPointerSize, kSize>
          BodyDescriptor;

  DECLARE_VERIFIER(ConsString)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ConsString);
};


// The Sliced String class describes strings that are substrings of another
// sequential string.  The motivation is to save time and memory when creating
// a substring.  A Sliced String is described as a pointer to the parent,
// the offset from the start of the parent string and the length.  Using
// a Sliced String therefore requires unpacking of the parent string and
// adding the offset to the start address.  A substring of a Sliced String
// are not nested since the double indirection is simplified when creating
// such a substring.
// Currently missing features are:
//  - handling externalized parent strings
//  - external strings as parent
//  - truncating sliced string to enable otherwise unneeded parent to be GC'ed.
class SlicedString: public String {
 public:
  inline String* parent();
  inline void set_parent(String* parent,
                         WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
  inline int offset() const;
  inline void set_offset(int offset);

  // Dispatched behavior.
  uint16_t SlicedStringGet(int index);

  DECLARE_CAST(SlicedString)

  // Layout description.
  static const int kParentOffset = POINTER_SIZE_ALIGN(String::kSize);
  static const int kOffsetOffset = kParentOffset + kPointerSize;
  static const int kSize = kOffsetOffset + kPointerSize;

  // Minimum length for a sliced string.
  static const int kMinLength = 13;

  typedef FixedBodyDescriptor<kParentOffset,
                              kOffsetOffset + kPointerSize, kSize>
          BodyDescriptor;

  DECLARE_VERIFIER(SlicedString)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(SlicedString);
};


// The ExternalString class describes string values that are backed by
// a string resource that lies outside the V8 heap.  ExternalStrings
// consist of the length field common to all strings, a pointer to the
// external resource.  It is important to ensure (externally) that the
// resource is not deallocated while the ExternalString is live in the
// V8 heap.
//
// The API expects that all ExternalStrings are created through the
// API.  Therefore, ExternalStrings should not be used internally.
class ExternalString: public String {
 public:
  DECLARE_CAST(ExternalString)

  // Layout description.
  static const int kResourceOffset = POINTER_SIZE_ALIGN(String::kSize);
  static const int kShortSize = kResourceOffset + kPointerSize;
  static const int kResourceDataOffset = kResourceOffset + kPointerSize;
  static const int kSize = kResourceDataOffset + kPointerSize;

  static const int kMaxShortLength =
      (kShortSize - SeqString::kHeaderSize) / kCharSize;

  // Return whether external string is short (data pointer is not cached).
  inline bool is_short();

  STATIC_ASSERT(kResourceOffset == Internals::kStringResourceOffset);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalString);
};


// The ExternalOneByteString class is an external string backed by an
// one-byte string.
class ExternalOneByteString : public ExternalString {
 public:
  static const bool kHasOneByteEncoding = true;

  typedef v8::String::ExternalOneByteStringResource Resource;

  // The underlying resource.
  inline const Resource* resource();
  inline void set_resource(const Resource* buffer);

  // Update the pointer cache to the external character array.
  // The cached pointer is always valid, as the external character array does =
  // not move during lifetime.  Deserialization is the only exception, after
  // which the pointer cache has to be refreshed.
  inline void update_data_cache();

  inline const uint8_t* GetChars();

  // Dispatched behavior.
  inline uint16_t ExternalOneByteStringGet(int index);

  DECLARE_CAST(ExternalOneByteString)

  // Garbage collection support.
  inline void ExternalOneByteStringIterateBody(ObjectVisitor* v);

  template <typename StaticVisitor>
  inline void ExternalOneByteStringIterateBody();

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalOneByteString);
};


// The ExternalTwoByteString class is an external string backed by a UTF-16
// encoded string.
class ExternalTwoByteString: public ExternalString {
 public:
  static const bool kHasOneByteEncoding = false;

  typedef v8::String::ExternalStringResource Resource;

  // The underlying string resource.
  inline const Resource* resource();
  inline void set_resource(const Resource* buffer);

  // Update the pointer cache to the external character array.
  // The cached pointer is always valid, as the external character array does =
  // not move during lifetime.  Deserialization is the only exception, after
  // which the pointer cache has to be refreshed.
  inline void update_data_cache();

  inline const uint16_t* GetChars();

  // Dispatched behavior.
  inline uint16_t ExternalTwoByteStringGet(int index);

  // For regexp code.
  inline const uint16_t* ExternalTwoByteStringGetData(unsigned start);

  DECLARE_CAST(ExternalTwoByteString)

  // Garbage collection support.
  inline void ExternalTwoByteStringIterateBody(ObjectVisitor* v);

  template<typename StaticVisitor>
  inline void ExternalTwoByteStringIterateBody();

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExternalTwoByteString);
};


// Utility superclass for stack-allocated objects that must be updated
// on gc.  It provides two ways for the gc to update instances, either
// iterating or updating after gc.
class Relocatable BASE_EMBEDDED {
 public:
  explicit inline Relocatable(Isolate* isolate);
  inline virtual ~Relocatable();
  virtual void IterateInstance(ObjectVisitor* v) { }
  virtual void PostGarbageCollection() { }

  static void PostGarbageCollectionProcessing(Isolate* isolate);
  static int ArchiveSpacePerThread();
  static char* ArchiveState(Isolate* isolate, char* to);
  static char* RestoreState(Isolate* isolate, char* from);
  static void Iterate(Isolate* isolate, ObjectVisitor* v);
  static void Iterate(ObjectVisitor* v, Relocatable* top);
  static char* Iterate(ObjectVisitor* v, char* t);

 private:
  Isolate* isolate_;
  Relocatable* prev_;
};


// A flat string reader provides random access to the contents of a
// string independent of the character width of the string.  The handle
// must be valid as long as the reader is being used.
class FlatStringReader : public Relocatable {
 public:
  FlatStringReader(Isolate* isolate, Handle<String> str);
  FlatStringReader(Isolate* isolate, Vector<const char> input);
  void PostGarbageCollection();
  inline uc32 Get(int index);
  template <typename Char>
  inline Char Get(int index);
  int length() { return length_; }
 private:
  String** str_;
  bool is_one_byte_;
  int length_;
  const void* start_;
};


// This maintains an off-stack representation of the stack frames required
// to traverse a ConsString, allowing an entirely iterative and restartable
// traversal of the entire string
class ConsStringIterator {
 public:
  inline ConsStringIterator() {}
  inline explicit ConsStringIterator(ConsString* cons_string, int offset = 0) {
    Reset(cons_string, offset);
  }
  inline void Reset(ConsString* cons_string, int offset = 0) {
    depth_ = 0;
    // Next will always return NULL.
    if (cons_string == NULL) return;
    Initialize(cons_string, offset);
  }
  // Returns NULL when complete.
  inline String* Next(int* offset_out) {
    *offset_out = 0;
    if (depth_ == 0) return NULL;
    return Continue(offset_out);
  }

 private:
  static const int kStackSize = 32;
  // Use a mask instead of doing modulo operations for stack wrapping.
  static const int kDepthMask = kStackSize-1;
  STATIC_ASSERT(IS_POWER_OF_TWO(kStackSize));
  static inline int OffsetForDepth(int depth);

  inline void PushLeft(ConsString* string);
  inline void PushRight(ConsString* string);
  inline void AdjustMaximumDepth();
  inline void Pop();
  inline bool StackBlown() { return maximum_depth_ - depth_ == kStackSize; }
  void Initialize(ConsString* cons_string, int offset);
  String* Continue(int* offset_out);
  String* NextLeaf(bool* blew_stack);
  String* Search(int* offset_out);

  // Stack must always contain only frames for which right traversal
  // has not yet been performed.
  ConsString* frames_[kStackSize];
  ConsString* root_;
  int depth_;
  int maximum_depth_;
  int consumed_;
  DISALLOW_COPY_AND_ASSIGN(ConsStringIterator);
};


class StringCharacterStream {
 public:
  inline StringCharacterStream(String* string,
                               int offset = 0);
  inline uint16_t GetNext();
  inline bool HasMore();
  inline void Reset(String* string, int offset = 0);
  inline void VisitOneByteString(const uint8_t* chars, int length);
  inline void VisitTwoByteString(const uint16_t* chars, int length);

 private:
  ConsStringIterator iter_;
  bool is_one_byte_;
  union {
    const uint8_t* buffer8_;
    const uint16_t* buffer16_;
  };
  const uint8_t* end_;
  DISALLOW_COPY_AND_ASSIGN(StringCharacterStream);
};


template <typename T>
class VectorIterator {
 public:
  VectorIterator(T* d, int l) : data_(Vector<const T>(d, l)), index_(0) { }
  explicit VectorIterator(Vector<const T> data) : data_(data), index_(0) { }
  T GetNext() { return data_[index_++]; }
  bool has_more() { return index_ < data_.length(); }
 private:
  Vector<const T> data_;
  int index_;
};


// The Oddball describes objects null, undefined, true, and false.
class Oddball: public HeapObject {
 public:
  // [to_string]: Cached to_string computed at startup.
  DECL_ACCESSORS(to_string, String)

  // [to_number]: Cached to_number computed at startup.
  DECL_ACCESSORS(to_number, Object)

  inline byte kind() const;
  inline void set_kind(byte kind);

  DECLARE_CAST(Oddball)

  // Dispatched behavior.
  DECLARE_VERIFIER(Oddball)

  // Initialize the fields.
  static void Initialize(Isolate* isolate,
                         Handle<Oddball> oddball,
                         const char* to_string,
                         Handle<Object> to_number,
                         byte kind);

  // Layout description.
  static const int kToStringOffset = HeapObject::kHeaderSize;
  static const int kToNumberOffset = kToStringOffset + kPointerSize;
  static const int kKindOffset = kToNumberOffset + kPointerSize;
  static const int kSize = kKindOffset + kPointerSize;

  static const byte kFalse = 0;
  static const byte kTrue = 1;
  static const byte kNotBooleanMask = ~1;
  static const byte kTheHole = 2;
  static const byte kNull = 3;
  static const byte kArgumentMarker = 4;
  static const byte kUndefined = 5;
  static const byte kUninitialized = 6;
  static const byte kOther = 7;
  static const byte kException = 8;

  typedef FixedBodyDescriptor<kToStringOffset,
                              kToNumberOffset + kPointerSize,
                              kSize> BodyDescriptor;

  STATIC_ASSERT(kKindOffset == Internals::kOddballKindOffset);
  STATIC_ASSERT(kNull == Internals::kNullOddballKind);
  STATIC_ASSERT(kUndefined == Internals::kUndefinedOddballKind);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(Oddball);
};


class Cell: public HeapObject {
 public:
  // [value]: value of the cell.
  DECL_ACCESSORS(value, Object)

  DECLARE_CAST(Cell)

  static inline Cell* FromValueAddress(Address value) {
    Object* result = FromAddress(value - kValueOffset);
    return static_cast<Cell*>(result);
  }

  inline Address ValueAddress() {
    return address() + kValueOffset;
  }

  // Dispatched behavior.
  DECLARE_PRINTER(Cell)
  DECLARE_VERIFIER(Cell)

  // Layout description.
  static const int kValueOffset = HeapObject::kHeaderSize;
  static const int kSize = kValueOffset + kPointerSize;

  typedef FixedBodyDescriptor<kValueOffset,
                              kValueOffset + kPointerSize,
                              kSize> BodyDescriptor;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(Cell);
};


class PropertyCell : public HeapObject {
 public:
  // [value]: value of the global property.
  DECL_ACCESSORS(value, Object)
  // [dependent_code]: dependent code that depends on the type of the global
  // property.
  DECL_ACCESSORS(dependent_code, DependentCode)

  PropertyCellConstantType GetConstantType();

  // Computes the new type of the cell's contents for the given value, but
  // without actually modifying the details.
  static PropertyCellType UpdatedType(Handle<PropertyCell> cell,
                                      Handle<Object> value,
                                      PropertyDetails details);
  static void UpdateCell(Handle<NameDictionary> dictionary, int entry,
                         Handle<Object> value, PropertyDetails details);

  static Handle<PropertyCell> InvalidateEntry(Handle<NameDictionary> dictionary,
                                              int entry);

  static void SetValueWithInvalidation(Handle<PropertyCell> cell,
                                       Handle<Object> new_value);

  DECLARE_CAST(PropertyCell)

  // Dispatched behavior.
  DECLARE_PRINTER(PropertyCell)
  DECLARE_VERIFIER(PropertyCell)

  // Layout description.
  static const int kValueOffset = HeapObject::kHeaderSize;
  static const int kDependentCodeOffset = kValueOffset + kPointerSize;
  static const int kSize = kDependentCodeOffset + kPointerSize;

  static const int kPointerFieldsBeginOffset = kValueOffset;
  static const int kPointerFieldsEndOffset = kSize;

  typedef FixedBodyDescriptor<kValueOffset,
                              kSize,
                              kSize> BodyDescriptor;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(PropertyCell);
};


class WeakCell : public HeapObject {
 public:
  inline Object* value() const;

  // This should not be called by anyone except GC.
  inline void clear();

  // This should not be called by anyone except allocator.
  inline void initialize(HeapObject* value);

  inline bool cleared() const;

  DECL_ACCESSORS(next, Object)

  DECLARE_CAST(WeakCell)

  DECLARE_PRINTER(WeakCell)
  DECLARE_VERIFIER(WeakCell)

  // Layout description.
  static const int kValueOffset = HeapObject::kHeaderSize;
  static const int kNextOffset = kValueOffset + kPointerSize;
  static const int kSize = kNextOffset + kPointerSize;

  typedef FixedBodyDescriptor<kValueOffset, kSize, kSize> BodyDescriptor;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(WeakCell);
};


// The JSProxy describes EcmaScript Harmony proxies
class JSProxy: public JSReceiver {
 public:
  // [handler]: The handler property.
  DECL_ACCESSORS(handler, Object)

  // [hash]: The hash code property (undefined if not initialized yet).
  DECL_ACCESSORS(hash, Object)

  DECLARE_CAST(JSProxy)

  MUST_USE_RESULT static MaybeHandle<Object> GetPropertyWithHandler(
      Handle<JSProxy> proxy,
      Handle<Object> receiver,
      Handle<Name> name);
  MUST_USE_RESULT static inline MaybeHandle<Object> GetElementWithHandler(
      Handle<JSProxy> proxy,
      Handle<Object> receiver,
      uint32_t index);

  // If the handler defines an accessor property with a setter, invoke it.
  // If it defines an accessor property without a setter, or a data property
  // that is read-only, throw. In all these cases set '*done' to true,
  // otherwise set it to false.
  MUST_USE_RESULT
  static MaybeHandle<Object> SetPropertyViaPrototypesWithHandler(
      Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
      Handle<Object> value, LanguageMode language_mode, bool* done);

  MUST_USE_RESULT static Maybe<PropertyAttributes>
      GetPropertyAttributesWithHandler(Handle<JSProxy> proxy,
                                       Handle<Object> receiver,
                                       Handle<Name> name);
  MUST_USE_RESULT static Maybe<PropertyAttributes>
      GetElementAttributeWithHandler(Handle<JSProxy> proxy,
                                     Handle<JSReceiver> receiver,
                                     uint32_t index);
  MUST_USE_RESULT static MaybeHandle<Object> SetPropertyWithHandler(
      Handle<JSProxy> proxy, Handle<Object> receiver, Handle<Name> name,
      Handle<Object> value, LanguageMode language_mode);

  // Turn the proxy into an (empty) JSObject.
  static void Fix(Handle<JSProxy> proxy);

  // Initializes the body after the handler slot.
  inline void InitializeBody(int object_size, Object* value);

  // Invoke a trap by name. If the trap does not exist on this's handler,
  // but derived_trap is non-NULL, invoke that instead.  May cause GC.
  MUST_USE_RESULT static MaybeHandle<Object> CallTrap(
      Handle<JSProxy> proxy,
      const char* name,
      Handle<Object> derived_trap,
      int argc,
      Handle<Object> args[]);

  // Dispatched behavior.
  DECLARE_PRINTER(JSProxy)
  DECLARE_VERIFIER(JSProxy)

  // Layout description. We add padding so that a proxy has the same
  // size as a virgin JSObject. This is essential for becoming a JSObject
  // upon freeze.
  static const int kHandlerOffset = HeapObject::kHeaderSize;
  static const int kHashOffset = kHandlerOffset + kPointerSize;
  static const int kPaddingOffset = kHashOffset + kPointerSize;
  static const int kSize = JSObject::kHeaderSize;
  static const int kHeaderSize = kPaddingOffset;
  static const int kPaddingSize = kSize - kPaddingOffset;

  STATIC_ASSERT(kPaddingSize >= 0);

  typedef FixedBodyDescriptor<kHandlerOffset,
                              kPaddingOffset,
                              kSize> BodyDescriptor;

 private:
  friend class JSReceiver;

  MUST_USE_RESULT static inline MaybeHandle<Object> SetElementWithHandler(
      Handle<JSProxy> proxy, Handle<JSReceiver> receiver, uint32_t index,
      Handle<Object> value, LanguageMode language_mode);

  MUST_USE_RESULT static Maybe<bool> HasPropertyWithHandler(
      Handle<JSProxy> proxy, Handle<Name> name);
  MUST_USE_RESULT static inline Maybe<bool> HasElementWithHandler(
      Handle<JSProxy> proxy, uint32_t index);

  MUST_USE_RESULT static MaybeHandle<Object> DeletePropertyWithHandler(
      Handle<JSProxy> proxy, Handle<Name> name, LanguageMode language_mode);
  MUST_USE_RESULT static MaybeHandle<Object> DeleteElementWithHandler(
      Handle<JSProxy> proxy, uint32_t index, LanguageMode language_mode);

  MUST_USE_RESULT Object* GetIdentityHash();

  static Handle<Smi> GetOrCreateIdentityHash(Handle<JSProxy> proxy);

  DISALLOW_IMPLICIT_CONSTRUCTORS(JSProxy);
};


class JSFunctionProxy: public JSProxy {
 public:
  // [call_trap]: The call trap.
  DECL_ACCESSORS(call_trap, Object)

  // [construct_trap]: The construct trap.
  DECL_ACCESSORS(construct_trap, Object)

  DECLARE_CAST(JSFunctionProxy)

  // Dispatched behavior.
  DECLARE_PRINTER(JSFunctionProxy)
  DECLARE_VERIFIER(JSFunctionProxy)

  // Layout description.
  static const int kCallTrapOffset = JSProxy::kPaddingOffset;
  static const int kConstructTrapOffset = kCallTrapOffset + kPointerSize;
  static const int kPaddingOffset = kConstructTrapOffset + kPointerSize;
  static const int kSize = JSFunction::kSize;
  static const int kPaddingSize = kSize - kPaddingOffset;

  STATIC_ASSERT(kPaddingSize >= 0);

  typedef FixedBodyDescriptor<kHandlerOffset,
                              kConstructTrapOffset + kPointerSize,
                              kSize> BodyDescriptor;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSFunctionProxy);
};


class JSCollection : public JSObject {
 public:
  // [table]: the backing hash table
  DECL_ACCESSORS(table, Object)

  static const int kTableOffset = JSObject::kHeaderSize;
  static const int kSize = kTableOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSCollection);
};


// The JSSet describes EcmaScript Harmony sets
class JSSet : public JSCollection {
 public:
  DECLARE_CAST(JSSet)

  // Dispatched behavior.
  DECLARE_PRINTER(JSSet)
  DECLARE_VERIFIER(JSSet)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSSet);
};


// The JSMap describes EcmaScript Harmony maps
class JSMap : public JSCollection {
 public:
  DECLARE_CAST(JSMap)

  // Dispatched behavior.
  DECLARE_PRINTER(JSMap)
  DECLARE_VERIFIER(JSMap)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSMap);
};


// OrderedHashTableIterator is an iterator that iterates over the keys and
// values of an OrderedHashTable.
//
// The iterator has a reference to the underlying OrderedHashTable data,
// [table], as well as the current [index] the iterator is at.
//
// When the OrderedHashTable is rehashed it adds a reference from the old table
// to the new table as well as storing enough data about the changes so that the
// iterator [index] can be adjusted accordingly.
//
// When the [Next] result from the iterator is requested, the iterator checks if
// there is a newer table that it needs to transition to.
template<class Derived, class TableType>
class OrderedHashTableIterator: public JSObject {
 public:
  // [table]: the backing hash table mapping keys to values.
  DECL_ACCESSORS(table, Object)

  // [index]: The index into the data table.
  DECL_ACCESSORS(index, Object)

  // [kind]: The kind of iteration this is. One of the [Kind] enum values.
  DECL_ACCESSORS(kind, Object)

#ifdef OBJECT_PRINT
  void OrderedHashTableIteratorPrint(std::ostream& os);  // NOLINT
#endif

  static const int kTableOffset = JSObject::kHeaderSize;
  static const int kIndexOffset = kTableOffset + kPointerSize;
  static const int kKindOffset = kIndexOffset + kPointerSize;
  static const int kSize = kKindOffset + kPointerSize;

  enum Kind {
    kKindKeys = 1,
    kKindValues = 2,
    kKindEntries = 3
  };

  // Whether the iterator has more elements. This needs to be called before
  // calling |CurrentKey| and/or |CurrentValue|.
  bool HasMore();

  // Move the index forward one.
  void MoveNext() {
    set_index(Smi::FromInt(Smi::cast(index())->value() + 1));
  }

  // Populates the array with the next key and value and then moves the iterator
  // forward.
  // This returns the |kind| or 0 if the iterator is already at the end.
  Smi* Next(JSArray* value_array);

  // Returns the current key of the iterator. This should only be called when
  // |HasMore| returns true.
  inline Object* CurrentKey();

 private:
  // Transitions the iterator to the non obsolete backing store. This is a NOP
  // if the [table] is not obsolete.
  void Transition();

  DISALLOW_IMPLICIT_CONSTRUCTORS(OrderedHashTableIterator);
};


class JSSetIterator: public OrderedHashTableIterator<JSSetIterator,
                                                     OrderedHashSet> {
 public:
  // Dispatched behavior.
  DECLARE_PRINTER(JSSetIterator)
  DECLARE_VERIFIER(JSSetIterator)

  DECLARE_CAST(JSSetIterator)

  // Called by |Next| to populate the array. This allows the subclasses to
  // populate the array differently.
  inline void PopulateValueArray(FixedArray* array);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSSetIterator);
};


class JSMapIterator: public OrderedHashTableIterator<JSMapIterator,
                                                     OrderedHashMap> {
 public:
  // Dispatched behavior.
  DECLARE_PRINTER(JSMapIterator)
  DECLARE_VERIFIER(JSMapIterator)

  DECLARE_CAST(JSMapIterator)

  // Called by |Next| to populate the array. This allows the subclasses to
  // populate the array differently.
  inline void PopulateValueArray(FixedArray* array);

 private:
  // Returns the current value of the iterator. This should only be called when
  // |HasMore| returns true.
  inline Object* CurrentValue();

  DISALLOW_IMPLICIT_CONSTRUCTORS(JSMapIterator);
};


// Base class for both JSWeakMap and JSWeakSet
class JSWeakCollection: public JSObject {
 public:
  // [table]: the backing hash table mapping keys to values.
  DECL_ACCESSORS(table, Object)

  // [next]: linked list of encountered weak maps during GC.
  DECL_ACCESSORS(next, Object)

  static const int kTableOffset = JSObject::kHeaderSize;
  static const int kNextOffset = kTableOffset + kPointerSize;
  static const int kSize = kNextOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakCollection);
};


// The JSWeakMap describes EcmaScript Harmony weak maps
class JSWeakMap: public JSWeakCollection {
 public:
  DECLARE_CAST(JSWeakMap)

  // Dispatched behavior.
  DECLARE_PRINTER(JSWeakMap)
  DECLARE_VERIFIER(JSWeakMap)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakMap);
};


// The JSWeakSet describes EcmaScript Harmony weak sets
class JSWeakSet: public JSWeakCollection {
 public:
  DECLARE_CAST(JSWeakSet)

  // Dispatched behavior.
  DECLARE_PRINTER(JSWeakSet)
  DECLARE_VERIFIER(JSWeakSet)

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSWeakSet);
};


class JSArrayBuffer: public JSObject {
 public:
  // [backing_store]: backing memory for this array
  DECL_ACCESSORS(backing_store, void)

  // [byte_length]: length in bytes
  DECL_ACCESSORS(byte_length, Object)

  inline uint32_t bit_field() const;
  inline void set_bit_field(uint32_t bits);

  inline bool is_external();
  inline void set_is_external(bool value);

  inline bool is_neuterable();
  inline void set_is_neuterable(bool value);

  inline bool was_neutered();
  inline void set_was_neutered(bool value);

  DECLARE_CAST(JSArrayBuffer)

  void Neuter();

  // Dispatched behavior.
  DECLARE_PRINTER(JSArrayBuffer)
  DECLARE_VERIFIER(JSArrayBuffer)

  static const int kBackingStoreOffset = JSObject::kHeaderSize;
  static const int kByteLengthOffset = kBackingStoreOffset + kPointerSize;
  static const int kBitFieldSlot = kByteLengthOffset + kPointerSize;
#if V8_TARGET_LITTLE_ENDIAN || !V8_HOST_ARCH_64_BIT
  static const int kBitFieldOffset = kBitFieldSlot;
#else
  static const int kBitFieldOffset = kBitFieldSlot + kIntSize;
#endif
  static const int kSize = kBitFieldSlot + kPointerSize;

  static const int kSizeWithInternalFields =
      kSize + v8::ArrayBuffer::kInternalFieldCount * kPointerSize;

  class IsExternal : public BitField<bool, 1, 1> {};
  class IsNeuterable : public BitField<bool, 2, 1> {};
  class WasNeutered : public BitField<bool, 3, 1> {};

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBuffer);
};


class JSArrayBufferView: public JSObject {
 public:
  // [buffer]: ArrayBuffer that this typed array views.
  DECL_ACCESSORS(buffer, Object)

  // [byte_offset]: offset of typed array in bytes.
  DECL_ACCESSORS(byte_offset, Object)

  // [byte_length]: length of typed array in bytes.
  DECL_ACCESSORS(byte_length, Object)

  DECLARE_CAST(JSArrayBufferView)

  DECLARE_VERIFIER(JSArrayBufferView)

  inline bool WasNeutered() const;

  static const int kBufferOffset = JSObject::kHeaderSize;
  static const int kByteOffsetOffset = kBufferOffset + kPointerSize;
  static const int kByteLengthOffset = kByteOffsetOffset + kPointerSize;
  static const int kViewSize = kByteLengthOffset + kPointerSize;

 private:
#ifdef VERIFY_HEAP
  DECL_ACCESSORS(raw_byte_offset, Object)
  DECL_ACCESSORS(raw_byte_length, Object)
#endif

  DISALLOW_IMPLICIT_CONSTRUCTORS(JSArrayBufferView);
};


class JSTypedArray: public JSArrayBufferView {
 public:
  // [length]: length of typed array in elements.
  DECL_ACCESSORS(length, Object)

  DECLARE_CAST(JSTypedArray)

  ExternalArrayType type();
  size_t element_size();

  Handle<JSArrayBuffer> GetBuffer();

  // Dispatched behavior.
  DECLARE_PRINTER(JSTypedArray)
  DECLARE_VERIFIER(JSTypedArray)

  static const int kLengthOffset = kViewSize + kPointerSize;
  static const int kSize = kLengthOffset + kPointerSize;

  static const int kSizeWithInternalFields =
      kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;

 private:
  static Handle<JSArrayBuffer> MaterializeArrayBuffer(
      Handle<JSTypedArray> typed_array);
#ifdef VERIFY_HEAP
  DECL_ACCESSORS(raw_length, Object)
#endif

  DISALLOW_IMPLICIT_CONSTRUCTORS(JSTypedArray);
};


class JSDataView: public JSArrayBufferView {
 public:
  DECLARE_CAST(JSDataView)

  // Dispatched behavior.
  DECLARE_PRINTER(JSDataView)
  DECLARE_VERIFIER(JSDataView)

  static const int kSize = kViewSize;

  static const int kSizeWithInternalFields =
      kSize + v8::ArrayBufferView::kInternalFieldCount * kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSDataView);
};


// Foreign describes objects pointing from JavaScript to C structures.
class Foreign: public HeapObject {
 public:
  // [address]: field containing the address.
  inline Address foreign_address();
  inline void set_foreign_address(Address value);

  DECLARE_CAST(Foreign)

  // Dispatched behavior.
  inline void ForeignIterateBody(ObjectVisitor* v);

  template<typename StaticVisitor>
  inline void ForeignIterateBody();

  // Dispatched behavior.
  DECLARE_PRINTER(Foreign)
  DECLARE_VERIFIER(Foreign)

  // Layout description.

  static const int kForeignAddressOffset = HeapObject::kHeaderSize;
  static const int kSize = kForeignAddressOffset + kPointerSize;

  STATIC_ASSERT(kForeignAddressOffset == Internals::kForeignAddressOffset);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(Foreign);
};


// The JSArray describes JavaScript Arrays
//  Such an array can be in one of two modes:
//    - fast, backing storage is a FixedArray and length <= elements.length();
//       Please note: push and pop can be used to grow and shrink the array.
//    - slow, backing storage is a HashTable with numbers as keys.
class JSArray: public JSObject {
 public:
  // [length]: The length property.
  DECL_ACCESSORS(length, Object)

  // Overload the length setter to skip write barrier when the length
  // is set to a smi. This matches the set function on FixedArray.
  inline void set_length(Smi* length);

  static void JSArrayUpdateLengthFromIndex(Handle<JSArray> array,
                                           uint32_t index,
                                           Handle<Object> value);

  static bool HasReadOnlyLength(Handle<JSArray> array);
  static bool WouldChangeReadOnlyLength(Handle<JSArray> array, uint32_t index);
  static MaybeHandle<Object> ReadOnlyLengthError(Handle<JSArray> array);

  // Initialize the array with the given capacity. The function may
  // fail due to out-of-memory situations, but only if the requested
  // capacity is non-zero.
  static void Initialize(Handle<JSArray> array, int capacity, int length = 0);

  // If the JSArray has fast elements, and new_length would result in
  // normalization, returns true.
  static inline bool SetElementsLengthWouldNormalize(
      Heap* heap, Handle<Object> new_length_handle);

  // Initializes the array to a certain length.
  inline bool AllowsSetElementsLength();
  // Can cause GC.
  MUST_USE_RESULT static MaybeHandle<Object> SetElementsLength(
      Handle<JSArray> array,
      Handle<Object> length);

  // Set the content of the array to the content of storage.
  static inline void SetContent(Handle<JSArray> array,
                                Handle<FixedArrayBase> storage);

  DECLARE_CAST(JSArray)

  // Ensures that the fixed array backing the JSArray has at
  // least the stated size.
  static inline void EnsureSize(Handle<JSArray> array,
                                int minimum_size_of_backing_fixed_array);

  // Expand the fixed array backing of a fast-case JSArray to at least
  // the requested size.
  static void Expand(Handle<JSArray> array,
                     int minimum_size_of_backing_fixed_array);

  // Dispatched behavior.
  DECLARE_PRINTER(JSArray)
  DECLARE_VERIFIER(JSArray)

  // Number of element slots to pre-allocate for an empty array.
  static const int kPreallocatedArrayElements = 4;

  // Layout description.
  static const int kLengthOffset = JSObject::kHeaderSize;
  static const int kSize = kLengthOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSArray);
};


Handle<Object> CacheInitialJSArrayMaps(Handle<Context> native_context,
                                       Handle<Map> initial_map);


// JSRegExpResult is just a JSArray with a specific initial map.
// This initial map adds in-object properties for "index" and "input"
// properties, as assigned by RegExp.prototype.exec, which allows
// faster creation of RegExp exec results.
// This class just holds constants used when creating the result.
// After creation the result must be treated as a JSArray in all regards.
class JSRegExpResult: public JSArray {
 public:
  // Offsets of object fields.
  static const int kIndexOffset = JSArray::kSize;
  static const int kInputOffset = kIndexOffset + kPointerSize;
  static const int kSize = kInputOffset + kPointerSize;
  // Indices of in-object properties.
  static const int kIndexIndex = 0;
  static const int kInputIndex = 1;
 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(JSRegExpResult);
};


class AccessorInfo: public Struct {
 public:
  DECL_ACCESSORS(name, Object)
  DECL_ACCESSORS(flag, Smi)
  DECL_ACCESSORS(expected_receiver_type, Object)

  inline bool all_can_read();
  inline void set_all_can_read(bool value);

  inline bool all_can_write();
  inline void set_all_can_write(bool value);

  inline PropertyAttributes property_attributes();
  inline void set_property_attributes(PropertyAttributes attributes);

  // Checks whether the given receiver is compatible with this accessor.
  static bool IsCompatibleReceiverMap(Isolate* isolate,
                                      Handle<AccessorInfo> info,
                                      Handle<Map> map);
  inline bool IsCompatibleReceiver(Object* receiver);

  DECLARE_CAST(AccessorInfo)

  // Dispatched behavior.
  DECLARE_VERIFIER(AccessorInfo)

  // Append all descriptors to the array that are not already there.
  // Return number added.
  static int AppendUnique(Handle<Object> descriptors,
                          Handle<FixedArray> array,
                          int valid_descriptors);

  static const int kNameOffset = HeapObject::kHeaderSize;
  static const int kFlagOffset = kNameOffset + kPointerSize;
  static const int kExpectedReceiverTypeOffset = kFlagOffset + kPointerSize;
  static const int kSize = kExpectedReceiverTypeOffset + kPointerSize;

 private:
  inline bool HasExpectedReceiverType() {
    return expected_receiver_type()->IsFunctionTemplateInfo();
  }
  // Bit positions in flag.
  static const int kAllCanReadBit = 0;
  static const int kAllCanWriteBit = 1;
  class AttributesField: public BitField<PropertyAttributes, 2, 3> {};

  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorInfo);
};


// An accessor must have a getter, but can have no setter.
//
// When setting a property, V8 searches accessors in prototypes.
// If an accessor was found and it does not have a setter,
// the request is ignored.
//
// If the accessor in the prototype has the READ_ONLY property attribute, then
// a new value is added to the derived object when the property is set.
// This shadows the accessor in the prototype.
class ExecutableAccessorInfo: public AccessorInfo {
 public:
  DECL_ACCESSORS(getter, Object)
  DECL_ACCESSORS(setter, Object)
  DECL_ACCESSORS(data, Object)

  DECLARE_CAST(ExecutableAccessorInfo)

  // Dispatched behavior.
  DECLARE_PRINTER(ExecutableAccessorInfo)
  DECLARE_VERIFIER(ExecutableAccessorInfo)

  static const int kGetterOffset = AccessorInfo::kSize;
  static const int kSetterOffset = kGetterOffset + kPointerSize;
  static const int kDataOffset = kSetterOffset + kPointerSize;
  static const int kSize = kDataOffset + kPointerSize;

  static inline void ClearSetter(Handle<ExecutableAccessorInfo> info);

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(ExecutableAccessorInfo);
};


// Support for JavaScript accessors: A pair of a getter and a setter. Each
// accessor can either be
//   * a pointer to a JavaScript function or proxy: a real accessor
//   * undefined: considered an accessor by the spec, too, strangely enough
//   * the hole: an accessor which has not been set
//   * a pointer to a map: a transition used to ensure map sharing
class AccessorPair: public Struct {
 public:
  DECL_ACCESSORS(getter, Object)
  DECL_ACCESSORS(setter, Object)

  DECLARE_CAST(AccessorPair)

  static Handle<AccessorPair> Copy(Handle<AccessorPair> pair);

  Object* get(AccessorComponent component) {
    return component == ACCESSOR_GETTER ? getter() : setter();
  }

  void set(AccessorComponent component, Object* value) {
    if (component == ACCESSOR_GETTER) {
      set_getter(value);
    } else {
      set_setter(value);
    }
  }

  // Note: Returns undefined instead in case of a hole.
  Object* GetComponent(AccessorComponent component);

  // Set both components, skipping arguments which are a JavaScript null.
  void SetComponents(Object* getter, Object* setter) {
    if (!getter->IsNull()) set_getter(getter);
    if (!setter->IsNull()) set_setter(setter);
  }

  bool Equals(AccessorPair* pair) {
    return (this == pair) || pair->Equals(getter(), setter());
  }

  bool Equals(Object* getter_value, Object* setter_value) {
    return (getter() == getter_value) && (setter() == setter_value);
  }

  bool ContainsAccessor() {
    return IsJSAccessor(getter()) || IsJSAccessor(setter());
  }

  // Dispatched behavior.
  DECLARE_PRINTER(AccessorPair)
  DECLARE_VERIFIER(AccessorPair)

  static const int kGetterOffset = HeapObject::kHeaderSize;
  static const int kSetterOffset = kGetterOffset + kPointerSize;
  static const int kSize = kSetterOffset + kPointerSize;

 private:
  // Strangely enough, in addition to functions and harmony proxies, the spec
  // requires us to consider undefined as a kind of accessor, too:
  //    var obj = {};
  //    Object.defineProperty(obj, "foo", {get: undefined});
  //    assertTrue("foo" in obj);
  bool IsJSAccessor(Object* obj) {
    return obj->IsSpecFunction() || obj->IsUndefined();
  }

  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessorPair);
};


class AccessCheckInfo: public Struct {
 public:
  DECL_ACCESSORS(named_callback, Object)
  DECL_ACCESSORS(indexed_callback, Object)
  DECL_ACCESSORS(data, Object)

  DECLARE_CAST(AccessCheckInfo)

  // Dispatched behavior.
  DECLARE_PRINTER(AccessCheckInfo)
  DECLARE_VERIFIER(AccessCheckInfo)

  static const int kNamedCallbackOffset   = HeapObject::kHeaderSize;
  static const int kIndexedCallbackOffset = kNamedCallbackOffset + kPointerSize;
  static const int kDataOffset = kIndexedCallbackOffset + kPointerSize;
  static const int kSize = kDataOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(AccessCheckInfo);
};


class InterceptorInfo: public Struct {
 public:
  DECL_ACCESSORS(getter, Object)
  DECL_ACCESSORS(setter, Object)
  DECL_ACCESSORS(query, Object)
  DECL_ACCESSORS(deleter, Object)
  DECL_ACCESSORS(enumerator, Object)
  DECL_ACCESSORS(data, Object)
  DECL_BOOLEAN_ACCESSORS(can_intercept_symbols)
  DECL_BOOLEAN_ACCESSORS(all_can_read)
  DECL_BOOLEAN_ACCESSORS(non_masking)

  inline int flags() const;
  inline void set_flags(int flags);

  DECLARE_CAST(InterceptorInfo)

  // Dispatched behavior.
  DECLARE_PRINTER(InterceptorInfo)
  DECLARE_VERIFIER(InterceptorInfo)

  static const int kGetterOffset = HeapObject::kHeaderSize;
  static const int kSetterOffset = kGetterOffset + kPointerSize;
  static const int kQueryOffset = kSetterOffset + kPointerSize;
  static const int kDeleterOffset = kQueryOffset + kPointerSize;
  static const int kEnumeratorOffset = kDeleterOffset + kPointerSize;
  static const int kDataOffset = kEnumeratorOffset + kPointerSize;
  static const int kFlagsOffset = kDataOffset + kPointerSize;
  static const int kSize = kFlagsOffset + kPointerSize;

  static const int kCanInterceptSymbolsBit = 0;
  static const int kAllCanReadBit = 1;
  static const int kNonMasking = 2;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(InterceptorInfo);
};


class CallHandlerInfo: public Struct {
 public:
  DECL_ACCESSORS(callback, Object)
  DECL_ACCESSORS(data, Object)

  DECLARE_CAST(CallHandlerInfo)

  // Dispatched behavior.
  DECLARE_PRINTER(CallHandlerInfo)
  DECLARE_VERIFIER(CallHandlerInfo)

  static const int kCallbackOffset = HeapObject::kHeaderSize;
  static const int kDataOffset = kCallbackOffset + kPointerSize;
  static const int kSize = kDataOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(CallHandlerInfo);
};


class TemplateInfo: public Struct {
 public:
  DECL_ACCESSORS(tag, Object)
  DECL_ACCESSORS(property_list, Object)
  DECL_ACCESSORS(property_accessors, Object)

  DECLARE_VERIFIER(TemplateInfo)

  static const int kTagOffset = HeapObject::kHeaderSize;
  static const int kPropertyListOffset = kTagOffset + kPointerSize;
  static const int kPropertyAccessorsOffset =
      kPropertyListOffset + kPointerSize;
  static const int kHeaderSize = kPropertyAccessorsOffset + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(TemplateInfo);
};


class FunctionTemplateInfo: public TemplateInfo {
 public:
  DECL_ACCESSORS(serial_number, Object)
  DECL_ACCESSORS(call_code, Object)
  DECL_ACCESSORS(prototype_template, Object)
  DECL_ACCESSORS(parent_template, Object)
  DECL_ACCESSORS(named_property_handler, Object)
  DECL_ACCESSORS(indexed_property_handler, Object)
  DECL_ACCESSORS(instance_template, Object)
  DECL_ACCESSORS(class_name, Object)
  DECL_ACCESSORS(signature, Object)
  DECL_ACCESSORS(instance_call_handler, Object)
  DECL_ACCESSORS(access_check_info, Object)
  DECL_ACCESSORS(flag, Smi)

  inline int length() const;
  inline void set_length(int value);

  // Following properties use flag bits.
  DECL_BOOLEAN_ACCESSORS(hidden_prototype)
  DECL_BOOLEAN_ACCESSORS(undetectable)
  // If the bit is set, object instances created by this function
  // requires access check.
  DECL_BOOLEAN_ACCESSORS(needs_access_check)
  DECL_BOOLEAN_ACCESSORS(read_only_prototype)
  DECL_BOOLEAN_ACCESSORS(remove_prototype)
  DECL_BOOLEAN_ACCESSORS(do_not_cache)
  DECL_BOOLEAN_ACCESSORS(instantiated)
  DECL_BOOLEAN_ACCESSORS(accept_any_receiver)

  DECLARE_CAST(FunctionTemplateInfo)

  // Dispatched behavior.
  DECLARE_PRINTER(FunctionTemplateInfo)
  DECLARE_VERIFIER(FunctionTemplateInfo)

  static const int kSerialNumberOffset = TemplateInfo::kHeaderSize;
  static const int kCallCodeOffset = kSerialNumberOffset + kPointerSize;
  static const int kPrototypeTemplateOffset =
      kCallCodeOffset + kPointerSize;
  static const int kParentTemplateOffset =
      kPrototypeTemplateOffset + kPointerSize;
  static const int kNamedPropertyHandlerOffset =
      kParentTemplateOffset + kPointerSize;
  static const int kIndexedPropertyHandlerOffset =
      kNamedPropertyHandlerOffset + kPointerSize;
  static const int kInstanceTemplateOffset =
      kIndexedPropertyHandlerOffset + kPointerSize;
  static const int kClassNameOffset = kInstanceTemplateOffset + kPointerSize;
  static const int kSignatureOffset = kClassNameOffset + kPointerSize;
  static const int kInstanceCallHandlerOffset = kSignatureOffset + kPointerSize;
  static const int kAccessCheckInfoOffset =
      kInstanceCallHandlerOffset + kPointerSize;
  static const int kFlagOffset = kAccessCheckInfoOffset + kPointerSize;
  static const int kLengthOffset = kFlagOffset + kPointerSize;
  static const int kSize = kLengthOffset + kPointerSize;

  // Returns true if |object| is an instance of this function template.
  bool IsTemplateFor(Object* object);
  bool IsTemplateFor(Map* map);

  // Returns the holder JSObject if the function can legally be called with this
  // receiver.  Returns Heap::null_value() if the call is illegal.
  Object* GetCompatibleReceiver(Isolate* isolate, Object* receiver);

 private:
  // Bit position in the flag, from least significant bit position.
  static const int kHiddenPrototypeBit   = 0;
  static const int kUndetectableBit      = 1;
  static const int kNeedsAccessCheckBit  = 2;
  static const int kReadOnlyPrototypeBit = 3;
  static const int kRemovePrototypeBit   = 4;
  static const int kDoNotCacheBit        = 5;
  static const int kInstantiatedBit      = 6;
  static const int kAcceptAnyReceiver = 7;

  DISALLOW_IMPLICIT_CONSTRUCTORS(FunctionTemplateInfo);
};


class ObjectTemplateInfo: public TemplateInfo {
 public:
  DECL_ACCESSORS(constructor, Object)
  DECL_ACCESSORS(internal_field_count, Object)

  DECLARE_CAST(ObjectTemplateInfo)

  // Dispatched behavior.
  DECLARE_PRINTER(ObjectTemplateInfo)
  DECLARE_VERIFIER(ObjectTemplateInfo)

  static const int kConstructorOffset = TemplateInfo::kHeaderSize;
  static const int kInternalFieldCountOffset =
      kConstructorOffset + kPointerSize;
  static const int kSize = kInternalFieldCountOffset + kPointerSize;
};


class TypeSwitchInfo: public Struct {
 public:
  DECL_ACCESSORS(types, Object)

  DECLARE_CAST(TypeSwitchInfo)

  // Dispatched behavior.
  DECLARE_PRINTER(TypeSwitchInfo)
  DECLARE_VERIFIER(TypeSwitchInfo)

  static const int kTypesOffset = Struct::kHeaderSize;
  static const int kSize        = kTypesOffset + kPointerSize;
};


// The DebugInfo class holds additional information for a function being
// debugged.
class DebugInfo: public Struct {
 public:
  // The shared function info for the source being debugged.
  DECL_ACCESSORS(shared, SharedFunctionInfo)
  // Code object for the original code.
  DECL_ACCESSORS(original_code, Code)
  // Code object for the patched code. This code object is the code object
  // currently active for the function.
  DECL_ACCESSORS(code, Code)
  // Fixed array holding status information for each active break point.
  DECL_ACCESSORS(break_points, FixedArray)

  // Check if there is a break point at a code position.
  bool HasBreakPoint(int code_position);
  // Get the break point info object for a code position.
  Object* GetBreakPointInfo(int code_position);
  // Clear a break point.
  static void ClearBreakPoint(Handle<DebugInfo> debug_info,
                              int code_position,
                              Handle<Object> break_point_object);
  // Set a break point.
  static void SetBreakPoint(Handle<DebugInfo> debug_info, int code_position,
                            int source_position, int statement_position,
                            Handle<Object> break_point_object);
  // Get the break point objects for a code position.
  Handle<Object> GetBreakPointObjects(int code_position);
  // Find the break point info holding this break point object.
  static Handle<Object> FindBreakPointInfo(Handle<DebugInfo> debug_info,
                                           Handle<Object> break_point_object);
  // Get the number of break points for this function.
  int GetBreakPointCount();

  DECLARE_CAST(DebugInfo)

  // Dispatched behavior.
  DECLARE_PRINTER(DebugInfo)
  DECLARE_VERIFIER(DebugInfo)

  static const int kSharedFunctionInfoIndex = Struct::kHeaderSize;
  static const int kOriginalCodeIndex = kSharedFunctionInfoIndex + kPointerSize;
  static const int kPatchedCodeIndex = kOriginalCodeIndex + kPointerSize;
  static const int kActiveBreakPointsCountIndex =
      kPatchedCodeIndex + kPointerSize;
  static const int kBreakPointsStateIndex =
      kActiveBreakPointsCountIndex + kPointerSize;
  static const int kSize = kBreakPointsStateIndex + kPointerSize;

  static const int kEstimatedNofBreakPointsInFunction = 16;

 private:
  static const int kNoBreakPointInfo = -1;

  // Lookup the index in the break_points array for a code position.
  int GetBreakPointInfoIndex(int code_position);

  DISALLOW_IMPLICIT_CONSTRUCTORS(DebugInfo);
};


// The BreakPointInfo class holds information for break points set in a
// function. The DebugInfo object holds a BreakPointInfo object for each code
// position with one or more break points.
class BreakPointInfo: public Struct {
 public:
  // The position in the code for the break point.
  DECL_ACCESSORS(code_position, Smi)
  // The position in the source for the break position.
  DECL_ACCESSORS(source_position, Smi)
  // The position in the source for the last statement before this break
  // position.
  DECL_ACCESSORS(statement_position, Smi)
  // List of related JavaScript break points.
  DECL_ACCESSORS(break_point_objects, Object)

  // Removes a break point.
  static void ClearBreakPoint(Handle<BreakPointInfo> info,
                              Handle<Object> break_point_object);
  // Set a break point.
  static void SetBreakPoint(Handle<BreakPointInfo> info,
                            Handle<Object> break_point_object);
  // Check if break point info has this break point object.
  static bool HasBreakPointObject(Handle<BreakPointInfo> info,
                                  Handle<Object> break_point_object);
  // Get the number of break points for this code position.
  int GetBreakPointCount();

  DECLARE_CAST(BreakPointInfo)

  // Dispatched behavior.
  DECLARE_PRINTER(BreakPointInfo)
  DECLARE_VERIFIER(BreakPointInfo)

  static const int kCodePositionIndex = Struct::kHeaderSize;
  static const int kSourcePositionIndex = kCodePositionIndex + kPointerSize;
  static const int kStatementPositionIndex =
      kSourcePositionIndex + kPointerSize;
  static const int kBreakPointObjectsIndex =
      kStatementPositionIndex + kPointerSize;
  static const int kSize = kBreakPointObjectsIndex + kPointerSize;

 private:
  DISALLOW_IMPLICIT_CONSTRUCTORS(BreakPointInfo);
};


#undef DECL_BOOLEAN_ACCESSORS
#undef DECL_ACCESSORS
#undef DECLARE_CAST
#undef DECLARE_VERIFIER

#define VISITOR_SYNCHRONIZATION_TAGS_LIST(V)                               \
  V(kStringTable, "string_table", "(Internalized strings)")                \
  V(kExternalStringsTable, "external_strings_table", "(External strings)") \
  V(kStrongRootList, "strong_root_list", "(Strong roots)")                 \
  V(kSmiRootList, "smi_root_list", "(Smi roots)")                          \
  V(kInternalizedString, "internalized_string", "(Internal string)")       \
  V(kBootstrapper, "bootstrapper", "(Bootstrapper)")                       \
  V(kTop, "top", "(Isolate)")                                              \
  V(kRelocatable, "relocatable", "(Relocatable)")                          \
  V(kDebug, "debug", "(Debugger)")                                         \
  V(kCompilationCache, "compilationcache", "(Compilation cache)")          \
  V(kHandleScope, "handlescope", "(Handle scope)")                         \
  V(kBuiltins, "builtins", "(Builtins)")                                   \
  V(kGlobalHandles, "globalhandles", "(Global handles)")                   \
  V(kEternalHandles, "eternalhandles", "(Eternal handles)")                \
  V(kThreadManager, "threadmanager", "(Thread manager)")                   \
  V(kStrongRoots, "strong roots", "(Strong roots)")                        \
  V(kExtensions, "Extensions", "(Extensions)")

class VisitorSynchronization : public AllStatic {
 public:
#define DECLARE_ENUM(enum_item, ignore1, ignore2) enum_item,
  enum SyncTag {
    VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_ENUM)
    kNumberOfSyncTags
  };
#undef DECLARE_ENUM

  static const char* const kTags[kNumberOfSyncTags];
  static const char* const kTagNames[kNumberOfSyncTags];
};

// Abstract base class for visiting, and optionally modifying, the
// pointers contained in Objects. Used in GC and serialization/deserialization.
class ObjectVisitor BASE_EMBEDDED {
 public:
  virtual ~ObjectVisitor() {}

  // Visits a contiguous arrays of pointers in the half-open range
  // [start, end). Any or all of the values may be modified on return.
  virtual void VisitPointers(Object** start, Object** end) = 0;

  // Handy shorthand for visiting a single pointer.
  virtual void VisitPointer(Object** p) { VisitPointers(p, p + 1); }

  // Visit weak next_code_link in Code object.
  virtual void VisitNextCodeLink(Object** p) { VisitPointers(p, p + 1); }

  // To allow lazy clearing of inline caches the visitor has
  // a rich interface for iterating over Code objects..

  // Visits a code target in the instruction stream.
  virtual void VisitCodeTarget(RelocInfo* rinfo);

  // Visits a code entry in a JS function.
  virtual void VisitCodeEntry(Address entry_address);

  // Visits a global property cell reference in the instruction stream.
  virtual void VisitCell(RelocInfo* rinfo);

  // Visits a runtime entry in the instruction stream.
  virtual void VisitRuntimeEntry(RelocInfo* rinfo) {}

  // Visits the resource of an one-byte or two-byte string.
  virtual void VisitExternalOneByteString(
      v8::String::ExternalOneByteStringResource** resource) {}
  virtual void VisitExternalTwoByteString(
      v8::String::ExternalStringResource** resource) {}

  // Visits a debug call target in the instruction stream.
  virtual void VisitDebugTarget(RelocInfo* rinfo);

  // Visits the byte sequence in a function's prologue that contains information
  // about the code's age.
  virtual void VisitCodeAgeSequence(RelocInfo* rinfo);

  // Visit pointer embedded into a code object.
  virtual void VisitEmbeddedPointer(RelocInfo* rinfo);

  // Visits an external reference embedded into a code object.
  virtual void VisitExternalReference(RelocInfo* rinfo);

  // Visits an external reference.
  virtual void VisitExternalReference(Address* p) {}

  // Visits an (encoded) internal reference.
  virtual void VisitInternalReference(RelocInfo* rinfo) {}

  // Visits a handle that has an embedder-assigned class ID.
  virtual void VisitEmbedderReference(Object** p, uint16_t class_id) {}

  // Intended for serialization/deserialization checking: insert, or
  // check for the presence of, a tag at this position in the stream.
  // Also used for marking up GC roots in heap snapshots.
  virtual void Synchronize(VisitorSynchronization::SyncTag tag) {}
};


class StructBodyDescriptor : public
  FlexibleBodyDescriptor<HeapObject::kHeaderSize> {
 public:
  static inline int SizeOf(Map* map, HeapObject* object) {
    return map->instance_size();
  }
};


// BooleanBit is a helper class for setting and getting a bit in an
// integer or Smi.
class BooleanBit : public AllStatic {
 public:
  static inline bool get(Smi* smi, int bit_position) {
    return get(smi->value(), bit_position);
  }

  static inline bool get(int value, int bit_position) {
    return (value & (1 << bit_position)) != 0;
  }

  static inline Smi* set(Smi* smi, int bit_position, bool v) {
    return Smi::FromInt(set(smi->value(), bit_position, v));
  }

  static inline int set(int value, int bit_position, bool v) {
    if (v) {
      value |= (1 << bit_position);
    } else {
      value &= ~(1 << bit_position);
    }
    return value;
  }
};

} }  // namespace v8::internal

#endif  // V8_OBJECTS_H_