1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
|
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_OBJECTS_MAP_INL_H_
#define V8_OBJECTS_MAP_INL_H_
#include "src/objects/map.h"
#include "src/field-type.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/layout-descriptor-inl.h"
#include "src/objects-inl.h"
#include "src/objects/api-callbacks-inl.h"
#include "src/objects/cell-inl.h"
#include "src/objects/descriptor-array-inl.h"
#include "src/objects/instance-type-inl.h"
#include "src/objects/prototype-info-inl.h"
#include "src/objects/shared-function-info.h"
#include "src/objects/templates-inl.h"
#include "src/property.h"
#include "src/transitions.h"
// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
OBJECT_CONSTRUCTORS_IMPL(Map, HeapObject)
CAST_ACCESSOR(Map)
DescriptorArray Map::instance_descriptors() const {
return DescriptorArray::cast(READ_FIELD(*this, kDescriptorsOffset));
}
DescriptorArray Map::synchronized_instance_descriptors() const {
return DescriptorArray::cast(ACQUIRE_READ_FIELD(*this, kDescriptorsOffset));
}
void Map::set_synchronized_instance_descriptors(DescriptorArray value,
WriteBarrierMode mode) {
RELEASE_WRITE_FIELD(*this, kDescriptorsOffset, value);
CONDITIONAL_WRITE_BARRIER(*this, kDescriptorsOffset, value, mode);
}
// A freshly allocated layout descriptor can be set on an existing map.
// We need to use release-store and acquire-load accessor pairs to ensure
// that the concurrent marking thread observes initializing stores of the
// layout descriptor.
SYNCHRONIZED_ACCESSORS_CHECKED(Map, layout_descriptor, LayoutDescriptor,
kLayoutDescriptorOffset,
FLAG_unbox_double_fields)
WEAK_ACCESSORS(Map, raw_transitions, kTransitionsOrPrototypeInfoOffset)
// |bit_field| fields.
BIT_FIELD_ACCESSORS(Map, bit_field, has_non_instance_prototype,
Map::HasNonInstancePrototypeBit)
BIT_FIELD_ACCESSORS(Map, bit_field, is_callable, Map::IsCallableBit)
BIT_FIELD_ACCESSORS(Map, bit_field, has_named_interceptor,
Map::HasNamedInterceptorBit)
BIT_FIELD_ACCESSORS(Map, bit_field, has_indexed_interceptor,
Map::HasIndexedInterceptorBit)
BIT_FIELD_ACCESSORS(Map, bit_field, is_undetectable, Map::IsUndetectableBit)
BIT_FIELD_ACCESSORS(Map, bit_field, is_access_check_needed,
Map::IsAccessCheckNeededBit)
BIT_FIELD_ACCESSORS(Map, bit_field, is_constructor, Map::IsConstructorBit)
BIT_FIELD_ACCESSORS(Map, bit_field, has_prototype_slot,
Map::HasPrototypeSlotBit)
// |bit_field2| fields.
BIT_FIELD_ACCESSORS(Map, bit_field2, is_extensible, Map::IsExtensibleBit)
BIT_FIELD_ACCESSORS(Map, bit_field2, is_prototype_map, Map::IsPrototypeMapBit)
BIT_FIELD_ACCESSORS(Map, bit_field2, is_in_retained_map_list,
Map::IsInRetainedMapListBit)
// |bit_field3| fields.
BIT_FIELD_ACCESSORS(Map, bit_field3, owns_descriptors, Map::OwnsDescriptorsBit)
BIT_FIELD_ACCESSORS(Map, bit_field3, has_hidden_prototype,
Map::HasHiddenPrototypeBit)
BIT_FIELD_ACCESSORS(Map, bit_field3, is_deprecated, Map::IsDeprecatedBit)
BIT_FIELD_ACCESSORS(Map, bit_field3, is_migration_target,
Map::IsMigrationTargetBit)
BIT_FIELD_ACCESSORS(Map, bit_field3, is_immutable_proto,
Map::IsImmutablePrototypeBit)
BIT_FIELD_ACCESSORS(Map, bit_field3, new_target_is_base,
Map::NewTargetIsBaseBit)
BIT_FIELD_ACCESSORS(Map, bit_field3, may_have_interesting_symbols,
Map::MayHaveInterestingSymbolsBit)
BIT_FIELD_ACCESSORS(Map, bit_field3, construction_counter,
Map::ConstructionCounterBits)
InterceptorInfo Map::GetNamedInterceptor() {
DCHECK(has_named_interceptor());
FunctionTemplateInfo info = GetFunctionTemplateInfo();
return InterceptorInfo::cast(info->GetNamedPropertyHandler());
}
InterceptorInfo Map::GetIndexedInterceptor() {
DCHECK(has_indexed_interceptor());
FunctionTemplateInfo info = GetFunctionTemplateInfo();
return InterceptorInfo::cast(info->GetIndexedPropertyHandler());
}
bool Map::IsMostGeneralFieldType(Representation representation,
FieldType field_type) {
return !representation.IsHeapObject() || field_type->IsAny();
}
bool Map::CanHaveFastTransitionableElementsKind(InstanceType instance_type) {
return instance_type == JS_ARRAY_TYPE || instance_type == JS_VALUE_TYPE ||
instance_type == JS_ARGUMENTS_TYPE;
}
bool Map::CanHaveFastTransitionableElementsKind() const {
return CanHaveFastTransitionableElementsKind(instance_type());
}
// static
void Map::GeneralizeIfCanHaveTransitionableFastElementsKind(
Isolate* isolate, InstanceType instance_type, PropertyConstness* constness,
Representation* representation, Handle<FieldType>* field_type) {
if (CanHaveFastTransitionableElementsKind(instance_type)) {
// We don't support propagation of field generalization through elements
// kind transitions because they are inserted into the transition tree
// before field transitions. In order to avoid complexity of handling
// such a case we ensure that all maps with transitionable elements kinds
// have the most general field type.
if (representation->IsHeapObject()) {
// The field type is either already Any or should become Any if it was
// something else.
*field_type = FieldType::Any(isolate);
}
}
}
bool Map::IsUnboxedDoubleField(FieldIndex index) const {
if (!FLAG_unbox_double_fields) return false;
if (index.is_hidden_field() || !index.is_inobject()) return false;
return !layout_descriptor()->IsTagged(index.property_index());
}
bool Map::TooManyFastProperties(StoreOrigin store_origin) const {
if (UnusedPropertyFields() != 0) return false;
if (is_prototype_map()) return false;
if (store_origin == StoreOrigin::kNamed) {
int limit = Max(kMaxFastProperties, GetInObjectProperties());
FieldCounts counts = GetFieldCounts();
// Only count mutable fields so that objects with large numbers of
// constant functions do not go to dictionary mode. That would be bad
// because such objects have often been used as modules.
int external = counts.mutable_count() - GetInObjectProperties();
return external > limit || counts.GetTotal() > kMaxNumberOfDescriptors;
} else {
int limit = Max(kFastPropertiesSoftLimit, GetInObjectProperties());
int external = NumberOfFields() - GetInObjectProperties();
return external > limit;
}
}
PropertyDetails Map::GetLastDescriptorDetails() const {
return instance_descriptors()->GetDetails(LastAdded());
}
int Map::LastAdded() const {
int number_of_own_descriptors = NumberOfOwnDescriptors();
DCHECK_GT(number_of_own_descriptors, 0);
return number_of_own_descriptors - 1;
}
int Map::NumberOfOwnDescriptors() const {
return NumberOfOwnDescriptorsBits::decode(bit_field3());
}
void Map::SetNumberOfOwnDescriptors(int number) {
DCHECK_LE(number, instance_descriptors()->number_of_descriptors());
CHECK_LE(static_cast<unsigned>(number),
static_cast<unsigned>(kMaxNumberOfDescriptors));
set_bit_field3(NumberOfOwnDescriptorsBits::update(bit_field3(), number));
}
int Map::EnumLength() const { return EnumLengthBits::decode(bit_field3()); }
void Map::SetEnumLength(int length) {
if (length != kInvalidEnumCacheSentinel) {
DCHECK_LE(length, NumberOfOwnDescriptors());
CHECK_LE(static_cast<unsigned>(length),
static_cast<unsigned>(kMaxNumberOfDescriptors));
}
set_bit_field3(EnumLengthBits::update(bit_field3(), length));
}
FixedArrayBase Map::GetInitialElements() const {
FixedArrayBase result;
if (has_fast_elements() || has_fast_string_wrapper_elements()) {
result = GetReadOnlyRoots().empty_fixed_array();
} else if (has_fast_sloppy_arguments_elements()) {
result = GetReadOnlyRoots().empty_sloppy_arguments_elements();
} else if (has_fixed_typed_array_elements()) {
result =
GetReadOnlyRoots().EmptyFixedTypedArrayForTypedArray(elements_kind());
} else if (has_dictionary_elements()) {
result = GetReadOnlyRoots().empty_slow_element_dictionary();
} else {
UNREACHABLE();
}
DCHECK(!ObjectInYoungGeneration(result));
return result;
}
VisitorId Map::visitor_id() const {
return static_cast<VisitorId>(
RELAXED_READ_BYTE_FIELD(*this, kVisitorIdOffset));
}
void Map::set_visitor_id(VisitorId id) {
CHECK_LT(static_cast<unsigned>(id), 256);
RELAXED_WRITE_BYTE_FIELD(*this, kVisitorIdOffset, static_cast<byte>(id));
}
int Map::instance_size_in_words() const {
return RELAXED_READ_BYTE_FIELD(*this, kInstanceSizeInWordsOffset);
}
void Map::set_instance_size_in_words(int value) {
RELAXED_WRITE_BYTE_FIELD(*this, kInstanceSizeInWordsOffset,
static_cast<byte>(value));
}
int Map::instance_size() const {
return instance_size_in_words() << kTaggedSizeLog2;
}
void Map::set_instance_size(int value) {
CHECK(IsAligned(value, kTaggedSize));
value >>= kTaggedSizeLog2;
CHECK_LT(static_cast<unsigned>(value), 256);
set_instance_size_in_words(value);
}
int Map::inobject_properties_start_or_constructor_function_index() const {
return RELAXED_READ_BYTE_FIELD(
*this, kInObjectPropertiesStartOrConstructorFunctionIndexOffset);
}
void Map::set_inobject_properties_start_or_constructor_function_index(
int value) {
CHECK_LT(static_cast<unsigned>(value), 256);
RELAXED_WRITE_BYTE_FIELD(
*this, kInObjectPropertiesStartOrConstructorFunctionIndexOffset,
static_cast<byte>(value));
}
int Map::GetInObjectPropertiesStartInWords() const {
DCHECK(IsJSObjectMap());
return inobject_properties_start_or_constructor_function_index();
}
void Map::SetInObjectPropertiesStartInWords(int value) {
CHECK(IsJSObjectMap());
set_inobject_properties_start_or_constructor_function_index(value);
}
int Map::GetInObjectProperties() const {
DCHECK(IsJSObjectMap());
return instance_size_in_words() - GetInObjectPropertiesStartInWords();
}
int Map::GetConstructorFunctionIndex() const {
DCHECK(IsPrimitiveMap());
return inobject_properties_start_or_constructor_function_index();
}
void Map::SetConstructorFunctionIndex(int value) {
CHECK(IsPrimitiveMap());
set_inobject_properties_start_or_constructor_function_index(value);
}
int Map::GetInObjectPropertyOffset(int index) const {
return (GetInObjectPropertiesStartInWords() + index) * kTaggedSize;
}
Handle<Map> Map::AddMissingTransitionsForTesting(
Isolate* isolate, Handle<Map> split_map,
Handle<DescriptorArray> descriptors,
Handle<LayoutDescriptor> full_layout_descriptor) {
return AddMissingTransitions(isolate, split_map, descriptors,
full_layout_descriptor);
}
InstanceType Map::instance_type() const {
return static_cast<InstanceType>(
READ_UINT16_FIELD(*this, kInstanceTypeOffset));
}
void Map::set_instance_type(InstanceType value) {
WRITE_UINT16_FIELD(*this, kInstanceTypeOffset, value);
}
int Map::UnusedPropertyFields() const {
int value = used_or_unused_instance_size_in_words();
DCHECK_IMPLIES(!IsJSObjectMap(), value == 0);
int unused;
if (value >= JSObject::kFieldsAdded) {
unused = instance_size_in_words() - value;
} else {
// For out of object properties "used_or_unused_instance_size_in_words"
// byte encodes the slack in the property array.
unused = value;
}
return unused;
}
int Map::UnusedInObjectProperties() const {
// Like Map::UnusedPropertyFields(), but returns 0 for out of object
// properties.
int value = used_or_unused_instance_size_in_words();
DCHECK_IMPLIES(!IsJSObjectMap(), value == 0);
if (value >= JSObject::kFieldsAdded) {
return instance_size_in_words() - value;
}
return 0;
}
int Map::used_or_unused_instance_size_in_words() const {
return RELAXED_READ_BYTE_FIELD(*this, kUsedOrUnusedInstanceSizeInWordsOffset);
}
void Map::set_used_or_unused_instance_size_in_words(int value) {
CHECK_LE(static_cast<unsigned>(value), 255);
RELAXED_WRITE_BYTE_FIELD(*this, kUsedOrUnusedInstanceSizeInWordsOffset,
static_cast<byte>(value));
}
int Map::UsedInstanceSize() const {
int words = used_or_unused_instance_size_in_words();
if (words < JSObject::kFieldsAdded) {
// All in-object properties are used and the words is tracking the slack
// in the property array.
return instance_size();
}
return words * kTaggedSize;
}
void Map::SetInObjectUnusedPropertyFields(int value) {
STATIC_ASSERT(JSObject::kFieldsAdded == JSObject::kHeaderSize / kTaggedSize);
if (!IsJSObjectMap()) {
CHECK_EQ(0, value);
set_used_or_unused_instance_size_in_words(0);
DCHECK_EQ(0, UnusedPropertyFields());
return;
}
CHECK_LE(0, value);
DCHECK_LE(value, GetInObjectProperties());
int used_inobject_properties = GetInObjectProperties() - value;
set_used_or_unused_instance_size_in_words(
GetInObjectPropertyOffset(used_inobject_properties) / kTaggedSize);
DCHECK_EQ(value, UnusedPropertyFields());
}
void Map::SetOutOfObjectUnusedPropertyFields(int value) {
STATIC_ASSERT(JSObject::kFieldsAdded == JSObject::kHeaderSize / kTaggedSize);
CHECK_LT(static_cast<unsigned>(value), JSObject::kFieldsAdded);
// For out of object properties "used_instance_size_in_words" byte encodes
// the slack in the property array.
set_used_or_unused_instance_size_in_words(value);
DCHECK_EQ(value, UnusedPropertyFields());
}
void Map::CopyUnusedPropertyFields(Map map) {
set_used_or_unused_instance_size_in_words(
map->used_or_unused_instance_size_in_words());
DCHECK_EQ(UnusedPropertyFields(), map->UnusedPropertyFields());
}
void Map::CopyUnusedPropertyFieldsAdjustedForInstanceSize(Map map) {
int value = map->used_or_unused_instance_size_in_words();
if (value >= JSValue::kFieldsAdded) {
// Unused in-object fields. Adjust the offset from the object’s start
// so it matches the distance to the object’s end.
value += instance_size_in_words() - map->instance_size_in_words();
}
set_used_or_unused_instance_size_in_words(value);
DCHECK_EQ(UnusedPropertyFields(), map->UnusedPropertyFields());
}
void Map::AccountAddedPropertyField() {
// Update used instance size and unused property fields number.
STATIC_ASSERT(JSObject::kFieldsAdded == JSObject::kHeaderSize / kTaggedSize);
#ifdef DEBUG
int new_unused = UnusedPropertyFields() - 1;
if (new_unused < 0) new_unused += JSObject::kFieldsAdded;
#endif
int value = used_or_unused_instance_size_in_words();
if (value >= JSObject::kFieldsAdded) {
if (value == instance_size_in_words()) {
AccountAddedOutOfObjectPropertyField(0);
} else {
// The property is added in-object, so simply increment the counter.
set_used_or_unused_instance_size_in_words(value + 1);
}
} else {
AccountAddedOutOfObjectPropertyField(value);
}
DCHECK_EQ(new_unused, UnusedPropertyFields());
}
void Map::AccountAddedOutOfObjectPropertyField(int unused_in_property_array) {
unused_in_property_array--;
if (unused_in_property_array < 0) {
unused_in_property_array += JSObject::kFieldsAdded;
}
CHECK_LT(static_cast<unsigned>(unused_in_property_array),
JSObject::kFieldsAdded);
set_used_or_unused_instance_size_in_words(unused_in_property_array);
DCHECK_EQ(unused_in_property_array, UnusedPropertyFields());
}
byte Map::bit_field() const { return READ_BYTE_FIELD(*this, kBitFieldOffset); }
void Map::set_bit_field(byte value) {
WRITE_BYTE_FIELD(*this, kBitFieldOffset, value);
}
byte Map::bit_field2() const {
return READ_BYTE_FIELD(*this, kBitField2Offset);
}
void Map::set_bit_field2(byte value) {
WRITE_BYTE_FIELD(*this, kBitField2Offset, value);
}
bool Map::is_abandoned_prototype_map() const {
return is_prototype_map() && !owns_descriptors();
}
bool Map::should_be_fast_prototype_map() const {
if (!prototype_info()->IsPrototypeInfo()) return false;
return PrototypeInfo::cast(prototype_info())->should_be_fast_map();
}
void Map::set_elements_kind(ElementsKind elements_kind) {
CHECK_LT(static_cast<int>(elements_kind), kElementsKindCount);
set_bit_field2(Map::ElementsKindBits::update(bit_field2(), elements_kind));
}
ElementsKind Map::elements_kind() const {
return Map::ElementsKindBits::decode(bit_field2());
}
bool Map::has_fast_smi_elements() const {
return IsSmiElementsKind(elements_kind());
}
bool Map::has_fast_object_elements() const {
return IsObjectElementsKind(elements_kind());
}
bool Map::has_fast_smi_or_object_elements() const {
return IsSmiOrObjectElementsKind(elements_kind());
}
bool Map::has_fast_double_elements() const {
return IsDoubleElementsKind(elements_kind());
}
bool Map::has_fast_elements() const {
return IsFastElementsKind(elements_kind());
}
bool Map::has_sloppy_arguments_elements() const {
return IsSloppyArgumentsElementsKind(elements_kind());
}
bool Map::has_fast_sloppy_arguments_elements() const {
return elements_kind() == FAST_SLOPPY_ARGUMENTS_ELEMENTS;
}
bool Map::has_fast_string_wrapper_elements() const {
return elements_kind() == FAST_STRING_WRAPPER_ELEMENTS;
}
bool Map::has_fixed_typed_array_elements() const {
return IsFixedTypedArrayElementsKind(elements_kind());
}
bool Map::has_dictionary_elements() const {
return IsDictionaryElementsKind(elements_kind());
}
void Map::set_is_dictionary_map(bool value) {
uint32_t new_bit_field3 = IsDictionaryMapBit::update(bit_field3(), value);
new_bit_field3 = IsUnstableBit::update(new_bit_field3, value);
set_bit_field3(new_bit_field3);
}
bool Map::is_dictionary_map() const {
return IsDictionaryMapBit::decode(bit_field3());
}
void Map::mark_unstable() {
set_bit_field3(IsUnstableBit::update(bit_field3(), true));
}
bool Map::is_stable() const { return !IsUnstableBit::decode(bit_field3()); }
bool Map::CanBeDeprecated() const {
int descriptor = LastAdded();
for (int i = 0; i <= descriptor; i++) {
PropertyDetails details = instance_descriptors()->GetDetails(i);
if (details.representation().IsNone()) return true;
if (details.representation().IsSmi()) return true;
if (details.representation().IsDouble()) return true;
if (details.representation().IsHeapObject()) return true;
if (details.kind() == kData && details.location() == kDescriptor) {
return true;
}
}
return false;
}
void Map::NotifyLeafMapLayoutChange(Isolate* isolate) {
if (is_stable()) {
mark_unstable();
dependent_code()->DeoptimizeDependentCodeGroup(
isolate, DependentCode::kPrototypeCheckGroup);
}
}
bool Map::CanTransition() const {
// Only JSObject and subtypes have map transitions and back pointers.
return InstanceTypeChecker::IsJSObject(instance_type());
}
#define DEF_TESTER(Type, ...) \
bool Map::Is##Type##Map() const { \
return InstanceTypeChecker::Is##Type(instance_type()); \
}
INSTANCE_TYPE_CHECKERS(DEF_TESTER)
#undef DEF_TESTER
bool Map::IsBooleanMap() const {
return *this == GetReadOnlyRoots().boolean_map();
}
bool Map::IsNullOrUndefinedMap() const {
return *this == GetReadOnlyRoots().null_map() ||
*this == GetReadOnlyRoots().undefined_map();
}
bool Map::IsPrimitiveMap() const {
return instance_type() <= LAST_PRIMITIVE_TYPE;
}
Object Map::prototype() const { return READ_FIELD(*this, kPrototypeOffset); }
void Map::set_prototype(Object value, WriteBarrierMode mode) {
DCHECK(value->IsNull() || value->IsJSReceiver());
WRITE_FIELD(*this, kPrototypeOffset, value);
CONDITIONAL_WRITE_BARRIER(*this, kPrototypeOffset, value, mode);
}
LayoutDescriptor Map::layout_descriptor_gc_safe() const {
DCHECK(FLAG_unbox_double_fields);
// The loaded value can be dereferenced on background thread to load the
// bitmap. We need acquire load in order to ensure that the bitmap
// initializing stores are also visible to the background thread.
Object layout_desc = ACQUIRE_READ_FIELD(*this, kLayoutDescriptorOffset);
return LayoutDescriptor::cast_gc_safe(layout_desc);
}
bool Map::HasFastPointerLayout() const {
DCHECK(FLAG_unbox_double_fields);
// The loaded value is used for SMI check only and is not dereferenced,
// so relaxed load is safe.
Object layout_desc = RELAXED_READ_FIELD(*this, kLayoutDescriptorOffset);
return LayoutDescriptor::IsFastPointerLayout(layout_desc);
}
void Map::UpdateDescriptors(Isolate* isolate, DescriptorArray descriptors,
LayoutDescriptor layout_desc,
int number_of_own_descriptors) {
SetInstanceDescriptors(isolate, descriptors, number_of_own_descriptors);
if (FLAG_unbox_double_fields) {
if (layout_descriptor()->IsSlowLayout()) {
set_layout_descriptor(layout_desc);
}
#ifdef VERIFY_HEAP
// TODO(ishell): remove these checks from VERIFY_HEAP mode.
if (FLAG_verify_heap) {
CHECK(layout_descriptor()->IsConsistentWithMap(*this));
CHECK_EQ(Map::GetVisitorId(*this), visitor_id());
}
#else
SLOW_DCHECK(layout_descriptor()->IsConsistentWithMap(*this));
DCHECK(visitor_id() == Map::GetVisitorId(*this));
#endif
}
}
void Map::InitializeDescriptors(Isolate* isolate, DescriptorArray descriptors,
LayoutDescriptor layout_desc) {
SetInstanceDescriptors(isolate, descriptors,
descriptors->number_of_descriptors());
if (FLAG_unbox_double_fields) {
set_layout_descriptor(layout_desc);
#ifdef VERIFY_HEAP
// TODO(ishell): remove these checks from VERIFY_HEAP mode.
if (FLAG_verify_heap) {
CHECK(layout_descriptor()->IsConsistentWithMap(*this));
}
#else
SLOW_DCHECK(layout_descriptor()->IsConsistentWithMap(*this));
#endif
set_visitor_id(Map::GetVisitorId(*this));
}
}
void Map::set_bit_field3(uint32_t bits) {
RELAXED_WRITE_UINT32_FIELD(*this, kBitField3Offset, bits);
}
uint32_t Map::bit_field3() const {
return RELAXED_READ_UINT32_FIELD(*this, kBitField3Offset);
}
void Map::clear_padding() {
if (FIELD_SIZE(kOptionalPaddingOffset) == 0) return;
DCHECK_EQ(4, FIELD_SIZE(kOptionalPaddingOffset));
memset(reinterpret_cast<void*>(address() + kOptionalPaddingOffset), 0,
FIELD_SIZE(kOptionalPaddingOffset));
}
LayoutDescriptor Map::GetLayoutDescriptor() const {
return FLAG_unbox_double_fields ? layout_descriptor()
: LayoutDescriptor::FastPointerLayout();
}
void Map::AppendDescriptor(Isolate* isolate, Descriptor* desc) {
DescriptorArray descriptors = instance_descriptors();
int number_of_own_descriptors = NumberOfOwnDescriptors();
DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors);
{
// The following two operations need to happen before the marking write
// barrier.
descriptors->Append(desc);
SetNumberOfOwnDescriptors(number_of_own_descriptors + 1);
MarkingBarrierForDescriptorArray(isolate->heap(), *this, descriptors,
number_of_own_descriptors + 1);
}
// Properly mark the map if the {desc} is an "interesting symbol".
if (desc->GetKey()->IsInterestingSymbol()) {
set_may_have_interesting_symbols(true);
}
PropertyDetails details = desc->GetDetails();
if (details.location() == kField) {
DCHECK_GT(UnusedPropertyFields(), 0);
AccountAddedPropertyField();
}
// This function does not support appending double field descriptors and
// it should never try to (otherwise, layout descriptor must be updated too).
#ifdef DEBUG
DCHECK(details.location() != kField || !details.representation().IsDouble());
#endif
}
Object Map::GetBackPointer() const {
Object object = constructor_or_backpointer();
if (object->IsMap()) {
return object;
}
return GetReadOnlyRoots().undefined_value();
}
Map Map::ElementsTransitionMap() {
DisallowHeapAllocation no_gc;
// TODO(delphick): While it's safe to pass nullptr for Isolate* here as
// SearchSpecial doesn't need it, this is really ugly. Perhaps factor out a
// base class for methods not requiring an Isolate?
return TransitionsAccessor(nullptr, *this, &no_gc)
.SearchSpecial(GetReadOnlyRoots().elements_transition_symbol());
}
Object Map::prototype_info() const {
DCHECK(is_prototype_map());
return READ_FIELD(*this, Map::kTransitionsOrPrototypeInfoOffset);
}
void Map::set_prototype_info(Object value, WriteBarrierMode mode) {
CHECK(is_prototype_map());
WRITE_FIELD(*this, Map::kTransitionsOrPrototypeInfoOffset, value);
CONDITIONAL_WRITE_BARRIER(*this, Map::kTransitionsOrPrototypeInfoOffset,
value, mode);
}
void Map::SetBackPointer(Object value, WriteBarrierMode mode) {
CHECK_GE(instance_type(), FIRST_JS_RECEIVER_TYPE);
CHECK(value->IsMap());
CHECK(GetBackPointer()->IsUndefined());
CHECK_IMPLIES(value->IsMap(), Map::cast(value)->GetConstructor() ==
constructor_or_backpointer());
set_constructor_or_backpointer(value, mode);
}
ACCESSORS(Map, dependent_code, DependentCode, kDependentCodeOffset)
ACCESSORS(Map, prototype_validity_cell, Object, kPrototypeValidityCellOffset)
ACCESSORS(Map, constructor_or_backpointer, Object,
kConstructorOrBackPointerOffset)
bool Map::IsPrototypeValidityCellValid() const {
Object validity_cell = prototype_validity_cell();
Object value = validity_cell->IsSmi() ? Smi::cast(validity_cell)
: Cell::cast(validity_cell)->value();
return value == Smi::FromInt(Map::kPrototypeChainValid);
}
Object Map::GetConstructor() const {
Object maybe_constructor = constructor_or_backpointer();
// Follow any back pointers.
while (maybe_constructor->IsMap()) {
maybe_constructor =
Map::cast(maybe_constructor)->constructor_or_backpointer();
}
return maybe_constructor;
}
FunctionTemplateInfo Map::GetFunctionTemplateInfo() const {
Object constructor = GetConstructor();
if (constructor->IsJSFunction()) {
DCHECK(JSFunction::cast(constructor)->shared()->IsApiFunction());
return JSFunction::cast(constructor)->shared()->get_api_func_data();
}
DCHECK(constructor->IsFunctionTemplateInfo());
return FunctionTemplateInfo::cast(constructor);
}
void Map::SetConstructor(Object constructor, WriteBarrierMode mode) {
// Never overwrite a back pointer with a constructor.
CHECK(!constructor_or_backpointer()->IsMap());
set_constructor_or_backpointer(constructor, mode);
}
Handle<Map> Map::CopyInitialMap(Isolate* isolate, Handle<Map> map) {
return CopyInitialMap(isolate, map, map->instance_size(),
map->GetInObjectProperties(),
map->UnusedPropertyFields());
}
bool Map::IsInobjectSlackTrackingInProgress() const {
return construction_counter() != Map::kNoSlackTracking;
}
void Map::InobjectSlackTrackingStep(Isolate* isolate) {
// Slack tracking should only be performed on an initial map.
DCHECK(GetBackPointer()->IsUndefined());
if (!IsInobjectSlackTrackingInProgress()) return;
int counter = construction_counter();
set_construction_counter(counter - 1);
if (counter == kSlackTrackingCounterEnd) {
CompleteInobjectSlackTracking(isolate);
}
}
int Map::SlackForArraySize(int old_size, int size_limit) {
const int max_slack = size_limit - old_size;
CHECK_LE(0, max_slack);
if (old_size < 4) {
DCHECK_LE(1, max_slack);
return 1;
}
return Min(max_slack, old_size / 4);
}
int Map::InstanceSizeFromSlack(int slack) const {
return instance_size() - slack * kTaggedSize;
}
OBJECT_CONSTRUCTORS_IMPL(NormalizedMapCache, WeakFixedArray)
CAST_ACCESSOR(NormalizedMapCache)
NEVER_READ_ONLY_SPACE_IMPL(NormalizedMapCache)
int NormalizedMapCache::GetIndex(Handle<Map> map) {
return map->Hash() % NormalizedMapCache::kEntries;
}
bool HeapObject::IsNormalizedMapCache() const {
if (!IsWeakFixedArray()) return false;
if (WeakFixedArray::cast(*this)->length() != NormalizedMapCache::kEntries) {
return false;
}
return true;
}
} // namespace internal
} // namespace v8
#include "src/objects/object-macros-undef.h"
#endif // V8_OBJECTS_MAP_INL_H_
|