summaryrefslogtreecommitdiff
path: root/deps/v8/src/ppc/constants-ppc.h
blob: daa52257d61830cf630550ac58425865ed6ac6b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_PPC_CONSTANTS_PPC_H_
#define V8_PPC_CONSTANTS_PPC_H_

#include <stdint.h>

#include "src/base/logging.h"
#include "src/base/macros.h"
#include "src/globals.h"

namespace v8 {
namespace internal {

// Number of registers
const int kNumRegisters = 32;

// FP support.
const int kNumDoubleRegisters = 32;

const int kNoRegister = -1;

// Used in embedded constant pool builder - max reach in bits for
// various load instructions (one less due to unsigned)
const int kLoadPtrMaxReachBits = 15;
const int kLoadDoubleMaxReachBits = 15;

// sign-extend the least significant 16-bits of value <imm>
#define SIGN_EXT_IMM16(imm) ((static_cast<int>(imm) << 16) >> 16)

// sign-extend the least significant 26-bits of value <imm>
#define SIGN_EXT_IMM26(imm) ((static_cast<int>(imm) << 6) >> 6)

// -----------------------------------------------------------------------------
// Conditions.

// Defines constants and accessor classes to assemble, disassemble and
// simulate PPC instructions.
//
// Section references in the code refer to the "PowerPC Microprocessor
// Family: The Programmer.s Reference Guide" from 10/95
// https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600741775/$file/prg.pdf
//

// Constants for specific fields are defined in their respective named enums.
// General constants are in an anonymous enum in class Instr.
enum Condition {
  kNoCondition = -1,
  eq = 0,         // Equal.
  ne = 1,         // Not equal.
  ge = 2,         // Greater or equal.
  lt = 3,         // Less than.
  gt = 4,         // Greater than.
  le = 5,         // Less then or equal
  unordered = 6,  // Floating-point unordered
  ordered = 7,
  overflow = 8,  // Summary overflow
  nooverflow = 9,
  al = 10  // Always.
};


inline Condition NegateCondition(Condition cond) {
  DCHECK(cond != al);
  return static_cast<Condition>(cond ^ ne);
}


// Commute a condition such that {a cond b == b cond' a}.
inline Condition CommuteCondition(Condition cond) {
  switch (cond) {
    case lt:
      return gt;
    case gt:
      return lt;
    case ge:
      return le;
    case le:
      return ge;
    default:
      return cond;
  }
}

// -----------------------------------------------------------------------------
// Instructions encoding.

// Instr is merely used by the Assembler to distinguish 32bit integers
// representing instructions from usual 32 bit values.
// Instruction objects are pointers to 32bit values, and provide methods to
// access the various ISA fields.
typedef int32_t Instr;

// Opcodes as defined in section 4.2 table 34 (32bit PowerPC)
enum Opcode {
  TWI = 3 << 26,       // Trap Word Immediate
  MULLI = 7 << 26,     // Multiply Low Immediate
  SUBFIC = 8 << 26,    // Subtract from Immediate Carrying
  CMPLI = 10 << 26,    // Compare Logical Immediate
  CMPI = 11 << 26,     // Compare Immediate
  ADDIC = 12 << 26,    // Add Immediate Carrying
  ADDICx = 13 << 26,   // Add Immediate Carrying and Record
  ADDI = 14 << 26,     // Add Immediate
  ADDIS = 15 << 26,    // Add Immediate Shifted
  BCX = 16 << 26,      // Branch Conditional
  SC = 17 << 26,       // System Call
  BX = 18 << 26,       // Branch
  EXT1 = 19 << 26,     // Extended code set 1
  RLWIMIX = 20 << 26,  // Rotate Left Word Immediate then Mask Insert
  RLWINMX = 21 << 26,  // Rotate Left Word Immediate then AND with Mask
  RLWNMX = 23 << 26,   // Rotate Left Word then AND with Mask
  ORI = 24 << 26,      // OR Immediate
  ORIS = 25 << 26,     // OR Immediate Shifted
  XORI = 26 << 26,     // XOR Immediate
  XORIS = 27 << 26,    // XOR Immediate Shifted
  ANDIx = 28 << 26,    // AND Immediate
  ANDISx = 29 << 26,   // AND Immediate Shifted
  EXT5 = 30 << 26,     // Extended code set 5 - 64bit only
  EXT2 = 31 << 26,     // Extended code set 2
  LWZ = 32 << 26,      // Load Word and Zero
  LWZU = 33 << 26,     // Load Word with Zero Update
  LBZ = 34 << 26,      // Load Byte and Zero
  LBZU = 35 << 26,     // Load Byte and Zero with Update
  STW = 36 << 26,      // Store
  STWU = 37 << 26,     // Store Word with Update
  STB = 38 << 26,      // Store Byte
  STBU = 39 << 26,     // Store Byte with Update
  LHZ = 40 << 26,      // Load Half and Zero
  LHZU = 41 << 26,     // Load Half and Zero with Update
  LHA = 42 << 26,      // Load Half Algebraic
  LHAU = 43 << 26,     // Load Half Algebraic with Update
  STH = 44 << 26,      // Store Half
  STHU = 45 << 26,     // Store Half with Update
  LMW = 46 << 26,      // Load Multiple Word
  STMW = 47 << 26,     // Store Multiple Word
  LFS = 48 << 26,      // Load Floating-Point Single
  LFSU = 49 << 26,     // Load Floating-Point Single with Update
  LFD = 50 << 26,      // Load Floating-Point Double
  LFDU = 51 << 26,     // Load Floating-Point Double with Update
  STFS = 52 << 26,     // Store Floating-Point Single
  STFSU = 53 << 26,    // Store Floating-Point Single with Update
  STFD = 54 << 26,     // Store Floating-Point Double
  STFDU = 55 << 26,    // Store Floating-Point Double with Update
  LD = 58 << 26,       // Load Double Word
  EXT3 = 59 << 26,     // Extended code set 3
  EXT6 = 60 << 26,     // Extended code set 6
  STD = 62 << 26,      // Store Double Word (optionally with Update)
  EXT4 = 63 << 26      // Extended code set 4
};

// Bits 10-1
enum OpcodeExt1 {
  MCRF = 0 << 1,      // Move Condition Register Field
  BCLRX = 16 << 1,    // Branch Conditional Link Register
  CRNOR = 33 << 1,    // Condition Register NOR)
  RFI = 50 << 1,      // Return from Interrupt
  CRANDC = 129 << 1,  // Condition Register AND with Complement
  ISYNC = 150 << 1,   // Instruction Synchronize
  CRXOR = 193 << 1,   // Condition Register XOR
  CRNAND = 225 << 1,  // Condition Register NAND
  CRAND = 257 << 1,   // Condition Register AND
  CREQV = 289 << 1,   // Condition Register Equivalent
  CRORC = 417 << 1,   // Condition Register OR with Complement
  CROR = 449 << 1,    // Condition Register OR
  BCCTRX = 528 << 1   // Branch Conditional to Count Register
};

// Bits 9-1 or 10-1
enum OpcodeExt2 {
  CMP = 0 << 1,
  TW = 4 << 1,
  SUBFCX = 8 << 1,
  ADDCX = 10 << 1,
  MULHWUX = 11 << 1,
  ISEL = 15 << 1,
  MFCR = 19 << 1,
  LWARX = 20 << 1,
  LDX = 21 << 1,
  LWZX = 23 << 1,  // load word zero w/ x-form
  SLWX = 24 << 1,
  CNTLZWX = 26 << 1,
  SLDX = 27 << 1,
  ANDX = 28 << 1,
  CMPL = 32 << 1,
  SUBFX = 40 << 1,
  MFVSRD = 51 << 1,  // Move From VSR Doubleword
  LDUX = 53 << 1,
  DCBST = 54 << 1,
  LWZUX = 55 << 1,  // load word zero w/ update x-form
  CNTLZDX = 58 << 1,
  ANDCX = 60 << 1,
  MULHWX = 75 << 1,
  DCBF = 86 << 1,
  LBZX = 87 << 1,  // load byte zero w/ x-form
  NEGX = 104 << 1,
  MFVSRWZ = 115 << 1,  // Move From VSR Word And Zero
  LBZUX = 119 << 1,    // load byte zero w/ update x-form
  NORX = 124 << 1,
  SUBFEX = 136 << 1,
  ADDEX = 138 << 1,
  STDX = 149 << 1,
  STWX = 151 << 1,    // store word w/ x-form
  MTVSRD = 179 << 1,  // Move To VSR Doubleword
  STDUX = 181 << 1,
  STWUX = 183 << 1,   // store word w/ update x-form
                      /*
     MTCRF
     MTMSR
     STWCXx
     SUBFZEX
   */
  ADDZEX = 202 << 1,  // Add to Zero Extended
                      /*
    MTSR
  */

  MTVSRWA = 211 << 1,  // Move To VSR Word Algebraic
  STBX = 215 << 1,     // store byte w/ x-form
  MULLD = 233 << 1,    // Multiply Low Double Word
  MULLW = 235 << 1,    // Multiply Low Word
  MTVSRWZ = 243 << 1,  // Move To VSR Word And Zero
  STBUX = 247 << 1,    // store byte w/ update x-form
  MODUD = 265 << 1,    // Modulo Unsigned Dword
  ADDX = 266 << 1,     // Add
  MODUW = 267 << 1,    // Modulo Unsigned Word
  LHZX = 279 << 1,     // load half-word zero w/ x-form
  LHZUX = 311 << 1,    // load half-word zero w/ update x-form
  LWAX = 341 << 1,     // load word algebraic w/ x-form
  LHAX = 343 << 1,     // load half-word algebraic w/ x-form
  LHAUX = 375 << 1,    // load half-word algebraic w/ update x-form
  XORX = 316 << 1,     // Exclusive OR
  MFSPR = 339 << 1,    // Move from Special-Purpose-Register
  POPCNTW = 378 << 1,  // Population Count Words
  STHX = 407 << 1,     // store half-word w/ x-form
  ORC = 412 << 1,      // Or with Complement
  STHUX = 439 << 1,    // store half-word w/ update x-form
  ORX = 444 << 1,      // Or
  DIVDU = 457 << 1,    // Divide Double Word Unsigned
  DIVWU = 459 << 1,    // Divide Word Unsigned
  MTSPR = 467 << 1,    // Move to Special-Purpose-Register
  DIVD = 489 << 1,     // Divide Double Word
  DIVW = 491 << 1,     // Divide Word
  POPCNTD = 506 << 1,  // Population Count Doubleword

  // Below represent bits 10-1  (any value >= 512)
  LDBRX = 532 << 1,   // load double word byte reversed w/ x-form
  LWBRX = 534 << 1,   // load word byte reversed w/ x-form
  LFSX = 535 << 1,    // load float-single w/ x-form
  SRWX = 536 << 1,    // Shift Right Word
  SRDX = 539 << 1,    // Shift Right Double Word
  LFSUX = 567 << 1,   // load float-single w/ update x-form
  SYNC = 598 << 1,    // Synchronize
  LFDX = 599 << 1,    // load float-double w/ x-form
  LFDUX = 631 << 1,   // load float-double w/ update X-form
  STFSX = 663 << 1,   // store float-single w/ x-form
  STFSUX = 695 << 1,  // store float-single w/ update x-form
  STFDX = 727 << 1,   // store float-double w/ x-form
  STFDUX = 759 << 1,  // store float-double w/ update x-form
  MODSD = 777 << 1,   // Modulo Signed Dword
  MODSW = 779 << 1,   // Modulo Signed Word
  LHBRX = 790 << 1,   // load half word byte reversed w/ x-form
  SRAW = 792 << 1,    // Shift Right Algebraic Word
  SRAD = 794 << 1,    // Shift Right Algebraic Double Word
  SRAWIX = 824 << 1,  // Shift Right Algebraic Word Immediate
  SRADIX = 413 << 2,  // Shift Right Algebraic Double Word Immediate
  EXTSH = 922 << 1,   // Extend Sign Halfword
  EXTSB = 954 << 1,   // Extend Sign Byte
  ICBI = 982 << 1,    // Instruction Cache Block Invalidate
  EXTSW = 986 << 1    // Extend Sign Word
};

// Some use Bits 10-1 and other only 5-1 for the opcode
enum OpcodeExt4 {
  // Bits 5-1
  FDIV = 18 << 1,   // Floating Divide
  FSUB = 20 << 1,   // Floating Subtract
  FADD = 21 << 1,   // Floating Add
  FSQRT = 22 << 1,  // Floating Square Root
  FSEL = 23 << 1,   // Floating Select
  FMUL = 25 << 1,   // Floating Multiply
  FMSUB = 28 << 1,  // Floating Multiply-Subtract
  FMADD = 29 << 1,  // Floating Multiply-Add

  // Bits 10-1
  FCMPU = 0 << 1,      // Floating Compare Unordered
  FRSP = 12 << 1,      // Floating-Point Rounding
  FCTIW = 14 << 1,     // Floating Convert to Integer Word X-form
  FCTIWZ = 15 << 1,    // Floating Convert to Integer Word with Round to Zero
  MTFSB1 = 38 << 1,    // Move to FPSCR Bit 1
  FNEG = 40 << 1,      // Floating Negate
  MCRFS = 64 << 1,     // Move to Condition Register from FPSCR
  MTFSB0 = 70 << 1,    // Move to FPSCR Bit 0
  FMR = 72 << 1,       // Floating Move Register
  MTFSFI = 134 << 1,   // Move to FPSCR Field Immediate
  FABS = 264 << 1,     // Floating Absolute Value
  FRIN = 392 << 1,     // Floating Round to Integer Nearest
  FRIZ = 424 << 1,     // Floating Round to Integer Toward Zero
  FRIP = 456 << 1,     // Floating Round to Integer Plus
  FRIM = 488 << 1,     // Floating Round to Integer Minus
  MFFS = 583 << 1,     // move from FPSCR x-form
  MTFSF = 711 << 1,    // move to FPSCR fields XFL-form
  FCTID = 814 << 1,    // Floating convert to integer doubleword
  FCTIDZ = 815 << 1,   // ^^^ with round toward zero
  FCFID = 846 << 1,    // Floating convert from integer doubleword
  FCTIDU = 942 << 1,   // Floating convert to integer doubleword unsigned
  FCTIDUZ = 943 << 1,  // ^^^ with round toward zero
  FCFIDU = 974 << 1    // Floating convert from integer doubleword unsigned
};

enum OpcodeExt5 {
  // Bits 4-2
  RLDICL = 0 << 1,  // Rotate Left Double Word Immediate then Clear Left
  RLDICR = 2 << 1,  // Rotate Left Double Word Immediate then Clear Right
  RLDIC = 4 << 1,   // Rotate Left Double Word Immediate then Clear
  RLDIMI = 6 << 1,  // Rotate Left Double Word Immediate then Mask Insert
  // Bits 4-1
  RLDCL = 8 << 1,  // Rotate Left Double Word then Clear Left
  RLDCR = 9 << 1   // Rotate Left Double Word then Clear Right
};

// Bits 10-3
#define XX3_OPCODE_LIST(V)                                   \
  V(xsaddsp, XSADDSP, 0 << 3)   /* VSX Scalar Add SP */      \
  V(xssubsp, XSSUBSP, 8 << 3)   /* VSX Scalar Subtract SP */ \
  V(xsmulsp, XSMULSP, 16 << 3)  /* VSX Scalar Multiply SP */ \
  V(xsdivsp, XSDIVSP, 24 << 3)  /* VSX Scalar Divide SP */   \
  V(xsadddp, XSADDDP, 32 << 3)  /* VSX Scalar Add DP */      \
  V(xssubdp, XSSUBDP, 40 << 3)  /* VSX Scalar Subtract DP */ \
  V(xsmuldp, XSMULDP, 48 << 3)  /* VSX Scalar Multiply DP */ \
  V(xsdivdp, XSDIVDP, 56 << 3)  /* VSX Scalar Divide DP */   \
  V(xsmaxdp, XSMAXDP, 160 << 3) /* VSX Scalar Maximum DP */  \
  V(xsmindp, XSMINDP, 168 << 3) /* VSX Scalar Minimum DP */

// Bits 10-2
#define XX2_OPCODE_LIST(V)                                          \
  V(XSCVDPSP, XSCVDPSP, 265 << 2) /* VSX Scalar Convert DP to SP */ \
  V(XSCVSPDP, XSCVSPDP, 329 << 2) /* VSX Scalar Convert SP to DP */

enum OpcodeExt6 {
#define DECLARE_OPCODES(name, opcode_name, opcode_value) \
  opcode_name = opcode_value,
  XX3_OPCODE_LIST(DECLARE_OPCODES) XX2_OPCODE_LIST(DECLARE_OPCODES)
#undef DECLARE_OPCODES
};

// Instruction encoding bits and masks.
enum {
  // Instruction encoding bit
  B1 = 1 << 1,
  B2 = 1 << 2,
  B3 = 1 << 3,
  B4 = 1 << 4,
  B5 = 1 << 5,
  B7 = 1 << 7,
  B8 = 1 << 8,
  B9 = 1 << 9,
  B12 = 1 << 12,
  B18 = 1 << 18,
  B19 = 1 << 19,
  B20 = 1 << 20,
  B22 = 1 << 22,
  B23 = 1 << 23,
  B24 = 1 << 24,
  B25 = 1 << 25,
  B26 = 1 << 26,
  B27 = 1 << 27,
  B28 = 1 << 28,
  B6 = 1 << 6,
  B10 = 1 << 10,
  B11 = 1 << 11,
  B16 = 1 << 16,
  B17 = 1 << 17,
  B21 = 1 << 21,

  // Instruction bit masks
  kCondMask = 0x1F << 21,
  kOff12Mask = (1 << 12) - 1,
  kImm24Mask = (1 << 24) - 1,
  kOff16Mask = (1 << 16) - 1,
  kImm16Mask = (1 << 16) - 1,
  kImm26Mask = (1 << 26) - 1,
  kBOfieldMask = 0x1f << 21,
  kOpcodeMask = 0x3f << 26,
  kExt1OpcodeMask = 0x3ff << 1,
  kExt2OpcodeMask = 0x3ff << 1,
  kExt2OpcodeVariant2Mask = 0x1ff << 2,
  kExt5OpcodeMask = 0x3 << 2,
  kBOMask = 0x1f << 21,
  kBIMask = 0x1F << 16,
  kBDMask = 0x14 << 2,
  kAAMask = 0x01 << 1,
  kLKMask = 0x01,
  kRCMask = 0x01,
  kTOMask = 0x1f << 21
};

// -----------------------------------------------------------------------------
// Addressing modes and instruction variants.

// Overflow Exception
enum OEBit {
  SetOE = 1 << 10,   // Set overflow exception
  LeaveOE = 0 << 10  // No overflow exception
};

// Record bit
enum RCBit {   // Bit 0
  SetRC = 1,   // LT,GT,EQ,SO
  LeaveRC = 0  // None
};

// Link bit
enum LKBit {   // Bit 0
  SetLK = 1,   // Load effective address of next instruction
  LeaveLK = 0  // No action
};

enum BOfield {        // Bits 25-21
  DCBNZF = 0 << 21,   // Decrement CTR; branch if CTR != 0 and condition false
  DCBEZF = 2 << 21,   // Decrement CTR; branch if CTR == 0 and condition false
  BF = 4 << 21,       // Branch if condition false
  DCBNZT = 8 << 21,   // Decrement CTR; branch if CTR != 0 and condition true
  DCBEZT = 10 << 21,  // Decrement CTR; branch if CTR == 0 and condition true
  BT = 12 << 21,      // Branch if condition true
  DCBNZ = 16 << 21,   // Decrement CTR; branch if CTR != 0
  DCBEZ = 18 << 21,   // Decrement CTR; branch if CTR == 0
  BA = 20 << 21       // Branch always
};

#if V8_OS_AIX
#undef CR_LT
#undef CR_GT
#undef CR_EQ
#undef CR_SO
#endif

enum CRBit { CR_LT = 0, CR_GT = 1, CR_EQ = 2, CR_SO = 3, CR_FU = 3 };

#define CRWIDTH 4

// These are the documented bit positions biased down by 32
enum FPSCRBit {
  VXSOFT = 21,  // 53: Software-Defined Condition
  VXSQRT = 22,  // 54: Invalid Square Root
  VXCVI = 23    // 55: Invalid Integer Convert
};

// -----------------------------------------------------------------------------
// Supervisor Call (svc) specific support.

// Special Software Interrupt codes when used in the presence of the PPC
// simulator.
// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
enum SoftwareInterruptCodes {
  // transition to C code
  kCallRtRedirected = 0x10,
  // break point
  kBreakpoint = 0x821008,  // bits23-0 of 0x7d821008 = twge r2, r2
  // stop
  kStopCode = 1 << 23
};
const uint32_t kStopCodeMask = kStopCode - 1;
const uint32_t kMaxStopCode = kStopCode - 1;
const int32_t kDefaultStopCode = -1;

// FP rounding modes.
enum FPRoundingMode {
  RN = 0,  // Round to Nearest.
  RZ = 1,  // Round towards zero.
  RP = 2,  // Round towards Plus Infinity.
  RM = 3,  // Round towards Minus Infinity.

  // Aliases.
  kRoundToNearest = RN,
  kRoundToZero = RZ,
  kRoundToPlusInf = RP,
  kRoundToMinusInf = RM
};

const uint32_t kFPRoundingModeMask = 3;

enum CheckForInexactConversion {
  kCheckForInexactConversion,
  kDontCheckForInexactConversion
};

// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
// These constants are declared in assembler-arm.cc, as they use named registers
// and other constants.


// add(sp, sp, 4) instruction (aka Pop())
extern const Instr kPopInstruction;

// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
// register r is not encoded.
extern const Instr kPushRegPattern;

// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
// register r is not encoded.
extern const Instr kPopRegPattern;

// use TWI to indicate redirection call for simulation mode
const Instr rtCallRedirInstr = TWI;

// -----------------------------------------------------------------------------
// Instruction abstraction.

// The class Instruction enables access to individual fields defined in the PPC
// architecture instruction set encoding.
// Note that the Assembler uses typedef int32_t Instr.
//
// Example: Test whether the instruction at ptr does set the condition code
// bits.
//
// bool InstructionSetsConditionCodes(byte* ptr) {
//   Instruction* instr = Instruction::At(ptr);
//   int type = instr->TypeValue();
//   return ((type == 0) || (type == 1)) && instr->HasS();
// }
//
class Instruction {
 public:
  enum { kInstrSize = 4, kInstrSizeLog2 = 2, kPCReadOffset = 8 };

// Helper macro to define static accessors.
// We use the cast to char* trick to bypass the strict anti-aliasing rules.
#define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
  static inline return_type Name(Instr instr) {          \
    char* temp = reinterpret_cast<char*>(&instr);        \
    return reinterpret_cast<Instruction*>(temp)->Name(); \
  }

#define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)

  // Get the raw instruction bits.
  inline Instr InstructionBits() const {
    return *reinterpret_cast<const Instr*>(this);
  }

  // Set the raw instruction bits to value.
  inline void SetInstructionBits(Instr value) {
    *reinterpret_cast<Instr*>(this) = value;
  }

  // Read one particular bit out of the instruction bits.
  inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }

  // Read a bit field's value out of the instruction bits.
  inline int Bits(int hi, int lo) const {
    return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
  }

  // Read a bit field out of the instruction bits.
  inline int BitField(int hi, int lo) const {
    return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
  }

  // Static support.

  // Read one particular bit out of the instruction bits.
  static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; }

  // Read the value of a bit field out of the instruction bits.
  static inline int Bits(Instr instr, int hi, int lo) {
    return (instr >> lo) & ((2 << (hi - lo)) - 1);
  }


  // Read a bit field out of the instruction bits.
  static inline int BitField(Instr instr, int hi, int lo) {
    return instr & (((2 << (hi - lo)) - 1) << lo);
  }

  inline int RSValue() const { return Bits(25, 21); }
  inline int RTValue() const { return Bits(25, 21); }
  inline int RAValue() const { return Bits(20, 16); }
  DECLARE_STATIC_ACCESSOR(RAValue);
  inline int RBValue() const { return Bits(15, 11); }
  DECLARE_STATIC_ACCESSOR(RBValue);
  inline int RCValue() const { return Bits(10, 6); }
  DECLARE_STATIC_ACCESSOR(RCValue);

  inline int OpcodeValue() const { return static_cast<Opcode>(Bits(31, 26)); }
  inline Opcode OpcodeField() const {
    return static_cast<Opcode>(BitField(24, 21));
  }

  // Fields used in Software interrupt instructions
  inline SoftwareInterruptCodes SvcValue() const {
    return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
  }

  // Instructions are read of out a code stream. The only way to get a
  // reference to an instruction is to convert a pointer. There is no way
  // to allocate or create instances of class Instruction.
  // Use the At(pc) function to create references to Instruction.
  static Instruction* At(byte* pc) {
    return reinterpret_cast<Instruction*>(pc);
  }


 private:
  // We need to prevent the creation of instances of class Instruction.
  DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
};


// Helper functions for converting between register numbers and names.
class Registers {
 public:
  // Lookup the register number for the name provided.
  static int Number(const char* name);

 private:
  static const char* names_[kNumRegisters];
};

// Helper functions for converting between FP register numbers and names.
class DoubleRegisters {
 public:
  // Lookup the register number for the name provided.
  static int Number(const char* name);

 private:
  static const char* names_[kNumDoubleRegisters];
};
}  // namespace internal
}  // namespace v8

#endif  // V8_PPC_CONSTANTS_PPC_H_