summaryrefslogtreecommitdiff
path: root/deps/v8/src/parsing/scanner.h
blob: 075b9ca6b2ba0c1d9468e7eef7e3598c85a5cd36 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Features shared by parsing and pre-parsing scanners.

#ifndef V8_PARSING_SCANNER_H_
#define V8_PARSING_SCANNER_H_

#include "src/allocation.h"
#include "src/base/logging.h"
#include "src/char-predicates.h"
#include "src/globals.h"
#include "src/messages.h"
#include "src/parsing/token.h"
#include "src/unicode-decoder.h"
#include "src/unicode.h"

namespace v8 {
namespace internal {


class AstRawString;
class AstValueFactory;
class DuplicateFinder;
class ExternalOneByteString;
class ExternalTwoByteString;
class ParserRecorder;
class UnicodeCache;

// ---------------------------------------------------------------------
// Buffered stream of UTF-16 code units, using an internal UTF-16 buffer.
// A code unit is a 16 bit value representing either a 16 bit code point
// or one part of a surrogate pair that make a single 21 bit code point.
class Utf16CharacterStream {
 public:
  static const uc32 kEndOfInput = -1;

  virtual ~Utf16CharacterStream() { }

  // Returns and advances past the next UTF-16 code unit in the input
  // stream. If there are no more code units it returns kEndOfInput.
  inline uc32 Advance() {
    if (V8_LIKELY(buffer_cursor_ < buffer_end_)) {
      return static_cast<uc32>(*(buffer_cursor_++));
    } else if (ReadBlock()) {
      return static_cast<uc32>(*(buffer_cursor_++));
    } else {
      // Note: currently the following increment is necessary to avoid a
      // parser problem! The scanner treats the final kEndOfInput as
      // a code unit with a position, and does math relative to that
      // position.
      buffer_cursor_++;
      return kEndOfInput;
    }
  }

  // Go back one by one character in the input stream.
  // This undoes the most recent Advance().
  inline void Back() {
    // The common case - if the previous character is within
    // buffer_start_ .. buffer_end_ will be handles locally.
    // Otherwise, a new block is requested.
    if (V8_LIKELY(buffer_cursor_ > buffer_start_)) {
      buffer_cursor_--;
    } else {
      ReadBlockAt(pos() - 1);
    }
  }

  // Go back one by two characters in the input stream. (This is the same as
  // calling Back() twice. But Back() may - in some instances - do substantial
  // work. Back2() guarantees this work will be done only once.)
  inline void Back2() {
    if (V8_LIKELY(buffer_cursor_ - 2 >= buffer_start_)) {
      buffer_cursor_ -= 2;
    } else {
      ReadBlockAt(pos() - 2);
    }
  }

  inline size_t pos() const {
    return buffer_pos_ + (buffer_cursor_ - buffer_start_);
  }

  inline void Seek(size_t pos) {
    if (V8_LIKELY(pos >= buffer_pos_ &&
                  pos < (buffer_pos_ + (buffer_end_ - buffer_start_)))) {
      buffer_cursor_ = buffer_start_ + (pos - buffer_pos_);
    } else {
      ReadBlockAt(pos);
    }
  }

 protected:
  Utf16CharacterStream(const uint16_t* buffer_start,
                       const uint16_t* buffer_cursor,
                       const uint16_t* buffer_end, size_t buffer_pos)
      : buffer_start_(buffer_start),
        buffer_cursor_(buffer_cursor),
        buffer_end_(buffer_end),
        buffer_pos_(buffer_pos) {}
  Utf16CharacterStream() : Utf16CharacterStream(nullptr, nullptr, nullptr, 0) {}

  void ReadBlockAt(size_t new_pos) {
    // The callers of this method (Back/Back2/Seek) should handle the easy
    // case (seeking within the current buffer), and we should only get here
    // if we actually require new data.
    // (This is really an efficiency check, not a correctness invariant.)
    DCHECK(new_pos < buffer_pos_ ||
           new_pos >= buffer_pos_ + (buffer_end_ - buffer_start_));

    // Change pos() to point to new_pos.
    buffer_pos_ = new_pos;
    buffer_cursor_ = buffer_start_;
    bool success = ReadBlock();
    USE(success);

    // Post-conditions: 1, on success, we should be at the right position.
    //                  2, success == we should have more characters available.
    DCHECK_IMPLIES(success, pos() == new_pos);
    DCHECK_EQ(success, buffer_cursor_ < buffer_end_);
    DCHECK_EQ(success, buffer_start_ < buffer_end_);
  }

  // Read more data, and update buffer_*_ to point to it.
  // Returns true if more data was available.
  //
  // ReadBlock() may modify any of the buffer_*_ members, but must sure that
  // the result of pos() remains unaffected.
  //
  // Examples:
  // - a stream could either fill a separate buffer. Then buffer_start_ and
  //   buffer_cursor_ would point to the beginning of the buffer, and
  //   buffer_pos would be the old pos().
  // - a stream with existing buffer chunks would set buffer_start_ and
  //   buffer_end_ to cover the full chunk, and then buffer_cursor_ would
  //   point into the middle of the buffer, while buffer_pos_ would describe
  //   the start of the buffer.
  virtual bool ReadBlock() = 0;

  const uint16_t* buffer_start_;
  const uint16_t* buffer_cursor_;
  const uint16_t* buffer_end_;
  size_t buffer_pos_;
};


// ----------------------------------------------------------------------------
// JavaScript Scanner.

class Scanner {
 public:
  // Scoped helper for a re-settable bookmark.
  class BookmarkScope {
   public:
    explicit BookmarkScope(Scanner* scanner)
        : scanner_(scanner), bookmark_(kNoBookmark) {
      DCHECK_NOT_NULL(scanner_);
    }
    ~BookmarkScope() {}

    void Set();
    void Apply();
    bool HasBeenSet();
    bool HasBeenApplied();

   private:
    static const size_t kNoBookmark;
    static const size_t kBookmarkWasApplied;
    static const size_t kBookmarkAtFirstPos;

    Scanner* scanner_;
    size_t bookmark_;

    DISALLOW_COPY_AND_ASSIGN(BookmarkScope);
  };

  // Representation of an interval of source positions.
  struct Location {
    Location(int b, int e) : beg_pos(b), end_pos(e) { }
    Location() : beg_pos(0), end_pos(0) { }

    bool IsValid() const {
      return beg_pos >= 0 && end_pos >= beg_pos;
    }

    static Location invalid() { return Location(-1, -1); }

    int beg_pos;
    int end_pos;
  };

  // -1 is outside of the range of any real source code.
  static const int kNoOctalLocation = -1;
  static const uc32 kEndOfInput = Utf16CharacterStream::kEndOfInput;

  explicit Scanner(UnicodeCache* scanner_contants);

  void Initialize(Utf16CharacterStream* source);

  // Returns the next token and advances input.
  Token::Value Next();
  // Returns the token following peek()
  Token::Value PeekAhead();
  // Returns the current token again.
  Token::Value current_token() { return current_.token; }
  // Returns the location information for the current token
  // (the token last returned by Next()).
  Location location() const { return current_.location; }

  bool has_error() const { return scanner_error_ != MessageTemplate::kNone; }
  MessageTemplate::Template error() const { return scanner_error_; }
  Location error_location() const { return scanner_error_location_; }

  // Similar functions for the upcoming token.

  // One token look-ahead (past the token returned by Next()).
  Token::Value peek() const { return next_.token; }

  Location peek_location() const { return next_.location; }

  bool literal_contains_escapes() const {
    return LiteralContainsEscapes(current_);
  }
  bool is_literal_contextual_keyword(Vector<const char> keyword) {
    DCHECK(current_.token == Token::IDENTIFIER ||
           current_.token == Token::ESCAPED_STRICT_RESERVED_WORD);
    DCHECK_NOT_NULL(current_.literal_chars);
    return current_.literal_chars->is_contextual_keyword(keyword);
  }
  bool is_next_contextual_keyword(Vector<const char> keyword) {
    DCHECK_NOT_NULL(next_.literal_chars);
    return next_.literal_chars->is_contextual_keyword(keyword);
  }

  const AstRawString* CurrentSymbol(AstValueFactory* ast_value_factory);
  const AstRawString* NextSymbol(AstValueFactory* ast_value_factory);
  const AstRawString* CurrentRawSymbol(AstValueFactory* ast_value_factory);

  double DoubleValue();
  bool ContainsDot();
  bool LiteralMatches(const char* data, int length, bool allow_escapes = true) {
    if (!current_.literal_chars) {
      return !strncmp(Token::Name(current_.token), data, length);
    } else if (is_literal_one_byte() && literal_length() == length &&
               (allow_escapes || !literal_contains_escapes())) {
      const char* token =
          reinterpret_cast<const char*>(literal_one_byte_string().start());
      return !strncmp(token, data, length);
    }
    return false;
  }
  inline bool UnescapedLiteralMatches(const char* data, int length) {
    return LiteralMatches(data, length, false);
  }

  bool IsGetOrSet(bool* is_get, bool* is_set) {
    if (is_literal_one_byte() &&
        literal_length() == 3 &&
        !literal_contains_escapes()) {
      const char* token =
          reinterpret_cast<const char*>(literal_one_byte_string().start());
      *is_get = strncmp(token, "get", 3) == 0;
      *is_set = !*is_get && strncmp(token, "set", 3) == 0;
      return *is_get || *is_set;
    }
    return false;
  }

  bool FindSymbol(DuplicateFinder* finder);

  UnicodeCache* unicode_cache() { return unicode_cache_; }

  // Returns the location of the last seen octal literal.
  Location octal_position() const { return octal_pos_; }
  void clear_octal_position() {
    octal_pos_ = Location::invalid();
    octal_message_ = MessageTemplate::kNone;
  }
  MessageTemplate::Template octal_message() const { return octal_message_; }

  // Returns the value of the last smi that was scanned.
  uint32_t smi_value() const { return current_.smi_value_; }

  // Seek forward to the given position.  This operation does not
  // work in general, for instance when there are pushed back
  // characters, but works for seeking forward until simple delimiter
  // tokens, which is what it is used for.
  void SeekForward(int pos);

  // Returns true if there was a line terminator before the peek'ed token,
  // possibly inside a multi-line comment.
  bool HasAnyLineTerminatorBeforeNext() const {
    return has_line_terminator_before_next_ ||
           has_multiline_comment_before_next_;
  }

  bool HasAnyLineTerminatorAfterNext() {
    Token::Value ensure_next_next = PeekAhead();
    USE(ensure_next_next);
    return has_line_terminator_after_next_;
  }

  // Scans the input as a regular expression pattern, next token must be /(=).
  // Returns true if a pattern is scanned.
  bool ScanRegExpPattern();
  // Scans the input as regular expression flags. Returns the flags on success.
  Maybe<RegExp::Flags> ScanRegExpFlags();

  // Scans the input as a template literal
  Token::Value ScanTemplateStart();
  Token::Value ScanTemplateContinuation();

  Handle<String> SourceUrl(Isolate* isolate) const {
    Handle<String> tmp;
    if (source_url_.length() > 0) tmp = source_url_.Internalize(isolate);
    return tmp;
  }

  Handle<String> SourceMappingUrl(Isolate* isolate) const {
    Handle<String> tmp;
    if (source_mapping_url_.length() > 0)
      tmp = source_mapping_url_.Internalize(isolate);
    return tmp;
  }

  bool FoundHtmlComment() const { return found_html_comment_; }

 private:
  // Scoped helper for literal recording. Automatically drops the literal
  // if aborting the scanning before it's complete.
  class LiteralScope {
   public:
    explicit LiteralScope(Scanner* self) : scanner_(self), complete_(false) {
      scanner_->StartLiteral();
    }
    ~LiteralScope() {
      if (!complete_) scanner_->DropLiteral();
    }
    void Complete() { complete_ = true; }

   private:
    Scanner* scanner_;
    bool complete_;
  };

  // LiteralBuffer -  Collector of chars of literals.
  class LiteralBuffer {
   public:
    LiteralBuffer() : is_one_byte_(true), position_(0), backing_store_() {}

    ~LiteralBuffer() { backing_store_.Dispose(); }

    INLINE(void AddChar(char code_unit)) {
      DCHECK(IsValidAscii(code_unit));
      AddOneByteChar(static_cast<byte>(code_unit));
    }

    INLINE(void AddChar(uc32 code_unit)) {
      if (is_one_byte_ &&
          code_unit <= static_cast<uc32>(unibrow::Latin1::kMaxChar)) {
        AddOneByteChar(static_cast<byte>(code_unit));
      } else {
        AddCharSlow(code_unit);
      }
    }

    bool is_one_byte() const { return is_one_byte_; }

    bool is_contextual_keyword(Vector<const char> keyword) const {
      return is_one_byte() && keyword.length() == position_ &&
             (memcmp(keyword.start(), backing_store_.start(), position_) == 0);
    }

    Vector<const uint16_t> two_byte_literal() const {
      DCHECK(!is_one_byte_);
      DCHECK((position_ & 0x1) == 0);
      return Vector<const uint16_t>(
          reinterpret_cast<const uint16_t*>(backing_store_.start()),
          position_ >> 1);
    }

    Vector<const uint8_t> one_byte_literal() const {
      DCHECK(is_one_byte_);
      return Vector<const uint8_t>(
          reinterpret_cast<const uint8_t*>(backing_store_.start()), position_);
    }

    int length() const { return is_one_byte_ ? position_ : (position_ >> 1); }

    void ReduceLength(int delta) {
      position_ -= delta * (is_one_byte_ ? kOneByteSize : kUC16Size);
    }

    void Reset() {
      position_ = 0;
      is_one_byte_ = true;
    }

    Handle<String> Internalize(Isolate* isolate) const;

   private:
    static const int kInitialCapacity = 16;
    static const int kGrowthFactory = 4;
    static const int kMinConversionSlack = 256;
    static const int kMaxGrowth = 1 * MB;

    inline bool IsValidAscii(char code_unit) {
      // Control characters and printable characters span the range of
      // valid ASCII characters (0-127). Chars are unsigned on some
      // platforms which causes compiler warnings if the validity check
      // tests the lower bound >= 0 as it's always true.
      return iscntrl(code_unit) || isprint(code_unit);
    }

    INLINE(void AddOneByteChar(byte one_byte_char)) {
      DCHECK(is_one_byte_);
      if (position_ >= backing_store_.length()) ExpandBuffer();
      backing_store_[position_] = one_byte_char;
      position_ += kOneByteSize;
    }

    void AddCharSlow(uc32 code_unit);
    int NewCapacity(int min_capacity);
    void ExpandBuffer();
    void ConvertToTwoByte();

    bool is_one_byte_;
    int position_;
    Vector<byte> backing_store_;

    DISALLOW_COPY_AND_ASSIGN(LiteralBuffer);
  };

  // The current and look-ahead token.
  struct TokenDesc {
    Location location;
    LiteralBuffer* literal_chars;
    LiteralBuffer* raw_literal_chars;
    uint32_t smi_value_;
    Token::Value token;
  };

  static const int kCharacterLookaheadBufferSize = 1;
  const int kMaxAscii = 127;

  // Scans octal escape sequence. Also accepts "\0" decimal escape sequence.
  template <bool capture_raw>
  uc32 ScanOctalEscape(uc32 c, int length);

  // Call this after setting source_ to the input.
  void Init() {
    // Set c0_ (one character ahead)
    STATIC_ASSERT(kCharacterLookaheadBufferSize == 1);
    Advance();
    // Initialize current_ to not refer to a literal.
    current_.token = Token::UNINITIALIZED;
    current_.literal_chars = NULL;
    current_.raw_literal_chars = NULL;
    next_.token = Token::UNINITIALIZED;
    next_.literal_chars = NULL;
    next_.raw_literal_chars = NULL;
    next_next_.token = Token::UNINITIALIZED;
    next_next_.literal_chars = NULL;
    next_next_.raw_literal_chars = NULL;
    found_html_comment_ = false;
    scanner_error_ = MessageTemplate::kNone;
  }

  void ReportScannerError(const Location& location,
                          MessageTemplate::Template error) {
    if (has_error()) return;
    scanner_error_ = error;
    scanner_error_location_ = location;
  }

  void ReportScannerError(int pos, MessageTemplate::Template error) {
    if (has_error()) return;
    scanner_error_ = error;
    scanner_error_location_ = Location(pos, pos + 1);
  }

  // Seek to the next_ token at the given position.
  void SeekNext(size_t position);

  // Literal buffer support
  inline void StartLiteral() {
    LiteralBuffer* free_buffer =
        (current_.literal_chars == &literal_buffer0_)
            ? &literal_buffer1_
            : (current_.literal_chars == &literal_buffer1_) ? &literal_buffer2_
                                                            : &literal_buffer0_;
    free_buffer->Reset();
    next_.literal_chars = free_buffer;
  }

  inline void StartRawLiteral() {
    LiteralBuffer* free_buffer =
        (current_.raw_literal_chars == &raw_literal_buffer0_)
            ? &raw_literal_buffer1_
            : (current_.raw_literal_chars == &raw_literal_buffer1_)
                  ? &raw_literal_buffer2_
                  : &raw_literal_buffer0_;
    free_buffer->Reset();
    next_.raw_literal_chars = free_buffer;
  }

  INLINE(void AddLiteralChar(uc32 c)) {
    DCHECK_NOT_NULL(next_.literal_chars);
    next_.literal_chars->AddChar(c);
  }

  INLINE(void AddLiteralChar(char c)) {
    DCHECK_NOT_NULL(next_.literal_chars);
    next_.literal_chars->AddChar(c);
  }

  INLINE(void AddRawLiteralChar(uc32 c)) {
    DCHECK_NOT_NULL(next_.raw_literal_chars);
    next_.raw_literal_chars->AddChar(c);
  }

  INLINE(void ReduceRawLiteralLength(int delta)) {
    DCHECK_NOT_NULL(next_.raw_literal_chars);
    next_.raw_literal_chars->ReduceLength(delta);
  }

  // Stops scanning of a literal and drop the collected characters,
  // e.g., due to an encountered error.
  inline void DropLiteral() {
    next_.literal_chars = NULL;
    next_.raw_literal_chars = NULL;
  }

  inline void AddLiteralCharAdvance() {
    AddLiteralChar(c0_);
    Advance();
  }

  // Low-level scanning support.
  template <bool capture_raw = false, bool check_surrogate = true>
  void Advance() {
    if (capture_raw) {
      AddRawLiteralChar(c0_);
    }
    c0_ = source_->Advance();
    if (check_surrogate) HandleLeadSurrogate();
  }

  void HandleLeadSurrogate() {
    if (unibrow::Utf16::IsLeadSurrogate(c0_)) {
      uc32 c1 = source_->Advance();
      if (!unibrow::Utf16::IsTrailSurrogate(c1)) {
        source_->Back();
      } else {
        c0_ = unibrow::Utf16::CombineSurrogatePair(c0_, c1);
      }
    }
  }

  void PushBack(uc32 ch) {
    if (c0_ > static_cast<uc32>(unibrow::Utf16::kMaxNonSurrogateCharCode)) {
      source_->Back2();
    } else {
      source_->Back();
    }
    c0_ = ch;
  }

  // Same as PushBack(ch1); PushBack(ch2).
  // - Potentially more efficient as it uses Back2() on the stream.
  // - Uses char as parameters, since we're only calling it with ASCII chars in
  //   practice. This way, we can avoid a few edge cases.
  void PushBack2(char ch1, char ch2) {
    source_->Back2();
    c0_ = ch2;
  }

  inline Token::Value Select(Token::Value tok) {
    Advance();
    return tok;
  }

  inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) {
    Advance();
    if (c0_ == next) {
      Advance();
      return then;
    } else {
      return else_;
    }
  }

  // Returns the literal string, if any, for the current token (the
  // token last returned by Next()). The string is 0-terminated.
  // Literal strings are collected for identifiers, strings, numbers as well
  // as for template literals. For template literals we also collect the raw
  // form.
  // These functions only give the correct result if the literal was scanned
  // when a LiteralScope object is alive.
  //
  // Current usage of these functions is unfortunately a little undisciplined,
  // and is_literal_one_byte() + is_literal_one_byte_string() is also
  // requested for tokens that do not have a literal. Hence, we treat any
  // token as a one-byte literal. E.g. Token::FUNCTION pretends to have a
  // literal "function".
  Vector<const uint8_t> literal_one_byte_string() {
    if (current_.literal_chars)
      return current_.literal_chars->one_byte_literal();
    const char* str = Token::String(current_.token);
    const uint8_t* str_as_uint8 = reinterpret_cast<const uint8_t*>(str);
    return Vector<const uint8_t>(str_as_uint8,
                                 Token::StringLength(current_.token));
  }
  Vector<const uint16_t> literal_two_byte_string() {
    DCHECK_NOT_NULL(current_.literal_chars);
    return current_.literal_chars->two_byte_literal();
  }
  bool is_literal_one_byte() {
    return !current_.literal_chars || current_.literal_chars->is_one_byte();
  }
  int literal_length() const {
    if (current_.literal_chars) return current_.literal_chars->length();
    return Token::StringLength(current_.token);
  }
  // Returns the literal string for the next token (the token that
  // would be returned if Next() were called).
  Vector<const uint8_t> next_literal_one_byte_string() {
    DCHECK_NOT_NULL(next_.literal_chars);
    return next_.literal_chars->one_byte_literal();
  }
  Vector<const uint16_t> next_literal_two_byte_string() {
    DCHECK_NOT_NULL(next_.literal_chars);
    return next_.literal_chars->two_byte_literal();
  }
  bool is_next_literal_one_byte() {
    DCHECK_NOT_NULL(next_.literal_chars);
    return next_.literal_chars->is_one_byte();
  }
  Vector<const uint8_t> raw_literal_one_byte_string() {
    DCHECK_NOT_NULL(current_.raw_literal_chars);
    return current_.raw_literal_chars->one_byte_literal();
  }
  Vector<const uint16_t> raw_literal_two_byte_string() {
    DCHECK_NOT_NULL(current_.raw_literal_chars);
    return current_.raw_literal_chars->two_byte_literal();
  }
  bool is_raw_literal_one_byte() {
    DCHECK_NOT_NULL(current_.raw_literal_chars);
    return current_.raw_literal_chars->is_one_byte();
  }

  template <bool capture_raw, bool unicode = false>
  uc32 ScanHexNumber(int expected_length);
  // Scan a number of any length but not bigger than max_value. For example, the
  // number can be 000000001, so it's very long in characters but its value is
  // small.
  template <bool capture_raw>
  uc32 ScanUnlimitedLengthHexNumber(int max_value, int beg_pos);

  // Scans a single JavaScript token.
  void Scan();

  bool SkipWhiteSpace();
  Token::Value SkipSingleLineComment();
  Token::Value SkipSourceURLComment();
  void TryToParseSourceURLComment();
  Token::Value SkipMultiLineComment();
  // Scans a possible HTML comment -- begins with '<!'.
  Token::Value ScanHtmlComment();

  void ScanDecimalDigits();
  Token::Value ScanNumber(bool seen_period);
  Token::Value ScanIdentifierOrKeyword();
  Token::Value ScanIdentifierSuffix(LiteralScope* literal, bool escaped);

  Token::Value ScanString();

  // Scans an escape-sequence which is part of a string and adds the
  // decoded character to the current literal. Returns true if a pattern
  // is scanned.
  template <bool capture_raw, bool in_template_literal>
  bool ScanEscape();

  // Decodes a Unicode escape-sequence which is part of an identifier.
  // If the escape sequence cannot be decoded the result is kBadChar.
  uc32 ScanIdentifierUnicodeEscape();
  // Helper for the above functions.
  template <bool capture_raw>
  uc32 ScanUnicodeEscape();

  Token::Value ScanTemplateSpan();

  // Return the current source position.
  int source_pos() {
    return static_cast<int>(source_->pos()) - kCharacterLookaheadBufferSize;
  }

  static bool LiteralContainsEscapes(const TokenDesc& token) {
    Location location = token.location;
    int source_length = (location.end_pos - location.beg_pos);
    if (token.token == Token::STRING) {
      // Subtract delimiters.
      source_length -= 2;
    }
    return token.literal_chars &&
           (token.literal_chars->length() != source_length);
  }

#ifdef DEBUG
  void SanityCheckTokenDesc(const TokenDesc&) const;
#endif

  UnicodeCache* unicode_cache_;

  // Buffers collecting literal strings, numbers, etc.
  LiteralBuffer literal_buffer0_;
  LiteralBuffer literal_buffer1_;
  LiteralBuffer literal_buffer2_;

  // Values parsed from magic comments.
  LiteralBuffer source_url_;
  LiteralBuffer source_mapping_url_;

  // Buffer to store raw string values
  LiteralBuffer raw_literal_buffer0_;
  LiteralBuffer raw_literal_buffer1_;
  LiteralBuffer raw_literal_buffer2_;

  TokenDesc current_;    // desc for current token (as returned by Next())
  TokenDesc next_;       // desc for next token (one token look-ahead)
  TokenDesc next_next_;  // desc for the token after next (after PeakAhead())

  // Input stream. Must be initialized to an Utf16CharacterStream.
  Utf16CharacterStream* source_;

  // Last-seen positions of potentially problematic tokens.
  Location octal_pos_;
  MessageTemplate::Template octal_message_;

  // One Unicode character look-ahead; c0_ < 0 at the end of the input.
  uc32 c0_;

  // Whether there is a line terminator whitespace character after
  // the current token, and  before the next. Does not count newlines
  // inside multiline comments.
  bool has_line_terminator_before_next_;
  // Whether there is a multi-line comment that contains a
  // line-terminator after the current token, and before the next.
  bool has_multiline_comment_before_next_;
  bool has_line_terminator_after_next_;

  // Whether this scanner encountered an HTML comment.
  bool found_html_comment_;

  MessageTemplate::Template scanner_error_;
  Location scanner_error_location_;
};

}  // namespace internal
}  // namespace v8

#endif  // V8_PARSING_SCANNER_H_