summaryrefslogtreecommitdiff
path: root/deps/v8/src/objects/string-table.cc
blob: f87e5eb8e60bcd4acc66daa103c14604c7882abb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
// Copyright 2020 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/objects/string-table.h"

#include <atomic>

#include "src/base/atomicops.h"
#include "src/base/macros.h"
#include "src/common/assert-scope.h"
#include "src/common/globals.h"
#include "src/common/ptr-compr-inl.h"
#include "src/execution/isolate-utils-inl.h"
#include "src/heap/safepoint.h"
#include "src/objects/internal-index.h"
#include "src/objects/object-list-macros.h"
#include "src/objects/slots-inl.h"
#include "src/objects/slots.h"
#include "src/objects/string-inl.h"
#include "src/objects/string-table-inl.h"
#include "src/snapshot/deserializer.h"
#include "src/utils/allocation.h"
#include "src/utils/ostreams.h"

namespace v8 {
namespace internal {

namespace {

static constexpr int kStringTableMaxEmptyFactor = 4;
static constexpr int kStringTableMinCapacity = 2048;

bool StringTableHasSufficientCapacityToAdd(int capacity, int number_of_elements,
                                           int number_of_deleted_elements,
                                           int number_of_additional_elements) {
  int nof = number_of_elements + number_of_additional_elements;
  // Return true if:
  //   50% is still free after adding number_of_additional_elements elements and
  //   at most 50% of the free elements are deleted elements.
  if ((nof < capacity) &&
      ((number_of_deleted_elements <= (capacity - nof) / 2))) {
    int needed_free = nof / 2;
    if (nof + needed_free <= capacity) return true;
  }
  return false;
}

int ComputeStringTableCapacity(int at_least_space_for) {
  // Add 50% slack to make slot collisions sufficiently unlikely.
  // See matching computation in StringTableHasSufficientCapacityToAdd().
  int raw_capacity = at_least_space_for + (at_least_space_for >> 1);
  int capacity = base::bits::RoundUpToPowerOfTwo32(raw_capacity);
  return std::max(capacity, kStringTableMinCapacity);
}

int ComputeStringTableCapacityWithShrink(int current_capacity,
                                         int at_least_room_for) {
  // Only shrink if the table is very empty to avoid performance penalty.
  DCHECK_GE(current_capacity, kStringTableMinCapacity);
  if (at_least_room_for > (current_capacity / kStringTableMaxEmptyFactor))
    return current_capacity;

  // Recalculate the smaller capacity actually needed.
  int new_capacity = ComputeStringTableCapacity(at_least_room_for);
  DCHECK_GE(new_capacity, at_least_room_for);
  // Don't go lower than room for {kStringTableMinCapacity} elements.
  if (new_capacity < kStringTableMinCapacity) return current_capacity;
  return new_capacity;
}

template <typename IsolateT, typename StringTableKey>
bool KeyIsMatch(IsolateT* isolate, StringTableKey* key, String string) {
  if (string.hash() != key->hash()) return false;
  if (string.length() != key->length()) return false;
  return key->IsMatch(isolate, string);
}

}  // namespace

// Data holds the actual data of the string table, including capacity and number
// of elements.
//
// It is a variable sized structure, with a "header" followed directly in memory
// by the elements themselves. These are accessed as offsets from the elements_
// field, which itself provides storage for the first element.
//
// The elements themselves are stored as an open-addressed hash table, with
// quadratic probing and Smi 0 and Smi 1 as the empty and deleted sentinels,
// respectively.
class StringTable::Data {
 public:
  static std::unique_ptr<Data> New(int capacity);
  static std::unique_ptr<Data> Resize(PtrComprCageBase cage_base,
                                      std::unique_ptr<Data> data, int capacity);

  OffHeapObjectSlot slot(InternalIndex index) const {
    return OffHeapObjectSlot(&elements_[index.as_uint32()]);
  }

  Object Get(PtrComprCageBase cage_base, InternalIndex index) const {
    return slot(index).Acquire_Load(cage_base);
  }

  void Set(InternalIndex index, String entry) {
    slot(index).Release_Store(entry);
  }

  void ElementAdded() {
    DCHECK_LT(number_of_elements_ + 1, capacity());
    DCHECK(StringTableHasSufficientCapacityToAdd(
        capacity(), number_of_elements(), number_of_deleted_elements(), 1));

    number_of_elements_++;
  }
  void DeletedElementOverwritten() {
    DCHECK_LT(number_of_elements_ + 1, capacity());
    DCHECK(StringTableHasSufficientCapacityToAdd(
        capacity(), number_of_elements(), number_of_deleted_elements() - 1, 1));

    number_of_elements_++;
    number_of_deleted_elements_--;
  }
  void ElementsRemoved(int count) {
    DCHECK_LE(count, number_of_elements_);
    number_of_elements_ -= count;
    number_of_deleted_elements_ += count;
  }

  void* operator new(size_t size, int capacity);
  void* operator new(size_t size) = delete;
  void operator delete(void* description);

  int capacity() const { return capacity_; }
  int number_of_elements() const { return number_of_elements_; }
  int number_of_deleted_elements() const { return number_of_deleted_elements_; }

  template <typename IsolateT, typename StringTableKey>
  InternalIndex FindEntry(IsolateT* isolate, StringTableKey* key,
                          uint32_t hash) const;

  InternalIndex FindInsertionEntry(PtrComprCageBase cage_base,
                                   uint32_t hash) const;

  template <typename IsolateT, typename StringTableKey>
  InternalIndex FindEntryOrInsertionEntry(IsolateT* isolate,
                                          StringTableKey* key,
                                          uint32_t hash) const;

  // Helper method for StringTable::TryStringToIndexOrLookupExisting.
  template <typename Char>
  static Address TryStringToIndexOrLookupExisting(Isolate* isolate,
                                                  String string, String source,
                                                  size_t start);

  void IterateElements(RootVisitor* visitor);

  Data* PreviousData() { return previous_data_.get(); }
  void DropPreviousData() { previous_data_.reset(); }

  void Print(PtrComprCageBase cage_base) const;
  size_t GetCurrentMemoryUsage() const;

 private:
  explicit Data(int capacity);

  // Returns probe entry.
  inline static InternalIndex FirstProbe(uint32_t hash, uint32_t size) {
    return InternalIndex(hash & (size - 1));
  }

  inline static InternalIndex NextProbe(InternalIndex last, uint32_t number,
                                        uint32_t size) {
    return InternalIndex((last.as_uint32() + number) & (size - 1));
  }

 private:
  std::unique_ptr<Data> previous_data_;
  int number_of_elements_;
  int number_of_deleted_elements_;
  const int capacity_;
  Tagged_t elements_[1];
};

void* StringTable::Data::operator new(size_t size, int capacity) {
  // Make sure the size given is the size of the Data structure.
  DCHECK_EQ(size, sizeof(StringTable::Data));
  // Make sure that the elements_ array is at the end of Data, with no padding,
  // so that subsequent elements can be accessed as offsets from elements_.
  static_assert(offsetof(StringTable::Data, elements_) ==
                sizeof(StringTable::Data) - sizeof(Tagged_t));
  // Make sure that elements_ is aligned when StringTable::Data is aligned.
  static_assert(
      (alignof(StringTable::Data) + offsetof(StringTable::Data, elements_)) %
          kTaggedSize ==
      0);

  // Subtract 1 from capacity, as the member elements_ already supplies the
  // storage for the first element.
  return AlignedAllocWithRetry(size + (capacity - 1) * sizeof(Tagged_t),
                               alignof(StringTable::Data));
}

void StringTable::Data::operator delete(void* table) { AlignedFree(table); }

size_t StringTable::Data::GetCurrentMemoryUsage() const {
  size_t usage = sizeof(*this) + (capacity_ - 1) * sizeof(Tagged_t);
  if (previous_data_) {
    usage += previous_data_->GetCurrentMemoryUsage();
  }
  return usage;
}

StringTable::Data::Data(int capacity)
    : previous_data_(nullptr),
      number_of_elements_(0),
      number_of_deleted_elements_(0),
      capacity_(capacity) {
  OffHeapObjectSlot first_slot = slot(InternalIndex(0));
  MemsetTagged(first_slot, empty_element(), capacity);
}

std::unique_ptr<StringTable::Data> StringTable::Data::New(int capacity) {
  return std::unique_ptr<Data>(new (capacity) Data(capacity));
}

std::unique_ptr<StringTable::Data> StringTable::Data::Resize(
    PtrComprCageBase cage_base, std::unique_ptr<Data> data, int capacity) {
  std::unique_ptr<Data> new_data(new (capacity) Data(capacity));

  DCHECK_LT(data->number_of_elements(), new_data->capacity());
  DCHECK(StringTableHasSufficientCapacityToAdd(
      new_data->capacity(), new_data->number_of_elements(),
      new_data->number_of_deleted_elements(), data->number_of_elements()));

  // Rehash the elements.
  for (InternalIndex i : InternalIndex::Range(data->capacity())) {
    Object element = data->Get(cage_base, i);
    if (element == empty_element() || element == deleted_element()) continue;
    String string = String::cast(element);
    uint32_t hash = string.hash();
    InternalIndex insertion_index =
        new_data->FindInsertionEntry(cage_base, hash);
    new_data->Set(insertion_index, string);
  }
  new_data->number_of_elements_ = data->number_of_elements();

  new_data->previous_data_ = std::move(data);
  return new_data;
}

template <typename IsolateT, typename StringTableKey>
InternalIndex StringTable::Data::FindEntry(IsolateT* isolate,
                                           StringTableKey* key,
                                           uint32_t hash) const {
  uint32_t count = 1;
  // EnsureCapacity will guarantee the hash table is never full.
  for (InternalIndex entry = FirstProbe(hash, capacity_);;
       entry = NextProbe(entry, count++, capacity_)) {
    // TODO(leszeks): Consider delaying the decompression until after the
    // comparisons against empty/deleted.
    Object element = Get(isolate, entry);
    if (element == empty_element()) return InternalIndex::NotFound();
    if (element == deleted_element()) continue;
    String string = String::cast(element);
    if (KeyIsMatch(isolate, key, string)) return entry;
  }
}

InternalIndex StringTable::Data::FindInsertionEntry(PtrComprCageBase cage_base,
                                                    uint32_t hash) const {
  uint32_t count = 1;
  // EnsureCapacity will guarantee the hash table is never full.
  for (InternalIndex entry = FirstProbe(hash, capacity_);;
       entry = NextProbe(entry, count++, capacity_)) {
    // TODO(leszeks): Consider delaying the decompression until after the
    // comparisons against empty/deleted.
    Object element = Get(cage_base, entry);
    if (element == empty_element() || element == deleted_element())
      return entry;
  }
}

template <typename IsolateT, typename StringTableKey>
InternalIndex StringTable::Data::FindEntryOrInsertionEntry(
    IsolateT* isolate, StringTableKey* key, uint32_t hash) const {
  InternalIndex insertion_entry = InternalIndex::NotFound();
  uint32_t count = 1;
  // EnsureCapacity will guarantee the hash table is never full.
  for (InternalIndex entry = FirstProbe(hash, capacity_);;
       entry = NextProbe(entry, count++, capacity_)) {
    // TODO(leszeks): Consider delaying the decompression until after the
    // comparisons against empty/deleted.
    Object element = Get(isolate, entry);
    if (element == empty_element()) {
      // Empty entry, it's our insertion entry if there was no previous Hole.
      if (insertion_entry.is_not_found()) return entry;
      return insertion_entry;
    }

    if (element == deleted_element()) {
      // Holes are potential insertion candidates, but we continue the search
      // in case we find the actual matching entry.
      if (insertion_entry.is_not_found()) insertion_entry = entry;
      continue;
    }

    String string = String::cast(element);
    if (KeyIsMatch(isolate, key, string)) return entry;
  }
}

void StringTable::Data::IterateElements(RootVisitor* visitor) {
  OffHeapObjectSlot first_slot = slot(InternalIndex(0));
  OffHeapObjectSlot end_slot = slot(InternalIndex(capacity_));
  visitor->VisitRootPointers(Root::kStringTable, nullptr, first_slot, end_slot);
}

void StringTable::Data::Print(PtrComprCageBase cage_base) const {
  OFStream os(stdout);
  os << "StringTable {" << std::endl;
  for (InternalIndex i : InternalIndex::Range(capacity_)) {
    os << "  " << i.as_uint32() << ": " << Brief(Get(cage_base, i))
       << std::endl;
  }
  os << "}" << std::endl;
}

StringTable::StringTable(Isolate* isolate)
    : data_(Data::New(kStringTableMinCapacity).release()), isolate_(isolate) {}

StringTable::~StringTable() { delete data_; }

int StringTable::Capacity() const {
  return data_.load(std::memory_order_acquire)->capacity();
}
int StringTable::NumberOfElements() const {
  {
    base::MutexGuard table_write_guard(&write_mutex_);
    return data_.load(std::memory_order_relaxed)->number_of_elements();
  }
}

// InternalizedStringKey carries a string/internalized-string object as key.
class InternalizedStringKey final : public StringTableKey {
 public:
  explicit InternalizedStringKey(Handle<String> string, uint32_t hash)
      : StringTableKey(hash, string->length()), string_(string) {
    // When sharing the string table, it's possible that another thread already
    // internalized the key, in which case StringTable::LookupKey will perform a
    // redundant lookup and return the already internalized copy.
    DCHECK_IMPLIES(!v8_flags.shared_string_table,
                   !string->IsInternalizedString());
    DCHECK(string->IsFlat());
    DCHECK(String::IsHashFieldComputed(hash));
  }

  bool IsMatch(Isolate* isolate, String string) {
    DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(string));
    return string_->SlowEquals(string);
  }

  void PrepareForInsertion(Isolate* isolate) {
    StringTransitionStrategy strategy =
        isolate->factory()->ComputeInternalizationStrategyForString(
            string_, &maybe_internalized_map_);
    switch (strategy) {
      case StringTransitionStrategy::kCopy:
        break;
      case StringTransitionStrategy::kInPlace:
        // In-place transition will be done in GetHandleForInsertion, when we
        // are sure that we are going to insert the string into the table.
        return;
      case StringTransitionStrategy::kAlreadyTransitioned:
        // We can see already internalized strings here only when sharing the
        // string table and allowing concurrent internalization.
        DCHECK(v8_flags.shared_string_table);
        return;
    }

    // Copying the string here is always threadsafe, as no instance type
    // requiring a copy can transition any further.
    StringShape shape(*string_);
    // External strings get special treatment, to avoid copying their
    // contents as long as they are not uncached or the string table is shared.
    // If the string table is shared, another thread could lookup a string with
    // the same content before this thread completes MakeThin (which sets the
    // resource), resulting in a string table hit returning the string we just
    // created that is not correctly initialized.
    const bool can_avoid_copy =
        !v8_flags.shared_string_table && !shape.IsUncachedExternal();
    if (can_avoid_copy && shape.IsExternalOneByte()) {
      // Shared external strings are always in-place internalizable.
      // If this assumption is invalidated in the future, make sure that we
      // fully initialize (copy contents) for shared external strings, as the
      // original string is not transitioned to a ThinString (setting the
      // resource) immediately.
      DCHECK(!shape.IsShared());
      string_ =
          isolate->factory()->InternalizeExternalString<ExternalOneByteString>(
              string_);
    } else if (can_avoid_copy && shape.IsExternalTwoByte()) {
      // Shared external strings are always in-place internalizable.
      // If this assumption is invalidated in the future, make sure that we
      // fully initialize (copy contents) for shared external strings, as the
      // original string is not transitioned to a ThinString (setting the
      // resource) immediately.
      DCHECK(!shape.IsShared());
      string_ =
          isolate->factory()->InternalizeExternalString<ExternalTwoByteString>(
              string_);
    } else {
      // Otherwise allocate a new internalized string.
      string_ = isolate->factory()->NewInternalizedStringImpl(string_, length(),
                                                              raw_hash_field());
    }
  }

  Handle<String> GetHandleForInsertion() {
    Handle<Map> internalized_map;
    // When preparing the string, the strategy was to in-place migrate it.
    if (maybe_internalized_map_.ToHandle(&internalized_map)) {
      // It is always safe to overwrite the map. The only transition possible
      // is another thread migrated the string to internalized already.
      // Migrations to thin are impossible, as we only call this method on table
      // misses inside the critical section.
      string_->set_map_safe_transition_no_write_barrier(*internalized_map);
      DCHECK(string_->IsInternalizedString());
      return string_;
    }
    // We prepared an internalized copy for the string or the string was already
    // internalized.
    // In theory we could have created a copy of a SeqString in young generation
    // that has been promoted to old space by now. In that case we could
    // in-place migrate the original string instead of internalizing the copy
    // and migrating the original string to a ThinString. This scenario doesn't
    // seem to be common enough to justify re-computing the strategy here.
    return string_;
  }

 private:
  Handle<String> string_;
  MaybeHandle<Map> maybe_internalized_map_;
};

namespace {

void SetInternalizedReference(Isolate* isolate, String string,
                              String internalized) {
  DCHECK(!string.IsThinString());
  DCHECK(!string.IsInternalizedString());
  DCHECK(internalized.IsInternalizedString());
  DCHECK(!internalized.HasInternalizedForwardingIndex(kAcquireLoad));
  if (string.IsShared() || v8_flags.always_use_string_forwarding_table) {
    uint32_t field = string.raw_hash_field(kAcquireLoad);
    // Don't use the forwarding table for strings that have an integer index.
    // Using the hash field for the integer index is more beneficial than
    // using it to store the forwarding index to the internalized string.
    if (Name::IsIntegerIndex(field)) return;
    // Check one last time if we already have an internalized forwarding index
    // to prevent too many copies of the string in the forwarding table.
    if (Name::IsInternalizedForwardingIndex(field)) return;

    // If we already have an entry for an external resource in the table, update
    // the entry instead of creating a new one. There is no guarantee that we
    // will always update existing records instead of creating new ones, but
    // races should be rare.
    if (Name::IsForwardingIndex(field)) {
      const int forwarding_index =
          Name::ForwardingIndexValueBits::decode(field);
      isolate->string_forwarding_table()->UpdateForwardString(forwarding_index,
                                                              internalized);
      // Update the forwarding index type to include internalized.
      field = Name::IsInternalizedForwardingIndexBit::update(field, true);
      string.set_raw_hash_field(field, kReleaseStore);
    } else {
      const int forwarding_index =
          isolate->string_forwarding_table()->AddForwardString(string,
                                                               internalized);
      string.set_raw_hash_field(
          String::CreateInternalizedForwardingIndex(forwarding_index),
          kReleaseStore);
    }
  } else {
    DCHECK(!string.HasForwardingIndex(kAcquireLoad));
    string.MakeThin(isolate, internalized);
  }
}

}  // namespace

Handle<String> StringTable::LookupString(Isolate* isolate,
                                         Handle<String> string) {
  // When sharing the string table, internalization is allowed to be concurrent
  // from multiple Isolates, assuming that:
  //
  //  - All in-place internalizable strings (i.e. old-generation flat strings)
  //    and internalized strings are in the shared heap.
  //  - LookupKey supports concurrent access (see comment below).
  //
  // These assumptions guarantee the following properties:
  //
  //  - String::Flatten is not threadsafe but is only called on non-shared
  //    strings, since non-flat strings are not shared.
  //
  //  - String::ComputeAndSetRawHash is threadsafe on flat strings. This is safe
  //    because the characters are immutable and the same hash will be
  //    computed. The hash field is set with relaxed memory order. A thread that
  //    doesn't see the hash may do redundant work but will not be incorrect.
  //
  //  - In-place internalizable strings do not incur a copy regardless of string
  //    table sharing. The map mutation is threadsafe even with relaxed memory
  //    order, because for concurrent table lookups, the "losing" thread will be
  //    correctly ordered by LookupKey's write mutex and see the updated map
  //    during the re-lookup.
  //
  // For lookup misses, the internalized string map is the same map in RO space
  // regardless of which thread is doing the lookup.
  //
  // For lookup hits, we use the StringForwardingTable for shared strings to
  // delay the transition into a ThinString to the next stop-the-world GC.
  Handle<String> result = String::Flatten(isolate, string);
  if (!result->IsInternalizedString()) {
    uint32_t raw_hash_field = result->raw_hash_field(kAcquireLoad);

    if (String::IsInternalizedForwardingIndex(raw_hash_field)) {
      const int index =
          String::ForwardingIndexValueBits::decode(raw_hash_field);
      result = handle(
          isolate->string_forwarding_table()->GetForwardString(isolate, index),
          isolate);
    } else {
      if (!Name::IsHashFieldComputed(raw_hash_field)) {
        raw_hash_field = result->EnsureRawHash();
      }
      InternalizedStringKey key(result, raw_hash_field);
      result = LookupKey(isolate, &key);
    }
  }
  if (*string != *result && !string->IsThinString()) {
    SetInternalizedReference(isolate, *string, *result);
  }
  return result;
}

template <typename StringTableKey, typename IsolateT>
Handle<String> StringTable::LookupKey(IsolateT* isolate, StringTableKey* key) {
  // String table lookups are allowed to be concurrent, assuming that:
  //
  //   - The Heap access is allowed to be concurrent (using LocalHeap or
  //     similar),
  //   - All writes to the string table are guarded by the Isolate string table
  //     mutex,
  //   - Resizes of the string table first copies the old contents to the new
  //     table, and only then sets the new string table pointer to the new
  //     table,
  //   - Only GCs can remove elements from the string table.
  //
  // These assumptions allow us to make the following statement:
  //
  //   "Reads are allowed when not holding the lock, as long as false negatives
  //    (misses) are ok. We will never get a false positive (hit of an entry no
  //    longer in the table)"
  //
  // This is because we _know_ that if we find an entry in the string table, any
  // entry will also be in all reallocations of that tables. This is required
  // for strong consistency of internalized string equality implying reference
  // equality.
  //
  // We therefore try to optimistically read from the string table without
  // taking the lock (both here and in the NoAllocate version of the lookup),
  // and on a miss we take the lock and try to write the entry, with a second
  // read lookup in case the non-locked read missed a write.
  //
  // One complication is allocation -- we don't want to allocate while holding
  // the string table lock. This applies to both allocation of new strings, and
  // re-allocation of the string table on resize. So, we optimistically allocate
  // (without copying values) outside the lock, and potentially discard the
  // allocation if another write also did an allocation. This assumes that
  // writes are rarer than reads.

  // Load the current string table data, in case another thread updates the
  // data while we're reading.
  const Data* current_data = data_.load(std::memory_order_acquire);

  // First try to find the string in the table. This is safe to do even if the
  // table is now reallocated; we won't find a stale entry in the old table
  // because the new table won't delete it's corresponding entry until the
  // string is dead, in which case it will die in this table too and worst
  // case we'll have a false miss.
  InternalIndex entry = current_data->FindEntry(isolate, key, key->hash());
  if (entry.is_found()) {
    Handle<String> result(String::cast(current_data->Get(isolate, entry)),
                          isolate);
    DCHECK_IMPLIES(v8_flags.shared_string_table, result->InSharedHeap());
    return result;
  }

  // No entry found, so adding new string.
  key->PrepareForInsertion(isolate);
  {
    base::MutexGuard table_write_guard(&write_mutex_);

    Data* data = EnsureCapacity(isolate, 1);

    // Check one last time if the key is present in the table, in case it was
    // added after the check.
    entry = data->FindEntryOrInsertionEntry(isolate, key, key->hash());

    Object element = data->Get(isolate, entry);
    if (element == empty_element()) {
      // This entry is empty, so write it and register that we added an
      // element.
      Handle<String> new_string = key->GetHandleForInsertion();
      DCHECK_IMPLIES(v8_flags.shared_string_table, new_string->IsShared());
      data->Set(entry, *new_string);
      data->ElementAdded();
      return new_string;
    } else if (element == deleted_element()) {
      // This entry was deleted, so overwrite it and register that we
      // overwrote a deleted element.
      Handle<String> new_string = key->GetHandleForInsertion();
      DCHECK_IMPLIES(v8_flags.shared_string_table, new_string->IsShared());
      data->Set(entry, *new_string);
      data->DeletedElementOverwritten();
      return new_string;
    } else {
      // Return the existing string as a handle.
      return handle(String::cast(element), isolate);
    }
  }
}

template Handle<String> StringTable::LookupKey(Isolate* isolate,
                                               OneByteStringKey* key);
template Handle<String> StringTable::LookupKey(Isolate* isolate,
                                               TwoByteStringKey* key);
template Handle<String> StringTable::LookupKey(Isolate* isolate,
                                               SeqOneByteSubStringKey* key);
template Handle<String> StringTable::LookupKey(Isolate* isolate,
                                               SeqTwoByteSubStringKey* key);

template Handle<String> StringTable::LookupKey(LocalIsolate* isolate,
                                               OneByteStringKey* key);
template Handle<String> StringTable::LookupKey(LocalIsolate* isolate,
                                               TwoByteStringKey* key);

template Handle<String> StringTable::LookupKey(Isolate* isolate,
                                               StringTableInsertionKey* key);
template Handle<String> StringTable::LookupKey(LocalIsolate* isolate,
                                               StringTableInsertionKey* key);

StringTable::Data* StringTable::EnsureCapacity(PtrComprCageBase cage_base,
                                               int additional_elements) {
  // This call is only allowed while the write mutex is held.
  write_mutex_.AssertHeld();

  // This load can be relaxed as the table pointer can only be modified while
  // the lock is held.
  Data* data = data_.load(std::memory_order_relaxed);

  // Grow or shrink table if needed. We first try to shrink the table, if it
  // is sufficiently empty; otherwise we make sure to grow it so that it has
  // enough space.
  int current_capacity = data->capacity();
  int current_nof = data->number_of_elements();
  int capacity_after_shrinking =
      ComputeStringTableCapacityWithShrink(current_capacity, current_nof + 1);

  int new_capacity = -1;
  if (capacity_after_shrinking < current_capacity) {
    DCHECK(StringTableHasSufficientCapacityToAdd(capacity_after_shrinking,
                                                 current_nof, 0, 1));
    new_capacity = capacity_after_shrinking;
  } else if (!StringTableHasSufficientCapacityToAdd(
                 current_capacity, current_nof,
                 data->number_of_deleted_elements(), 1)) {
    new_capacity = ComputeStringTableCapacity(current_nof + 1);
  }

  if (new_capacity != -1) {
    std::unique_ptr<Data> new_data =
        Data::Resize(cage_base, std::unique_ptr<Data>(data), new_capacity);
    // `new_data` is the new owner of `data`.
    DCHECK_EQ(new_data->PreviousData(), data);
    // Release-store the new data pointer as `data_`, so that it can be
    // acquire-loaded by other threads. This string table becomes the owner of
    // the pointer.
    data = new_data.release();
    data_.store(data, std::memory_order_release);
  }

  return data;
}

// static
template <typename Char>
Address StringTable::Data::TryStringToIndexOrLookupExisting(Isolate* isolate,
                                                            String string,
                                                            String source,
                                                            size_t start) {
  // TODO(leszeks): This method doesn't really belong on StringTable::Data.
  // Ideally it would be a free function in an anonymous namespace, but that
  // causes issues around method and class visibility.

  DisallowGarbageCollection no_gc;

  int length = string.length();
  // The source hash is usable if it is not from a sliced string.
  // For sliced strings we need to recalculate the hash from the given offset
  // with the correct length.
  const bool is_source_hash_usable = start == 0 && length == source.length();

  // First check if the string constains a forwarding index.
  uint32_t raw_hash_field = source.raw_hash_field(kAcquireLoad);
  if (Name::IsInternalizedForwardingIndex(raw_hash_field) &&
      is_source_hash_usable) {
    const int index = Name::ForwardingIndexValueBits::decode(raw_hash_field);
    String internalized =
        isolate->string_forwarding_table()->GetForwardString(isolate, index);
    return internalized.ptr();
  }

  uint64_t seed = HashSeed(isolate);

  std::unique_ptr<Char[]> buffer;
  const Char* chars;

  SharedStringAccessGuardIfNeeded access_guard(isolate);
  if (source.IsConsString(isolate)) {
    DCHECK(!source.IsFlat(isolate));
    buffer.reset(new Char[length]);
    String::WriteToFlat(source, buffer.get(), 0, length, isolate, access_guard);
    chars = buffer.get();
  } else {
    chars = source.GetChars<Char>(isolate, no_gc, access_guard) + start;
  }

  if (!Name::IsHashFieldComputed(raw_hash_field) || !is_source_hash_usable) {
    raw_hash_field =
        StringHasher::HashSequentialString<Char>(chars, length, seed);
  }
  // TODO(verwaest): Internalize to one-byte when possible.
  SequentialStringKey<Char> key(raw_hash_field,
                                base::Vector<const Char>(chars, length), seed);

  // String could be an array index.
  if (Name::ContainsCachedArrayIndex(raw_hash_field)) {
    return Smi::FromInt(String::ArrayIndexValueBits::decode(raw_hash_field))
        .ptr();
  }

  if (Name::IsIntegerIndex(raw_hash_field)) {
    // It is an index, but it's not cached.
    return Smi::FromInt(ResultSentinel::kUnsupported).ptr();
  }

  Data* string_table_data =
      isolate->string_table()->data_.load(std::memory_order_acquire);

  InternalIndex entry = string_table_data->FindEntry(isolate, &key, key.hash());
  if (entry.is_not_found()) {
    // A string that's not an array index, and not in the string table,
    // cannot have been used as a property name before.
    return Smi::FromInt(ResultSentinel::kNotFound).ptr();
  }

  String internalized = String::cast(string_table_data->Get(isolate, entry));
  // string can be internalized here, if another thread internalized it.
  // If we found and entry in the string table and string is not internalized,
  // there is no way that it can transition to internalized later on. So a last
  // check here is sufficient.
  if (!string.IsInternalizedString()) {
    SetInternalizedReference(isolate, string, internalized);
  } else {
    DCHECK(v8_flags.shared_string_table);
  }
  return internalized.ptr();
}

// static
Address StringTable::TryStringToIndexOrLookupExisting(Isolate* isolate,
                                                      Address raw_string) {
  String string = String::cast(Object(raw_string));
  if (string.IsInternalizedString()) {
    // string could be internalized, if the string table is shared and another
    // thread internalized it.
    DCHECK(v8_flags.shared_string_table);
    return raw_string;
  }

  // Valid array indices are >= 0, so they cannot be mixed up with any of
  // the result sentinels, which are negative.
  static_assert(
      !String::ArrayIndexValueBits::is_valid(ResultSentinel::kUnsupported));
  static_assert(
      !String::ArrayIndexValueBits::is_valid(ResultSentinel::kNotFound));

  size_t start = 0;
  String source = string;
  if (source.IsSlicedString()) {
    SlicedString sliced = SlicedString::cast(source);
    start = sliced.offset();
    source = sliced.parent();
  } else if (source.IsConsString() && source.IsFlat()) {
    source = ConsString::cast(source).first();
  }
  if (source.IsThinString()) {
    source = ThinString::cast(source).actual();
    if (string.length() == source.length()) {
      return source.ptr();
    }
  }

  if (source.IsOneByteRepresentation()) {
    return StringTable::Data::TryStringToIndexOrLookupExisting<uint8_t>(
        isolate, string, source, start);
  }
  return StringTable::Data::TryStringToIndexOrLookupExisting<uint16_t>(
      isolate, string, source, start);
}

void StringTable::Print(PtrComprCageBase cage_base) const {
  data_.load(std::memory_order_acquire)->Print(cage_base);
}

size_t StringTable::GetCurrentMemoryUsage() const {
  return sizeof(*this) +
         data_.load(std::memory_order_acquire)->GetCurrentMemoryUsage();
}

void StringTable::IterateElements(RootVisitor* visitor) {
  // This should only happen during garbage collection when background threads
  // are paused, so the load can be relaxed.
  isolate_->heap()->safepoint()->AssertActive();
  data_.load(std::memory_order_relaxed)->IterateElements(visitor);
}

void StringTable::DropOldData() {
  // This should only happen during garbage collection when background threads
  // are paused, so the load can be relaxed.
  isolate_->heap()->safepoint()->AssertActive();
  DCHECK_NE(isolate_->heap()->gc_state(), Heap::NOT_IN_GC);
  data_.load(std::memory_order_relaxed)->DropPreviousData();
}

void StringTable::NotifyElementsRemoved(int count) {
  // This should only happen during garbage collection when background threads
  // are paused, so the load can be relaxed.
  isolate_->heap()->safepoint()->AssertActive();
  DCHECK_NE(isolate_->heap()->gc_state(), Heap::NOT_IN_GC);
  data_.load(std::memory_order_relaxed)->ElementsRemoved(count);
}

}  // namespace internal
}  // namespace v8