summaryrefslogtreecommitdiff
path: root/deps/v8/src/ppc/codegen-ppc.cc
blob: 6c8ffe68982607333118866d2d637e6b5151a85d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/ppc/codegen-ppc.h"

#if V8_TARGET_ARCH_PPC

#include <memory>

#include "src/codegen.h"
#include "src/macro-assembler.h"
#include "src/ppc/simulator-ppc.h"

namespace v8 {
namespace internal {


#define __ masm.

UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
#if defined(USE_SIMULATOR)
  return nullptr;
#else
  size_t actual_size;
  byte* buffer =
      static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
  if (buffer == nullptr) return nullptr;

  MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
                      CodeObjectRequired::kNo);

// Called from C
  __ function_descriptor();

  __ MovFromFloatParameter(d1);
  __ fsqrt(d1, d1);
  __ MovToFloatResult(d1);
  __ Ret();

  CodeDesc desc;
  masm.GetCode(isolate, &desc);
  DCHECK(ABI_USES_FUNCTION_DESCRIPTORS ||
         !RelocInfo::RequiresRelocation(isolate, desc));

  Assembler::FlushICache(isolate, buffer, actual_size);
  base::OS::ProtectCode(buffer, actual_size);
  return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
#endif
}

#undef __


// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.

void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
  masm->EnterFrame(StackFrame::INTERNAL);
  DCHECK(!masm->has_frame());
  masm->set_has_frame(true);
}


void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
  masm->LeaveFrame(StackFrame::INTERNAL);
  DCHECK(masm->has_frame());
  masm->set_has_frame(false);
}


// -------------------------------------------------------------------------
// Code generators

#define __ ACCESS_MASM(masm)

// assume ip can be used as a scratch register below
void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string,
                                       Register index, Register result,
                                       Label* call_runtime) {
  Label indirect_string_loaded;
  __ bind(&indirect_string_loaded);

  // Fetch the instance type of the receiver into result register.
  __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset));
  __ lbz(result, FieldMemOperand(result, Map::kInstanceTypeOffset));

  // We need special handling for indirect strings.
  Label check_sequential;
  __ andi(r0, result, Operand(kIsIndirectStringMask));
  __ beq(&check_sequential, cr0);

  // Dispatch on the indirect string shape: slice or cons or thin.
  Label cons_string, thin_string;
  __ andi(ip, result, Operand(kStringRepresentationMask));
  __ cmpi(ip, Operand(kConsStringTag));
  __ beq(&cons_string);
  __ cmpi(ip, Operand(kThinStringTag));
  __ beq(&thin_string);

  // Handle slices.
  __ LoadP(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
  __ LoadP(string, FieldMemOperand(string, SlicedString::kParentOffset));
  __ SmiUntag(ip, result);
  __ add(index, index, ip);
  __ b(&indirect_string_loaded);

  // Handle thin strings.
  __ bind(&thin_string);
  __ LoadP(string, FieldMemOperand(string, ThinString::kActualOffset));
  __ b(&indirect_string_loaded);

  // Handle cons strings.
  // Check whether the right hand side is the empty string (i.e. if
  // this is really a flat string in a cons string). If that is not
  // the case we would rather go to the runtime system now to flatten
  // the string.
  __ bind(&cons_string);
  __ LoadP(result, FieldMemOperand(string, ConsString::kSecondOffset));
  __ CompareRoot(result, Heap::kempty_stringRootIndex);
  __ bne(call_runtime);
  // Get the first of the two strings and load its instance type.
  __ LoadP(string, FieldMemOperand(string, ConsString::kFirstOffset));
  __ b(&indirect_string_loaded);

  // Distinguish sequential and external strings. Only these two string
  // representations can reach here (slices and flat cons strings have been
  // reduced to the underlying sequential or external string).
  Label external_string, check_encoding;
  __ bind(&check_sequential);
  STATIC_ASSERT(kSeqStringTag == 0);
  __ andi(r0, result, Operand(kStringRepresentationMask));
  __ bne(&external_string, cr0);

  // Prepare sequential strings
  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
  __ addi(string, string,
          Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
  __ b(&check_encoding);

  // Handle external strings.
  __ bind(&external_string);
  if (FLAG_debug_code) {
    // Assert that we do not have a cons or slice (indirect strings) here.
    // Sequential strings have already been ruled out.
    __ andi(r0, result, Operand(kIsIndirectStringMask));
    __ Assert(eq, kExternalStringExpectedButNotFound, cr0);
  }
  // Rule out short external strings.
  STATIC_ASSERT(kShortExternalStringTag != 0);
  __ andi(r0, result, Operand(kShortExternalStringMask));
  __ bne(call_runtime, cr0);
  __ LoadP(string,
           FieldMemOperand(string, ExternalString::kResourceDataOffset));

  Label one_byte, done;
  __ bind(&check_encoding);
  STATIC_ASSERT(kTwoByteStringTag == 0);
  __ andi(r0, result, Operand(kStringEncodingMask));
  __ bne(&one_byte, cr0);
  // Two-byte string.
  __ ShiftLeftImm(result, index, Operand(1));
  __ lhzx(result, MemOperand(string, result));
  __ b(&done);
  __ bind(&one_byte);
  // One-byte string.
  __ lbzx(result, MemOperand(string, index));
  __ bind(&done);
}

#undef __

CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
  USE(isolate);
  DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
  // Since patcher is a large object, allocate it dynamically when needed,
  // to avoid overloading the stack in stress conditions.
  // DONT_FLUSH is used because the CodeAgingHelper is initialized early in
  // the process, before ARM simulator ICache is setup.
  std::unique_ptr<CodePatcher> patcher(
      new CodePatcher(isolate, young_sequence_.start(),
                      young_sequence_.length() / Assembler::kInstrSize,
                      CodePatcher::DONT_FLUSH));
  PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length());
  patcher->masm()->PushStandardFrame(r4);
  for (int i = 0; i < kNoCodeAgeSequenceNops; i++) {
    patcher->masm()->nop();
  }
}


#ifdef DEBUG
bool CodeAgingHelper::IsOld(byte* candidate) const {
  return Assembler::IsNop(Assembler::instr_at(candidate));
}
#endif


bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
  bool result = isolate->code_aging_helper()->IsYoung(sequence);
  DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
  return result;
}

Code::Age Code::GetCodeAge(Isolate* isolate, byte* sequence) {
  if (IsYoungSequence(isolate, sequence)) return kNoAgeCodeAge;

  Code* code = NULL;
  Address target_address =
      Assembler::target_address_at(sequence + kCodeAgingTargetDelta, code);
  Code* stub = GetCodeFromTargetAddress(target_address);
  return GetAgeOfCodeAgeStub(stub);
}

void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence,
                                Code::Age age) {
  uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
  if (age == kNoAgeCodeAge) {
    isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
    Assembler::FlushICache(isolate, sequence, young_length);
  } else {
    // FIXED_SEQUENCE
    Code* stub = GetCodeAgeStub(isolate, age);
    CodePatcher patcher(isolate, sequence,
                        young_length / Assembler::kInstrSize);
    Assembler::BlockTrampolinePoolScope block_trampoline_pool(patcher.masm());
    intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start());
    // Don't use Call -- we need to preserve ip and lr.
    // GenerateMakeCodeYoungAgainCommon for the stub code.
    patcher.masm()->nop();  // marker to detect sequence (see IsOld)
    patcher.masm()->mov(r3, Operand(target));
    patcher.masm()->Jump(r3);
    for (int i = 0; i < kCodeAgingSequenceNops; i++) {
      patcher.masm()->nop();
    }
  }
}
}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_PPC