1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
|
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_PPC_CONSTANTS_PPC_H_
#define V8_PPC_CONSTANTS_PPC_H_
#include <stdint.h>
#include "src/base/logging.h"
#include "src/base/macros.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
// Number of registers
const int kNumRegisters = 32;
// FP support.
const int kNumDoubleRegisters = 32;
const int kNoRegister = -1;
// Used in embedded constant pool builder - max reach in bits for
// various load instructions (one less due to unsigned)
const int kLoadPtrMaxReachBits = 15;
const int kLoadDoubleMaxReachBits = 15;
// sign-extend the least significant 16-bits of value <imm>
#define SIGN_EXT_IMM16(imm) ((static_cast<int>(imm) << 16) >> 16)
// sign-extend the least significant 26-bits of value <imm>
#define SIGN_EXT_IMM26(imm) ((static_cast<int>(imm) << 6) >> 6)
// -----------------------------------------------------------------------------
// Conditions.
// Defines constants and accessor classes to assemble, disassemble and
// simulate PPC instructions.
//
// Section references in the code refer to the "PowerPC Microprocessor
// Family: The Programmer.s Reference Guide" from 10/95
// https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF778525699600741775/$file/prg.pdf
//
// Constants for specific fields are defined in their respective named enums.
// General constants are in an anonymous enum in class Instr.
enum Condition {
kNoCondition = -1,
eq = 0, // Equal.
ne = 1, // Not equal.
ge = 2, // Greater or equal.
lt = 3, // Less than.
gt = 4, // Greater than.
le = 5, // Less then or equal
unordered = 6, // Floating-point unordered
ordered = 7,
overflow = 8, // Summary overflow
nooverflow = 9,
al = 10 // Always.
};
inline Condition NegateCondition(Condition cond) {
DCHECK(cond != al);
return static_cast<Condition>(cond ^ ne);
}
// Commute a condition such that {a cond b == b cond' a}.
inline Condition CommuteCondition(Condition cond) {
switch (cond) {
case lt:
return gt;
case gt:
return lt;
case ge:
return le;
case le:
return ge;
default:
return cond;
}
}
// -----------------------------------------------------------------------------
// Instructions encoding.
// Instr is merely used by the Assembler to distinguish 32bit integers
// representing instructions from usual 32 bit values.
// Instruction objects are pointers to 32bit values, and provide methods to
// access the various ISA fields.
typedef int32_t Instr;
// Opcodes as defined in section 4.2 table 34 (32bit PowerPC)
enum Opcode {
TWI = 3 << 26, // Trap Word Immediate
MULLI = 7 << 26, // Multiply Low Immediate
SUBFIC = 8 << 26, // Subtract from Immediate Carrying
CMPLI = 10 << 26, // Compare Logical Immediate
CMPI = 11 << 26, // Compare Immediate
ADDIC = 12 << 26, // Add Immediate Carrying
ADDICx = 13 << 26, // Add Immediate Carrying and Record
ADDI = 14 << 26, // Add Immediate
ADDIS = 15 << 26, // Add Immediate Shifted
BCX = 16 << 26, // Branch Conditional
SC = 17 << 26, // System Call
BX = 18 << 26, // Branch
EXT1 = 19 << 26, // Extended code set 1
RLWIMIX = 20 << 26, // Rotate Left Word Immediate then Mask Insert
RLWINMX = 21 << 26, // Rotate Left Word Immediate then AND with Mask
RLWNMX = 23 << 26, // Rotate Left Word then AND with Mask
ORI = 24 << 26, // OR Immediate
ORIS = 25 << 26, // OR Immediate Shifted
XORI = 26 << 26, // XOR Immediate
XORIS = 27 << 26, // XOR Immediate Shifted
ANDIx = 28 << 26, // AND Immediate
ANDISx = 29 << 26, // AND Immediate Shifted
EXT5 = 30 << 26, // Extended code set 5 - 64bit only
EXT2 = 31 << 26, // Extended code set 2
LWZ = 32 << 26, // Load Word and Zero
LWZU = 33 << 26, // Load Word with Zero Update
LBZ = 34 << 26, // Load Byte and Zero
LBZU = 35 << 26, // Load Byte and Zero with Update
STW = 36 << 26, // Store
STWU = 37 << 26, // Store Word with Update
STB = 38 << 26, // Store Byte
STBU = 39 << 26, // Store Byte with Update
LHZ = 40 << 26, // Load Half and Zero
LHZU = 41 << 26, // Load Half and Zero with Update
LHA = 42 << 26, // Load Half Algebraic
LHAU = 43 << 26, // Load Half Algebraic with Update
STH = 44 << 26, // Store Half
STHU = 45 << 26, // Store Half with Update
LMW = 46 << 26, // Load Multiple Word
STMW = 47 << 26, // Store Multiple Word
LFS = 48 << 26, // Load Floating-Point Single
LFSU = 49 << 26, // Load Floating-Point Single with Update
LFD = 50 << 26, // Load Floating-Point Double
LFDU = 51 << 26, // Load Floating-Point Double with Update
STFS = 52 << 26, // Store Floating-Point Single
STFSU = 53 << 26, // Store Floating-Point Single with Update
STFD = 54 << 26, // Store Floating-Point Double
STFDU = 55 << 26, // Store Floating-Point Double with Update
LD = 58 << 26, // Load Double Word
EXT3 = 59 << 26, // Extended code set 3
EXT6 = 60 << 26, // Extended code set 6
STD = 62 << 26, // Store Double Word (optionally with Update)
EXT4 = 63 << 26 // Extended code set 4
};
// Bits 10-1
enum OpcodeExt1 {
MCRF = 0 << 1, // Move Condition Register Field
BCLRX = 16 << 1, // Branch Conditional Link Register
CRNOR = 33 << 1, // Condition Register NOR)
RFI = 50 << 1, // Return from Interrupt
CRANDC = 129 << 1, // Condition Register AND with Complement
ISYNC = 150 << 1, // Instruction Synchronize
CRXOR = 193 << 1, // Condition Register XOR
CRNAND = 225 << 1, // Condition Register NAND
CRAND = 257 << 1, // Condition Register AND
CREQV = 289 << 1, // Condition Register Equivalent
CRORC = 417 << 1, // Condition Register OR with Complement
CROR = 449 << 1, // Condition Register OR
BCCTRX = 528 << 1 // Branch Conditional to Count Register
};
// Bits 9-1 or 10-1
enum OpcodeExt2 {
CMP = 0 << 1,
TW = 4 << 1,
SUBFCX = 8 << 1,
ADDCX = 10 << 1,
MULHWUX = 11 << 1,
ISEL = 15 << 1,
MFCR = 19 << 1,
LWARX = 20 << 1,
LDX = 21 << 1,
LWZX = 23 << 1, // load word zero w/ x-form
SLWX = 24 << 1,
CNTLZWX = 26 << 1,
SLDX = 27 << 1,
ANDX = 28 << 1,
CMPL = 32 << 1,
SUBFX = 40 << 1,
MFVSRD = 51 << 1, // Move From VSR Doubleword
LDUX = 53 << 1,
DCBST = 54 << 1,
LWZUX = 55 << 1, // load word zero w/ update x-form
CNTLZDX = 58 << 1,
ANDCX = 60 << 1,
MULHWX = 75 << 1,
DCBF = 86 << 1,
LBZX = 87 << 1, // load byte zero w/ x-form
NEGX = 104 << 1,
MFVSRWZ = 115 << 1, // Move From VSR Word And Zero
LBZUX = 119 << 1, // load byte zero w/ update x-form
NORX = 124 << 1,
SUBFEX = 136 << 1,
ADDEX = 138 << 1,
STDX = 149 << 1,
STWX = 151 << 1, // store word w/ x-form
MTVSRD = 179 << 1, // Move To VSR Doubleword
STDUX = 181 << 1,
STWUX = 183 << 1, // store word w/ update x-form
/*
MTCRF
MTMSR
STWCXx
SUBFZEX
*/
ADDZEX = 202 << 1, // Add to Zero Extended
/*
MTSR
*/
MTVSRWA = 211 << 1, // Move To VSR Word Algebraic
STBX = 215 << 1, // store byte w/ x-form
MULLD = 233 << 1, // Multiply Low Double Word
MULLW = 235 << 1, // Multiply Low Word
MTVSRWZ = 243 << 1, // Move To VSR Word And Zero
STBUX = 247 << 1, // store byte w/ update x-form
MODUD = 265 << 1, // Modulo Unsigned Dword
ADDX = 266 << 1, // Add
MODUW = 267 << 1, // Modulo Unsigned Word
LHZX = 279 << 1, // load half-word zero w/ x-form
LHZUX = 311 << 1, // load half-word zero w/ update x-form
LWAX = 341 << 1, // load word algebraic w/ x-form
LHAX = 343 << 1, // load half-word algebraic w/ x-form
LHAUX = 375 << 1, // load half-word algebraic w/ update x-form
XORX = 316 << 1, // Exclusive OR
MFSPR = 339 << 1, // Move from Special-Purpose-Register
POPCNTW = 378 << 1, // Population Count Words
STHX = 407 << 1, // store half-word w/ x-form
ORC = 412 << 1, // Or with Complement
STHUX = 439 << 1, // store half-word w/ update x-form
ORX = 444 << 1, // Or
DIVDU = 457 << 1, // Divide Double Word Unsigned
DIVWU = 459 << 1, // Divide Word Unsigned
MTSPR = 467 << 1, // Move to Special-Purpose-Register
DIVD = 489 << 1, // Divide Double Word
DIVW = 491 << 1, // Divide Word
POPCNTD = 506 << 1, // Population Count Doubleword
// Below represent bits 10-1 (any value >= 512)
LDBRX = 532 << 1, // load double word byte reversed w/ x-form
LWBRX = 534 << 1, // load word byte reversed w/ x-form
LFSX = 535 << 1, // load float-single w/ x-form
SRWX = 536 << 1, // Shift Right Word
SRDX = 539 << 1, // Shift Right Double Word
LFSUX = 567 << 1, // load float-single w/ update x-form
SYNC = 598 << 1, // Synchronize
LFDX = 599 << 1, // load float-double w/ x-form
LFDUX = 631 << 1, // load float-double w/ update X-form
STFSX = 663 << 1, // store float-single w/ x-form
STFSUX = 695 << 1, // store float-single w/ update x-form
STFDX = 727 << 1, // store float-double w/ x-form
STFDUX = 759 << 1, // store float-double w/ update x-form
MODSD = 777 << 1, // Modulo Signed Dword
MODSW = 779 << 1, // Modulo Signed Word
LHBRX = 790 << 1, // load half word byte reversed w/ x-form
SRAW = 792 << 1, // Shift Right Algebraic Word
SRAD = 794 << 1, // Shift Right Algebraic Double Word
SRAWIX = 824 << 1, // Shift Right Algebraic Word Immediate
SRADIX = 413 << 2, // Shift Right Algebraic Double Word Immediate
EXTSH = 922 << 1, // Extend Sign Halfword
EXTSB = 954 << 1, // Extend Sign Byte
ICBI = 982 << 1, // Instruction Cache Block Invalidate
EXTSW = 986 << 1 // Extend Sign Word
};
// Some use Bits 10-1 and other only 5-1 for the opcode
enum OpcodeExt4 {
// Bits 5-1
FDIV = 18 << 1, // Floating Divide
FSUB = 20 << 1, // Floating Subtract
FADD = 21 << 1, // Floating Add
FSQRT = 22 << 1, // Floating Square Root
FSEL = 23 << 1, // Floating Select
FMUL = 25 << 1, // Floating Multiply
FMSUB = 28 << 1, // Floating Multiply-Subtract
FMADD = 29 << 1, // Floating Multiply-Add
// Bits 10-1
FCMPU = 0 << 1, // Floating Compare Unordered
FRSP = 12 << 1, // Floating-Point Rounding
FCTIW = 14 << 1, // Floating Convert to Integer Word X-form
FCTIWZ = 15 << 1, // Floating Convert to Integer Word with Round to Zero
MTFSB1 = 38 << 1, // Move to FPSCR Bit 1
FNEG = 40 << 1, // Floating Negate
MCRFS = 64 << 1, // Move to Condition Register from FPSCR
MTFSB0 = 70 << 1, // Move to FPSCR Bit 0
FMR = 72 << 1, // Floating Move Register
MTFSFI = 134 << 1, // Move to FPSCR Field Immediate
FABS = 264 << 1, // Floating Absolute Value
FRIN = 392 << 1, // Floating Round to Integer Nearest
FRIZ = 424 << 1, // Floating Round to Integer Toward Zero
FRIP = 456 << 1, // Floating Round to Integer Plus
FRIM = 488 << 1, // Floating Round to Integer Minus
MFFS = 583 << 1, // move from FPSCR x-form
MTFSF = 711 << 1, // move to FPSCR fields XFL-form
FCTID = 814 << 1, // Floating convert to integer doubleword
FCTIDZ = 815 << 1, // ^^^ with round toward zero
FCFID = 846 << 1, // Floating convert from integer doubleword
FCTIDU = 942 << 1, // Floating convert to integer doubleword unsigned
FCTIDUZ = 943 << 1, // ^^^ with round toward zero
FCFIDU = 974 << 1 // Floating convert from integer doubleword unsigned
};
enum OpcodeExt5 {
// Bits 4-2
RLDICL = 0 << 1, // Rotate Left Double Word Immediate then Clear Left
RLDICR = 2 << 1, // Rotate Left Double Word Immediate then Clear Right
RLDIC = 4 << 1, // Rotate Left Double Word Immediate then Clear
RLDIMI = 6 << 1, // Rotate Left Double Word Immediate then Mask Insert
// Bits 4-1
RLDCL = 8 << 1, // Rotate Left Double Word then Clear Left
RLDCR = 9 << 1 // Rotate Left Double Word then Clear Right
};
// Bits 10-3
#define XX3_OPCODE_LIST(V) \
V(xsaddsp, XSADDSP, 0 << 3) /* VSX Scalar Add SP */ \
V(xssubsp, XSSUBSP, 8 << 3) /* VSX Scalar Subtract SP */ \
V(xsmulsp, XSMULSP, 16 << 3) /* VSX Scalar Multiply SP */ \
V(xsdivsp, XSDIVSP, 24 << 3) /* VSX Scalar Divide SP */ \
V(xsadddp, XSADDDP, 32 << 3) /* VSX Scalar Add DP */ \
V(xssubdp, XSSUBDP, 40 << 3) /* VSX Scalar Subtract DP */ \
V(xsmuldp, XSMULDP, 48 << 3) /* VSX Scalar Multiply DP */ \
V(xsdivdp, XSDIVDP, 56 << 3) /* VSX Scalar Divide DP */ \
V(xsmaxdp, XSMAXDP, 160 << 3) /* VSX Scalar Maximum DP */ \
V(xsmindp, XSMINDP, 168 << 3) /* VSX Scalar Minimum DP */
// Bits 10-2
#define XX2_OPCODE_LIST(V) \
V(XSCVDPSP, XSCVDPSP, 265 << 2) /* VSX Scalar Convert DP to SP */ \
V(XSCVSPDP, XSCVSPDP, 329 << 2) /* VSX Scalar Convert SP to DP */
enum OpcodeExt6 {
#define DECLARE_OPCODES(name, opcode_name, opcode_value) \
opcode_name = opcode_value,
XX3_OPCODE_LIST(DECLARE_OPCODES) XX2_OPCODE_LIST(DECLARE_OPCODES)
#undef DECLARE_OPCODES
};
// Instruction encoding bits and masks.
enum {
// Instruction encoding bit
B1 = 1 << 1,
B2 = 1 << 2,
B3 = 1 << 3,
B4 = 1 << 4,
B5 = 1 << 5,
B7 = 1 << 7,
B8 = 1 << 8,
B9 = 1 << 9,
B12 = 1 << 12,
B18 = 1 << 18,
B19 = 1 << 19,
B20 = 1 << 20,
B22 = 1 << 22,
B23 = 1 << 23,
B24 = 1 << 24,
B25 = 1 << 25,
B26 = 1 << 26,
B27 = 1 << 27,
B28 = 1 << 28,
B6 = 1 << 6,
B10 = 1 << 10,
B11 = 1 << 11,
B16 = 1 << 16,
B17 = 1 << 17,
B21 = 1 << 21,
// Instruction bit masks
kCondMask = 0x1F << 21,
kOff12Mask = (1 << 12) - 1,
kImm24Mask = (1 << 24) - 1,
kOff16Mask = (1 << 16) - 1,
kImm16Mask = (1 << 16) - 1,
kImm26Mask = (1 << 26) - 1,
kBOfieldMask = 0x1f << 21,
kOpcodeMask = 0x3f << 26,
kExt1OpcodeMask = 0x3ff << 1,
kExt2OpcodeMask = 0x3ff << 1,
kExt2OpcodeVariant2Mask = 0x1ff << 2,
kExt5OpcodeMask = 0x3 << 2,
kBOMask = 0x1f << 21,
kBIMask = 0x1F << 16,
kBDMask = 0x14 << 2,
kAAMask = 0x01 << 1,
kLKMask = 0x01,
kRCMask = 0x01,
kTOMask = 0x1f << 21
};
// -----------------------------------------------------------------------------
// Addressing modes and instruction variants.
// Overflow Exception
enum OEBit {
SetOE = 1 << 10, // Set overflow exception
LeaveOE = 0 << 10 // No overflow exception
};
// Record bit
enum RCBit { // Bit 0
SetRC = 1, // LT,GT,EQ,SO
LeaveRC = 0 // None
};
// Link bit
enum LKBit { // Bit 0
SetLK = 1, // Load effective address of next instruction
LeaveLK = 0 // No action
};
enum BOfield { // Bits 25-21
DCBNZF = 0 << 21, // Decrement CTR; branch if CTR != 0 and condition false
DCBEZF = 2 << 21, // Decrement CTR; branch if CTR == 0 and condition false
BF = 4 << 21, // Branch if condition false
DCBNZT = 8 << 21, // Decrement CTR; branch if CTR != 0 and condition true
DCBEZT = 10 << 21, // Decrement CTR; branch if CTR == 0 and condition true
BT = 12 << 21, // Branch if condition true
DCBNZ = 16 << 21, // Decrement CTR; branch if CTR != 0
DCBEZ = 18 << 21, // Decrement CTR; branch if CTR == 0
BA = 20 << 21 // Branch always
};
#if V8_OS_AIX
#undef CR_LT
#undef CR_GT
#undef CR_EQ
#undef CR_SO
#endif
enum CRBit { CR_LT = 0, CR_GT = 1, CR_EQ = 2, CR_SO = 3, CR_FU = 3 };
#define CRWIDTH 4
// These are the documented bit positions biased down by 32
enum FPSCRBit {
VXSOFT = 21, // 53: Software-Defined Condition
VXSQRT = 22, // 54: Invalid Square Root
VXCVI = 23 // 55: Invalid Integer Convert
};
// -----------------------------------------------------------------------------
// Supervisor Call (svc) specific support.
// Special Software Interrupt codes when used in the presence of the PPC
// simulator.
// svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
// standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
enum SoftwareInterruptCodes {
// transition to C code
kCallRtRedirected = 0x10,
// break point
kBreakpoint = 0x821008, // bits23-0 of 0x7d821008 = twge r2, r2
// stop
kStopCode = 1 << 23
};
const uint32_t kStopCodeMask = kStopCode - 1;
const uint32_t kMaxStopCode = kStopCode - 1;
const int32_t kDefaultStopCode = -1;
// FP rounding modes.
enum FPRoundingMode {
RN = 0, // Round to Nearest.
RZ = 1, // Round towards zero.
RP = 2, // Round towards Plus Infinity.
RM = 3, // Round towards Minus Infinity.
// Aliases.
kRoundToNearest = RN,
kRoundToZero = RZ,
kRoundToPlusInf = RP,
kRoundToMinusInf = RM
};
const uint32_t kFPRoundingModeMask = 3;
enum CheckForInexactConversion {
kCheckForInexactConversion,
kDontCheckForInexactConversion
};
// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
// These constants are declared in assembler-arm.cc, as they use named registers
// and other constants.
// add(sp, sp, 4) instruction (aka Pop())
extern const Instr kPopInstruction;
// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
// register r is not encoded.
extern const Instr kPushRegPattern;
// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
// register r is not encoded.
extern const Instr kPopRegPattern;
// use TWI to indicate redirection call for simulation mode
const Instr rtCallRedirInstr = TWI;
// -----------------------------------------------------------------------------
// Instruction abstraction.
// The class Instruction enables access to individual fields defined in the PPC
// architecture instruction set encoding.
// Note that the Assembler uses typedef int32_t Instr.
//
// Example: Test whether the instruction at ptr does set the condition code
// bits.
//
// bool InstructionSetsConditionCodes(byte* ptr) {
// Instruction* instr = Instruction::At(ptr);
// int type = instr->TypeValue();
// return ((type == 0) || (type == 1)) && instr->HasS();
// }
//
class Instruction {
public:
enum { kInstrSize = 4, kInstrSizeLog2 = 2, kPCReadOffset = 8 };
// Helper macro to define static accessors.
// We use the cast to char* trick to bypass the strict anti-aliasing rules.
#define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
static inline return_type Name(Instr instr) { \
char* temp = reinterpret_cast<char*>(&instr); \
return reinterpret_cast<Instruction*>(temp)->Name(); \
}
#define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
// Get the raw instruction bits.
inline Instr InstructionBits() const {
return *reinterpret_cast<const Instr*>(this);
}
// Set the raw instruction bits to value.
inline void SetInstructionBits(Instr value) {
*reinterpret_cast<Instr*>(this) = value;
}
// Read one particular bit out of the instruction bits.
inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
// Read a bit field's value out of the instruction bits.
inline int Bits(int hi, int lo) const {
return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
}
// Read a bit field out of the instruction bits.
inline int BitField(int hi, int lo) const {
return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
}
// Static support.
// Read one particular bit out of the instruction bits.
static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; }
// Read the value of a bit field out of the instruction bits.
static inline int Bits(Instr instr, int hi, int lo) {
return (instr >> lo) & ((2 << (hi - lo)) - 1);
}
// Read a bit field out of the instruction bits.
static inline int BitField(Instr instr, int hi, int lo) {
return instr & (((2 << (hi - lo)) - 1) << lo);
}
inline int RSValue() const { return Bits(25, 21); }
inline int RTValue() const { return Bits(25, 21); }
inline int RAValue() const { return Bits(20, 16); }
DECLARE_STATIC_ACCESSOR(RAValue);
inline int RBValue() const { return Bits(15, 11); }
DECLARE_STATIC_ACCESSOR(RBValue);
inline int RCValue() const { return Bits(10, 6); }
DECLARE_STATIC_ACCESSOR(RCValue);
inline int OpcodeValue() const { return static_cast<Opcode>(Bits(31, 26)); }
inline Opcode OpcodeField() const {
return static_cast<Opcode>(BitField(24, 21));
}
// Fields used in Software interrupt instructions
inline SoftwareInterruptCodes SvcValue() const {
return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
}
// Instructions are read of out a code stream. The only way to get a
// reference to an instruction is to convert a pointer. There is no way
// to allocate or create instances of class Instruction.
// Use the At(pc) function to create references to Instruction.
static Instruction* At(byte* pc) {
return reinterpret_cast<Instruction*>(pc);
}
private:
// We need to prevent the creation of instances of class Instruction.
DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
};
// Helper functions for converting between register numbers and names.
class Registers {
public:
// Lookup the register number for the name provided.
static int Number(const char* name);
private:
static const char* names_[kNumRegisters];
};
// Helper functions for converting between FP register numbers and names.
class DoubleRegisters {
public:
// Lookup the register number for the name provided.
static int Number(const char* name);
private:
static const char* names_[kNumDoubleRegisters];
};
} // namespace internal
} // namespace v8
#endif // V8_PPC_CONSTANTS_PPC_H_
|