summaryrefslogtreecommitdiff
path: root/deps/v8/src/ppc/macro-assembler-ppc.h
blob: d4660d9207d10727273890bc349db171a0da56a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_PPC_MACRO_ASSEMBLER_PPC_H_
#define V8_PPC_MACRO_ASSEMBLER_PPC_H_

#include "src/assembler.h"
#include "src/bailout-reason.h"
#include "src/frames.h"
#include "src/globals.h"

namespace v8 {
namespace internal {

// Give alias names to registers for calling conventions.
const Register kReturnRegister0 = {Register::kCode_r3};
const Register kReturnRegister1 = {Register::kCode_r4};
const Register kJSFunctionRegister = {Register::kCode_r4};
const Register kContextRegister = {Register::kCode_r30};
const Register kInterpreterAccumulatorRegister = {Register::kCode_r3};
const Register kInterpreterRegisterFileRegister = {Register::kCode_r14};
const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r15};
const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r16};
const Register kInterpreterDispatchTableRegister = {Register::kCode_r17};
const Register kJavaScriptCallArgCountRegister = {Register::kCode_r3};
const Register kRuntimeCallFunctionRegister = {Register::kCode_r4};
const Register kRuntimeCallArgCountRegister = {Register::kCode_r3};

// ----------------------------------------------------------------------------
// Static helper functions

// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
  return MemOperand(object, offset - kHeapObjectTag);
}


// Flags used for AllocateHeapNumber
enum TaggingMode {
  // Tag the result.
  TAG_RESULT,
  // Don't tag
  DONT_TAG_RESULT
};


enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum PointersToHereCheck {
  kPointersToHereMaybeInteresting,
  kPointersToHereAreAlwaysInteresting
};
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };


Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
                                   Register reg3 = no_reg,
                                   Register reg4 = no_reg,
                                   Register reg5 = no_reg,
                                   Register reg6 = no_reg);


#ifdef DEBUG
bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
                Register reg4 = no_reg, Register reg5 = no_reg,
                Register reg6 = no_reg, Register reg7 = no_reg,
                Register reg8 = no_reg);
#endif

// These exist to provide portability between 32 and 64bit
#if V8_TARGET_ARCH_PPC64
#define LoadPU ldu
#define LoadPX ldx
#define LoadPUX ldux
#define StorePU stdu
#define StorePX stdx
#define StorePUX stdux
#define ShiftLeftImm sldi
#define ShiftRightImm srdi
#define ClearLeftImm clrldi
#define ClearRightImm clrrdi
#define ShiftRightArithImm sradi
#define ShiftLeft_ sld
#define ShiftRight_ srd
#define ShiftRightArith srad
#define Mul mulld
#define Div divd
#else
#define LoadPU lwzu
#define LoadPX lwzx
#define LoadPUX lwzux
#define StorePU stwu
#define StorePX stwx
#define StorePUX stwux
#define ShiftLeftImm slwi
#define ShiftRightImm srwi
#define ClearLeftImm clrlwi
#define ClearRightImm clrrwi
#define ShiftRightArithImm srawi
#define ShiftLeft_ slw
#define ShiftRight_ srw
#define ShiftRightArith sraw
#define Mul mullw
#define Div divw
#endif


// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler : public Assembler {
 public:
  // The isolate parameter can be NULL if the macro assembler should
  // not use isolate-dependent functionality. In this case, it's the
  // responsibility of the caller to never invoke such function on the
  // macro assembler.
  MacroAssembler(Isolate* isolate, void* buffer, int size);


  // Returns the size of a call in instructions. Note, the value returned is
  // only valid as long as no entries are added to the constant pool between
  // checking the call size and emitting the actual call.
  static int CallSize(Register target);
  int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
  static int CallSizeNotPredictableCodeSize(Address target,
                                            RelocInfo::Mode rmode,
                                            Condition cond = al);

  // Jump, Call, and Ret pseudo instructions implementing inter-working.
  void Jump(Register target);
  void JumpToJSEntry(Register target);
  void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
            CRegister cr = cr7);
  void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
  void Call(Register target);
  void CallJSEntry(Register target);
  void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
  int CallSize(Handle<Code> code,
               RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
               TypeFeedbackId ast_id = TypeFeedbackId::None(),
               Condition cond = al);
  void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
            TypeFeedbackId ast_id = TypeFeedbackId::None(),
            Condition cond = al);
  void Ret() { blr(); }
  void Ret(Condition cond, CRegister cr = cr7) { bclr(cond, cr); }

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the sp register.
  void Drop(int count);

  void Ret(int drop) {
    Drop(drop);
    blr();
  }

  void Call(Label* target);

  // Emit call to the code we are currently generating.
  void CallSelf() {
    Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
    Call(self, RelocInfo::CODE_TARGET);
  }

  // Register move. May do nothing if the registers are identical.
  void Move(Register dst, Handle<Object> value);
  void Move(Register dst, Register src, Condition cond = al);
  void Move(DoubleRegister dst, DoubleRegister src);

  void MultiPush(RegList regs, Register location = sp);
  void MultiPop(RegList regs, Register location = sp);

  void MultiPushDoubles(RegList dregs, Register location = sp);
  void MultiPopDoubles(RegList dregs, Register location = sp);

  // Load an object from the root table.
  void LoadRoot(Register destination, Heap::RootListIndex index,
                Condition cond = al);
  // Store an object to the root table.
  void StoreRoot(Register source, Heap::RootListIndex index,
                 Condition cond = al);

  // ---------------------------------------------------------------------------
  // GC Support

  void IncrementalMarkingRecordWriteHelper(Register object, Register value,
                                           Register address);

  enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };

  // Record in the remembered set the fact that we have a pointer to new space
  // at the address pointed to by the addr register.  Only works if addr is not
  // in new space.
  void RememberedSetHelper(Register object,  // Used for debug code.
                           Register addr, Register scratch,
                           SaveFPRegsMode save_fp,
                           RememberedSetFinalAction and_then);

  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
                     Label* condition_met);

  // Check if object is in new space.  Jumps if the object is not in new space.
  // The register scratch can be object itself, but scratch will be clobbered.
  void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
    InNewSpace(object, scratch, ne, branch);
  }

  // Check if object is in new space.  Jumps if the object is in new space.
  // The register scratch can be object itself, but it will be clobbered.
  void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
    InNewSpace(object, scratch, eq, branch);
  }

  // Check if an object has a given incremental marking color.
  void HasColor(Register object, Register scratch0, Register scratch1,
                Label* has_color, int first_bit, int second_bit);

  void JumpIfBlack(Register object, Register scratch0, Register scratch1,
                   Label* on_black);

  // Checks the color of an object.  If the object is already grey or black
  // then we just fall through, since it is already live.  If it is white and
  // we can determine that it doesn't need to be scanned, then we just mark it
  // black and fall through.  For the rest we jump to the label so the
  // incremental marker can fix its assumptions.
  void EnsureNotWhite(Register object, Register scratch1, Register scratch2,
                      Register scratch3, Label* object_is_white_and_not_data);

  // Detects conservatively whether an object is data-only, i.e. it does need to
  // be scanned by the garbage collector.
  void JumpIfDataObject(Register value, Register scratch,
                        Label* not_data_object);

  // Notify the garbage collector that we wrote a pointer into an object.
  // |object| is the object being stored into, |value| is the object being
  // stored.  value and scratch registers are clobbered by the operation.
  // The offset is the offset from the start of the object, not the offset from
  // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
  void RecordWriteField(
      Register object, int offset, Register value, Register scratch,
      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK,
      PointersToHereCheck pointers_to_here_check_for_value =
          kPointersToHereMaybeInteresting);

  // As above, but the offset has the tag presubtracted.  For use with
  // MemOperand(reg, off).
  inline void RecordWriteContextSlot(
      Register context, int offset, Register value, Register scratch,
      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK,
      PointersToHereCheck pointers_to_here_check_for_value =
          kPointersToHereMaybeInteresting) {
    RecordWriteField(context, offset + kHeapObjectTag, value, scratch,
                     lr_status, save_fp, remembered_set_action, smi_check,
                     pointers_to_here_check_for_value);
  }

  void RecordWriteForMap(Register object, Register map, Register dst,
                         LinkRegisterStatus lr_status, SaveFPRegsMode save_fp);

  // For a given |object| notify the garbage collector that the slot |address|
  // has been written.  |value| is the object being stored. The value and
  // address registers are clobbered by the operation.
  void RecordWrite(
      Register object, Register address, Register value,
      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK,
      PointersToHereCheck pointers_to_here_check_for_value =
          kPointersToHereMaybeInteresting);

  void Push(Register src) { push(src); }

  // Push a handle.
  void Push(Handle<Object> handle);
  void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }

  // Push two registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2) {
    StorePU(src2, MemOperand(sp, -2 * kPointerSize));
    StoreP(src1, MemOperand(sp, kPointerSize));
  }

  // Push three registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3) {
    StorePU(src3, MemOperand(sp, -3 * kPointerSize));
    StoreP(src2, MemOperand(sp, kPointerSize));
    StoreP(src1, MemOperand(sp, 2 * kPointerSize));
  }

  // Push four registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4) {
    StorePU(src4, MemOperand(sp, -4 * kPointerSize));
    StoreP(src3, MemOperand(sp, kPointerSize));
    StoreP(src2, MemOperand(sp, 2 * kPointerSize));
    StoreP(src1, MemOperand(sp, 3 * kPointerSize));
  }

  // Push five registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4,
            Register src5) {
    StorePU(src5, MemOperand(sp, -5 * kPointerSize));
    StoreP(src4, MemOperand(sp, kPointerSize));
    StoreP(src3, MemOperand(sp, 2 * kPointerSize));
    StoreP(src2, MemOperand(sp, 3 * kPointerSize));
    StoreP(src1, MemOperand(sp, 4 * kPointerSize));
  }

  void Pop(Register dst) { pop(dst); }

  // Pop two registers. Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2) {
    LoadP(src2, MemOperand(sp, 0));
    LoadP(src1, MemOperand(sp, kPointerSize));
    addi(sp, sp, Operand(2 * kPointerSize));
  }

  // Pop three registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3) {
    LoadP(src3, MemOperand(sp, 0));
    LoadP(src2, MemOperand(sp, kPointerSize));
    LoadP(src1, MemOperand(sp, 2 * kPointerSize));
    addi(sp, sp, Operand(3 * kPointerSize));
  }

  // Pop four registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3, Register src4) {
    LoadP(src4, MemOperand(sp, 0));
    LoadP(src3, MemOperand(sp, kPointerSize));
    LoadP(src2, MemOperand(sp, 2 * kPointerSize));
    LoadP(src1, MemOperand(sp, 3 * kPointerSize));
    addi(sp, sp, Operand(4 * kPointerSize));
  }

  // Pop five registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3, Register src4,
           Register src5) {
    LoadP(src5, MemOperand(sp, 0));
    LoadP(src4, MemOperand(sp, kPointerSize));
    LoadP(src3, MemOperand(sp, 2 * kPointerSize));
    LoadP(src2, MemOperand(sp, 3 * kPointerSize));
    LoadP(src1, MemOperand(sp, 4 * kPointerSize));
    addi(sp, sp, Operand(5 * kPointerSize));
  }

  // Push a fixed frame, consisting of lr, fp, context and
  // JS function / marker id if marker_reg is a valid register.
  void PushFixedFrame(Register marker_reg = no_reg);
  void PopFixedFrame(Register marker_reg = no_reg);

  // Push and pop the registers that can hold pointers, as defined by the
  // RegList constant kSafepointSavedRegisters.
  void PushSafepointRegisters();
  void PopSafepointRegisters();
  // Store value in register src in the safepoint stack slot for
  // register dst.
  void StoreToSafepointRegisterSlot(Register src, Register dst);
  // Load the value of the src register from its safepoint stack slot
  // into register dst.
  void LoadFromSafepointRegisterSlot(Register dst, Register src);

  // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
  // from C.
  // Does not handle errors.
  void FlushICache(Register address, size_t size, Register scratch);

  // If the value is a NaN, canonicalize the value else, do nothing.
  void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
  void CanonicalizeNaN(const DoubleRegister value) {
    CanonicalizeNaN(value, value);
  }

  // Converts the integer (untagged smi) in |src| to a double, storing
  // the result to |double_dst|
  void ConvertIntToDouble(Register src, DoubleRegister double_dst);

  // Converts the unsigned integer (untagged smi) in |src| to
  // a double, storing the result to |double_dst|
  void ConvertUnsignedIntToDouble(Register src, DoubleRegister double_dst);

  // Converts the integer (untagged smi) in |src| to
  // a float, storing the result in |dst|
  // Warning: The value in |int_scrach| will be changed in the process!
  void ConvertIntToFloat(const DoubleRegister dst, const Register src,
                         const Register int_scratch);

#if V8_TARGET_ARCH_PPC64
  void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
  void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
#endif

  // Converts the double_input to an integer.  Note that, upon return,
  // the contents of double_dst will also hold the fixed point representation.
  void ConvertDoubleToInt64(const DoubleRegister double_input,
#if !V8_TARGET_ARCH_PPC64
                            const Register dst_hi,
#endif
                            const Register dst, const DoubleRegister double_dst,
                            FPRoundingMode rounding_mode = kRoundToZero);

  // Generates function and stub prologue code.
  void StubPrologue(int prologue_offset = 0);
  void Prologue(bool code_pre_aging, int prologue_offset = 0);

  // Enter exit frame.
  // stack_space - extra stack space, used for parameters before call to C.
  // At least one slot (for the return address) should be provided.
  void EnterExitFrame(bool save_doubles, int stack_space = 1);

  // Leave the current exit frame. Expects the return value in r0.
  // Expect the number of values, pushed prior to the exit frame, to
  // remove in a register (or no_reg, if there is nothing to remove).
  void LeaveExitFrame(bool save_doubles, Register argument_count,
                      bool restore_context,
                      bool argument_count_is_length = false);

  // Get the actual activation frame alignment for target environment.
  static int ActivationFrameAlignment();

  void LoadContext(Register dst, int context_chain_length);

  // Load the global proxy from the current context.
  void LoadGlobalProxy(Register dst);

  // Conditionally load the cached Array transitioned map of type
  // transitioned_kind from the native context if the map in register
  // map_in_out is the cached Array map in the native context of
  // expected_kind.
  void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
                                           ElementsKind transitioned_kind,
                                           Register map_in_out,
                                           Register scratch,
                                           Label* no_map_match);

  void LoadGlobalFunction(int index, Register function);

  // Load the initial map from the global function. The registers
  // function and map can be the same, function is then overwritten.
  void LoadGlobalFunctionInitialMap(Register function, Register map,
                                    Register scratch);

  void InitializeRootRegister() {
    ExternalReference roots_array_start =
        ExternalReference::roots_array_start(isolate());
    mov(kRootRegister, Operand(roots_array_start));
  }

  // ----------------------------------------------------------------
  // new PPC macro-assembler interfaces that are slightly higher level
  // than assembler-ppc and may generate variable length sequences

  // load a literal signed int value <value> to GPR <dst>
  void LoadIntLiteral(Register dst, int value);

  // load an SMI value <value> to GPR <dst>
  void LoadSmiLiteral(Register dst, Smi* smi);

  // load a literal double value <value> to FPR <result>
  void LoadDoubleLiteral(DoubleRegister result, double value, Register scratch);

  void LoadWord(Register dst, const MemOperand& mem, Register scratch);
  void LoadWordArith(Register dst, const MemOperand& mem,
                     Register scratch = no_reg);
  void StoreWord(Register src, const MemOperand& mem, Register scratch);

  void LoadHalfWord(Register dst, const MemOperand& mem, Register scratch);
  void LoadHalfWordArith(Register dst, const MemOperand& mem,
                         Register scratch = no_reg);
  void StoreHalfWord(Register src, const MemOperand& mem, Register scratch);

  void LoadByte(Register dst, const MemOperand& mem, Register scratch);
  void StoreByte(Register src, const MemOperand& mem, Register scratch);

  void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
                          Register scratch = no_reg);
  void StoreRepresentation(Register src, const MemOperand& mem,
                           Representation r, Register scratch = no_reg);

  void LoadDouble(DoubleRegister dst, const MemOperand& mem, Register scratch);
  void StoreDouble(DoubleRegister src, const MemOperand& mem, Register scratch);

  // Move values between integer and floating point registers.
  void MovIntToDouble(DoubleRegister dst, Register src, Register scratch);
  void MovUnsignedIntToDouble(DoubleRegister dst, Register src,
                              Register scratch);
  void MovInt64ToDouble(DoubleRegister dst,
#if !V8_TARGET_ARCH_PPC64
                        Register src_hi,
#endif
                        Register src);
#if V8_TARGET_ARCH_PPC64
  void MovInt64ComponentsToDouble(DoubleRegister dst, Register src_hi,
                                  Register src_lo, Register scratch);
#endif
  void InsertDoubleLow(DoubleRegister dst, Register src, Register scratch);
  void InsertDoubleHigh(DoubleRegister dst, Register src, Register scratch);
  void MovDoubleLowToInt(Register dst, DoubleRegister src);
  void MovDoubleHighToInt(Register dst, DoubleRegister src);
  void MovDoubleToInt64(
#if !V8_TARGET_ARCH_PPC64
      Register dst_hi,
#endif
      Register dst, DoubleRegister src);
  void MovIntToFloat(DoubleRegister dst, Register src);
  void MovFloatToInt(Register dst, DoubleRegister src);

  void Add(Register dst, Register src, intptr_t value, Register scratch);
  void Cmpi(Register src1, const Operand& src2, Register scratch,
            CRegister cr = cr7);
  void Cmpli(Register src1, const Operand& src2, Register scratch,
             CRegister cr = cr7);
  void Cmpwi(Register src1, const Operand& src2, Register scratch,
             CRegister cr = cr7);
  void Cmplwi(Register src1, const Operand& src2, Register scratch,
              CRegister cr = cr7);
  void And(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
  void Or(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
  void Xor(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);

  void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
  void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
  void CmpSmiLiteral(Register src1, Smi* smi, Register scratch,
                     CRegister cr = cr7);
  void CmplSmiLiteral(Register src1, Smi* smi, Register scratch,
                      CRegister cr = cr7);
  void AndSmiLiteral(Register dst, Register src, Smi* smi, Register scratch,
                     RCBit rc = LeaveRC);

  // Set new rounding mode RN to FPSCR
  void SetRoundingMode(FPRoundingMode RN);

  // reset rounding mode to default (kRoundToNearest)
  void ResetRoundingMode();

  // These exist to provide portability between 32 and 64bit
  void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
  void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);

  // ---------------------------------------------------------------------------
  // JavaScript invokes

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeCode(Register code, const ParameterCount& expected,
                  const ParameterCount& actual, InvokeFlag flag,
                  const CallWrapper& call_wrapper);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunction(Register function, const ParameterCount& actual,
                      InvokeFlag flag, const CallWrapper& call_wrapper);

  void InvokeFunction(Register function, const ParameterCount& expected,
                      const ParameterCount& actual, InvokeFlag flag,
                      const CallWrapper& call_wrapper);

  void InvokeFunction(Handle<JSFunction> function,
                      const ParameterCount& expected,
                      const ParameterCount& actual, InvokeFlag flag,
                      const CallWrapper& call_wrapper);

  void IsObjectJSStringType(Register object, Register scratch, Label* fail);

  void IsObjectNameType(Register object, Register scratch, Label* fail);

  // ---------------------------------------------------------------------------
  // Debugger Support

  void DebugBreak();

  // ---------------------------------------------------------------------------
  // Exception handling

  // Push a new stack handler and link into stack handler chain.
  void PushStackHandler();

  // Unlink the stack handler on top of the stack from the stack handler chain.
  // Must preserve the result register.
  void PopStackHandler();

  // ---------------------------------------------------------------------------
  // Inline caching support

  // Generate code for checking access rights - used for security checks
  // on access to global objects across environments. The holder register
  // is left untouched, whereas both scratch registers are clobbered.
  void CheckAccessGlobalProxy(Register holder_reg, Register scratch,
                              Label* miss);

  void GetNumberHash(Register t0, Register scratch);

  void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
                                Register result, Register t0, Register t1,
                                Register t2);


  inline void MarkCode(NopMarkerTypes type) { nop(type); }

  // Check if the given instruction is a 'type' marker.
  // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
  // These instructions are generated to mark special location in the code,
  // like some special IC code.
  static inline bool IsMarkedCode(Instr instr, int type) {
    DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
    return IsNop(instr, type);
  }


  static inline int GetCodeMarker(Instr instr) {
    int dst_reg_offset = 12;
    int dst_mask = 0xf << dst_reg_offset;
    int src_mask = 0xf;
    int dst_reg = (instr & dst_mask) >> dst_reg_offset;
    int src_reg = instr & src_mask;
    uint32_t non_register_mask = ~(dst_mask | src_mask);
    uint32_t mov_mask = al | 13 << 21;

    // Return <n> if we have a mov rn rn, else return -1.
    int type = ((instr & non_register_mask) == mov_mask) &&
                       (dst_reg == src_reg) && (FIRST_IC_MARKER <= dst_reg) &&
                       (dst_reg < LAST_CODE_MARKER)
                   ? src_reg
                   : -1;
    DCHECK((type == -1) ||
           ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
    return type;
  }


  // ---------------------------------------------------------------------------
  // Allocation support

  // Allocate an object in new space or old space. The object_size is
  // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
  // is passed. If the space is exhausted control continues at the gc_required
  // label. The allocated object is returned in result. If the flag
  // tag_allocated_object is true the result is tagged as as a heap object.
  // All registers are clobbered also when control continues at the gc_required
  // label.
  void Allocate(int object_size, Register result, Register scratch1,
                Register scratch2, Label* gc_required, AllocationFlags flags);

  void Allocate(Register object_size, Register result, Register scratch1,
                Register scratch2, Label* gc_required, AllocationFlags flags);

  void AllocateTwoByteString(Register result, Register length,
                             Register scratch1, Register scratch2,
                             Register scratch3, Label* gc_required);
  void AllocateOneByteString(Register result, Register length,
                             Register scratch1, Register scratch2,
                             Register scratch3, Label* gc_required);
  void AllocateTwoByteConsString(Register result, Register length,
                                 Register scratch1, Register scratch2,
                                 Label* gc_required);
  void AllocateOneByteConsString(Register result, Register length,
                                 Register scratch1, Register scratch2,
                                 Label* gc_required);
  void AllocateTwoByteSlicedString(Register result, Register length,
                                   Register scratch1, Register scratch2,
                                   Label* gc_required);
  void AllocateOneByteSlicedString(Register result, Register length,
                                   Register scratch1, Register scratch2,
                                   Label* gc_required);

  // Allocates a heap number or jumps to the gc_required label if the young
  // space is full and a scavenge is needed. All registers are clobbered also
  // when control continues at the gc_required label.
  void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
                          Register heap_number_map, Label* gc_required,
                          TaggingMode tagging_mode = TAG_RESULT,
                          MutableMode mode = IMMUTABLE);
  void AllocateHeapNumberWithValue(Register result, DoubleRegister value,
                                   Register scratch1, Register scratch2,
                                   Register heap_number_map,
                                   Label* gc_required);

  // Copies a fixed number of fields of heap objects from src to dst.
  void CopyFields(Register dst, Register src, RegList temps, int field_count);

  // Copies a number of bytes from src to dst. All registers are clobbered. On
  // exit src and dst will point to the place just after where the last byte was
  // read or written and length will be zero.
  void CopyBytes(Register src, Register dst, Register length, Register scratch);

  // Initialize fields with filler values.  |count| fields starting at
  // |start_offset| are overwritten with the value in |filler|.  At the end the
  // loop, |start_offset| points at the next uninitialized field.  |count| is
  // assumed to be non-zero.
  void InitializeNFieldsWithFiller(Register start_offset, Register count,
                                   Register filler);

  // Initialize fields with filler values.  Fields starting at |start_offset|
  // not including end_offset are overwritten with the value in |filler|.  At
  // the end the loop, |start_offset| takes the value of |end_offset|.
  void InitializeFieldsWithFiller(Register start_offset, Register end_offset,
                                  Register filler);

  // ---------------------------------------------------------------------------
  // Support functions.

  // Machine code version of Map::GetConstructor().
  // |temp| holds |result|'s map when done, and |temp2| its instance type.
  void GetMapConstructor(Register result, Register map, Register temp,
                         Register temp2);

  // Try to get function prototype of a function and puts the value in
  // the result register. Checks that the function really is a
  // function and jumps to the miss label if the fast checks fail. The
  // function register will be untouched; the other registers may be
  // clobbered.
  void TryGetFunctionPrototype(Register function, Register result,
                               Register scratch, Label* miss);

  // Compare object type for heap object.  heap_object contains a non-Smi
  // whose object type should be compared with the given type.  This both
  // sets the flags and leaves the object type in the type_reg register.
  // It leaves the map in the map register (unless the type_reg and map register
  // are the same register).  It leaves the heap object in the heap_object
  // register unless the heap_object register is the same register as one of the
  // other registers.
  // Type_reg can be no_reg. In that case ip is used.
  void CompareObjectType(Register heap_object, Register map, Register type_reg,
                         InstanceType type);

  // Compare instance type in a map.  map contains a valid map object whose
  // object type should be compared with the given type.  This both
  // sets the flags and leaves the object type in the type_reg register.
  void CompareInstanceType(Register map, Register type_reg, InstanceType type);


  // Check if a map for a JSObject indicates that the object has fast elements.
  // Jump to the specified label if it does not.
  void CheckFastElements(Register map, Register scratch, Label* fail);

  // Check if a map for a JSObject indicates that the object can have both smi
  // and HeapObject elements.  Jump to the specified label if it does not.
  void CheckFastObjectElements(Register map, Register scratch, Label* fail);

  // Check if a map for a JSObject indicates that the object has fast smi only
  // elements.  Jump to the specified label if it does not.
  void CheckFastSmiElements(Register map, Register scratch, Label* fail);

  // Check to see if maybe_number can be stored as a double in
  // FastDoubleElements. If it can, store it at the index specified by key in
  // the FastDoubleElements array elements. Otherwise jump to fail.
  void StoreNumberToDoubleElements(Register value_reg, Register key_reg,
                                   Register elements_reg, Register scratch1,
                                   DoubleRegister double_scratch, Label* fail,
                                   int elements_offset = 0);

  // Compare an object's map with the specified map and its transitioned
  // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
  // set with result of map compare. If multiple map compares are required, the
  // compare sequences branches to early_success.
  void CompareMap(Register obj, Register scratch, Handle<Map> map,
                  Label* early_success);

  // As above, but the map of the object is already loaded into the register
  // which is preserved by the code generated.
  void CompareMap(Register obj_map, Handle<Map> map, Label* early_success);

  // Check if the map of an object is equal to a specified map and branch to
  // label if not. Skip the smi check if not required (object is known to be a
  // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
  // against maps that are ElementsKind transition maps of the specified map.
  void CheckMap(Register obj, Register scratch, Handle<Map> map, Label* fail,
                SmiCheckType smi_check_type);


  void CheckMap(Register obj, Register scratch, Heap::RootListIndex index,
                Label* fail, SmiCheckType smi_check_type);


  // Check if the map of an object is equal to a specified weak map and branch
  // to a specified target if equal. Skip the smi check if not required
  // (object is known to be a heap object)
  void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
                       Handle<WeakCell> cell, Handle<Code> success,
                       SmiCheckType smi_check_type);

  // Compare the given value and the value of weak cell.
  void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch,
                    CRegister cr = cr7);

  void GetWeakValue(Register value, Handle<WeakCell> cell);

  // Load the value of the weak cell in the value register. Branch to the given
  // miss label if the weak cell was cleared.
  void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);

  // Compare the object in a register to a value from the root list.
  // Uses the ip register as scratch.
  void CompareRoot(Register obj, Heap::RootListIndex index);
  void PushRoot(Heap::RootListIndex index) {
    LoadRoot(r0, index);
    Push(r0);
  }

  // Compare the object in a register to a value and jump if they are equal.
  void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
    CompareRoot(with, index);
    beq(if_equal);
  }

  // Compare the object in a register to a value and jump if they are not equal.
  void JumpIfNotRoot(Register with, Heap::RootListIndex index,
                     Label* if_not_equal) {
    CompareRoot(with, index);
    bne(if_not_equal);
  }

  // Load and check the instance type of an object for being a string.
  // Loads the type into the second argument register.
  // Returns a condition that will be enabled if the object was a string.
  Condition IsObjectStringType(Register obj, Register type) {
    LoadP(type, FieldMemOperand(obj, HeapObject::kMapOffset));
    lbz(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
    andi(r0, type, Operand(kIsNotStringMask));
    DCHECK_EQ(0u, kStringTag);
    return eq;
  }


  // Picks out an array index from the hash field.
  // Register use:
  //   hash - holds the index's hash. Clobbered.
  //   index - holds the overwritten index on exit.
  void IndexFromHash(Register hash, Register index);

  // Get the number of least significant bits from a register
  void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
  void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);

  // Load the value of a smi object into a double register.
  void SmiToDouble(DoubleRegister value, Register smi);

  // Check if a double can be exactly represented as a signed 32-bit integer.
  // CR_EQ in cr7 is set if true.
  void TestDoubleIsInt32(DoubleRegister double_input, Register scratch1,
                         Register scratch2, DoubleRegister double_scratch);

  // Try to convert a double to a signed 32-bit integer.
  // CR_EQ in cr7 is set and result assigned if the conversion is exact.
  void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
                             Register scratch, DoubleRegister double_scratch);

  // Floor a double and writes the value to the result register.
  // Go to exact if the conversion is exact (to be able to test -0),
  // fall through calling code if an overflow occurred, else go to done.
  // In return, input_high is loaded with high bits of input.
  void TryInt32Floor(Register result, DoubleRegister double_input,
                     Register input_high, Register scratch,
                     DoubleRegister double_scratch, Label* done, Label* exact);

  // Performs a truncating conversion of a floating point number as used by
  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
  // succeeds, otherwise falls through if result is saturated. On return
  // 'result' either holds answer, or is clobbered on fall through.
  //
  // Only public for the test code in test-code-stubs-arm.cc.
  void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
                                  Label* done);

  // Performs a truncating conversion of a floating point number as used by
  // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
  // Exits with 'result' holding the answer.
  void TruncateDoubleToI(Register result, DoubleRegister double_input);

  // Performs a truncating conversion of a heap number as used by
  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
  // must be different registers.  Exits with 'result' holding the answer.
  void TruncateHeapNumberToI(Register result, Register object);

  // Converts the smi or heap number in object to an int32 using the rules
  // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
  // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
  // different registers.
  void TruncateNumberToI(Register object, Register result,
                         Register heap_number_map, Register scratch1,
                         Label* not_int32);

  // Overflow handling functions.
  // Usage: call the appropriate arithmetic function and then call one of the
  // flow control functions with the corresponding label.

  // Compute dst = left + right, setting condition codes. dst may be same as
  // either left or right (or a unique register). left and right must not be
  // the same register.
  void AddAndCheckForOverflow(Register dst, Register left, Register right,
                              Register overflow_dst, Register scratch = r0);
  void AddAndCheckForOverflow(Register dst, Register left, intptr_t right,
                              Register overflow_dst, Register scratch = r0);

  // Compute dst = left - right, setting condition codes. dst may be same as
  // either left or right (or a unique register). left and right must not be
  // the same register.
  void SubAndCheckForOverflow(Register dst, Register left, Register right,
                              Register overflow_dst, Register scratch = r0);

  void BranchOnOverflow(Label* label) { blt(label, cr0); }

  void BranchOnNoOverflow(Label* label) { bge(label, cr0); }

  void RetOnOverflow(void) { Ret(lt, cr0); }

  void RetOnNoOverflow(void) { Ret(ge, cr0); }

  // ---------------------------------------------------------------------------
  // Runtime calls

  // Call a code stub.
  void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None(),
                Condition cond = al);

  // Call a code stub.
  void TailCallStub(CodeStub* stub, Condition cond = al);

  // Call a runtime routine.
  void CallRuntime(const Runtime::Function* f, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);
  void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
    const Runtime::Function* function = Runtime::FunctionForId(id);
    CallRuntime(function, function->nargs, kSaveFPRegs);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId id, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
  }

  // Convenience function: call an external reference.
  void CallExternalReference(const ExternalReference& ext, int num_arguments);

  // Tail call of a runtime routine (jump).
  // Like JumpToExternalReference, but also takes care of passing the number
  // of parameters.
  void TailCallExternalReference(const ExternalReference& ext,
                                 int num_arguments, int result_size);

  // Convenience function: tail call a runtime routine (jump).
  void TailCallRuntime(Runtime::FunctionId fid, int num_arguments,
                       int result_size);

  int CalculateStackPassedWords(int num_reg_arguments,
                                int num_double_arguments);

  // Before calling a C-function from generated code, align arguments on stack.
  // After aligning the frame, non-register arguments must be stored in
  // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
  // are word sized. If double arguments are used, this function assumes that
  // all double arguments are stored before core registers; otherwise the
  // correct alignment of the double values is not guaranteed.
  // Some compilers/platforms require the stack to be aligned when calling
  // C++ code.
  // Needs a scratch register to do some arithmetic. This register will be
  // trashed.
  void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
                            Register scratch);
  void PrepareCallCFunction(int num_reg_arguments, Register scratch);

  // There are two ways of passing double arguments on ARM, depending on
  // whether soft or hard floating point ABI is used. These functions
  // abstract parameter passing for the three different ways we call
  // C functions from generated code.
  void MovToFloatParameter(DoubleRegister src);
  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
  void MovToFloatResult(DoubleRegister src);

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_arguments);
  void CallCFunction(Register function, int num_arguments);
  void CallCFunction(ExternalReference function, int num_reg_arguments,
                     int num_double_arguments);
  void CallCFunction(Register function, int num_reg_arguments,
                     int num_double_arguments);

  void MovFromFloatParameter(DoubleRegister dst);
  void MovFromFloatResult(DoubleRegister dst);

  // Jump to a runtime routine.
  void JumpToExternalReference(const ExternalReference& builtin);

  // Invoke specified builtin JavaScript function.
  void InvokeBuiltin(int native_context_index, InvokeFlag flag,
                     const CallWrapper& call_wrapper = NullCallWrapper());

  // Store the code object for the given builtin in the target register and
  // setup the function in r1.
  void GetBuiltinEntry(Register target, int native_context_index);

  // Store the function for the given builtin in the target register.
  void GetBuiltinFunction(Register target, int native_context_index);

  Handle<Object> CodeObject() {
    DCHECK(!code_object_.is_null());
    return code_object_;
  }


  // Emit code for a truncating division by a constant. The dividend register is
  // unchanged and ip gets clobbered. Dividend and result must be different.
  void TruncatingDiv(Register result, Register dividend, int32_t divisor);

  // ---------------------------------------------------------------------------
  // StatsCounter support

  void SetCounter(StatsCounter* counter, int value, Register scratch1,
                  Register scratch2);
  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2);
  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2);


  // ---------------------------------------------------------------------------
  // Debugging

  // Calls Abort(msg) if the condition cond is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);
  void AssertFastElements(Register elements);

  // Like Assert(), but always enabled.
  void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);

  // Print a message to stdout and abort execution.
  void Abort(BailoutReason reason);

  // Verify restrictions about code generated in stubs.
  void set_generating_stub(bool value) { generating_stub_ = value; }
  bool generating_stub() { return generating_stub_; }
  void set_has_frame(bool value) { has_frame_ = value; }
  bool has_frame() { return has_frame_; }
  inline bool AllowThisStubCall(CodeStub* stub);

  // ---------------------------------------------------------------------------
  // Number utilities

  // Check whether the value of reg is a power of two and not zero. If not
  // control continues at the label not_power_of_two. If reg is a power of two
  // the register scratch contains the value of (reg - 1) when control falls
  // through.
  void JumpIfNotPowerOfTwoOrZero(Register reg, Register scratch,
                                 Label* not_power_of_two_or_zero);
  // Check whether the value of reg is a power of two and not zero.
  // Control falls through if it is, with scratch containing the mask
  // value (reg - 1).
  // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
  // zero or negative, or jumps to the 'not_power_of_two' label if the value is
  // strictly positive but not a power of two.
  void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg, Register scratch,
                                       Label* zero_and_neg,
                                       Label* not_power_of_two);

  // ---------------------------------------------------------------------------
  // Bit testing/extraction
  //
  // Bit numbering is such that the least significant bit is bit 0
  // (for consistency between 32/64-bit).

  // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
  // and place them into the least significant bits of dst.
  inline void ExtractBitRange(Register dst, Register src, int rangeStart,
                              int rangeEnd, RCBit rc = LeaveRC) {
    DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
    int rotate = (rangeEnd == 0) ? 0 : kBitsPerPointer - rangeEnd;
    int width = rangeStart - rangeEnd + 1;
    if (rc == SetRC && rangeEnd == 0 && width <= 16) {
      andi(dst, src, Operand((1 << width) - 1));
    } else {
#if V8_TARGET_ARCH_PPC64
      rldicl(dst, src, rotate, kBitsPerPointer - width, rc);
#else
      rlwinm(dst, src, rotate, kBitsPerPointer - width, kBitsPerPointer - 1,
             rc);
#endif
    }
  }

  inline void ExtractBit(Register dst, Register src, uint32_t bitNumber,
                         RCBit rc = LeaveRC) {
    ExtractBitRange(dst, src, bitNumber, bitNumber, rc);
  }

  // Extract consecutive bits (defined by mask) from src and place them
  // into the least significant bits of dst.
  inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
                             RCBit rc = LeaveRC) {
    int start = kBitsPerPointer - 1;
    int end;
    uintptr_t bit = (1L << start);

    while (bit && (mask & bit) == 0) {
      start--;
      bit >>= 1;
    }
    end = start;
    bit >>= 1;

    while (bit && (mask & bit)) {
      end--;
      bit >>= 1;
    }

    // 1-bits in mask must be contiguous
    DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);

    ExtractBitRange(dst, src, start, end, rc);
  }

  // Test single bit in value.
  inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
    ExtractBitRange(scratch, value, bitNumber, bitNumber, SetRC);
  }

  // Test consecutive bit range in value.  Range is defined by
  // rangeStart - rangeEnd.
  inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
                           Register scratch = r0) {
    ExtractBitRange(scratch, value, rangeStart, rangeEnd, SetRC);
  }

  // Test consecutive bit range in value.  Range is defined by mask.
  inline void TestBitMask(Register value, uintptr_t mask,
                          Register scratch = r0) {
    ExtractBitMask(scratch, value, mask, SetRC);
  }


  // ---------------------------------------------------------------------------
  // Smi utilities

  // Shift left by kSmiShift
  void SmiTag(Register reg, RCBit rc = LeaveRC) { SmiTag(reg, reg, rc); }
  void SmiTag(Register dst, Register src, RCBit rc = LeaveRC) {
    ShiftLeftImm(dst, src, Operand(kSmiShift), rc);
  }

#if !V8_TARGET_ARCH_PPC64
  // Test for overflow < 0: use BranchOnOverflow() or BranchOnNoOverflow().
  void SmiTagCheckOverflow(Register reg, Register overflow);
  void SmiTagCheckOverflow(Register dst, Register src, Register overflow);

  inline void JumpIfNotSmiCandidate(Register value, Register scratch,
                                    Label* not_smi_label) {
    // High bits must be identical to fit into an Smi
    STATIC_ASSERT(kSmiShift == 1);
    addis(scratch, value, Operand(0x40000000u >> 16));
    cmpi(scratch, Operand::Zero());
    blt(not_smi_label);
  }
#endif
  inline void TestUnsignedSmiCandidate(Register value, Register scratch) {
    // The test is different for unsigned int values. Since we need
    // the value to be in the range of a positive smi, we can't
    // handle any of the high bits being set in the value.
    TestBitRange(value, kBitsPerPointer - 1, kBitsPerPointer - 1 - kSmiShift,
                 scratch);
  }
  inline void JumpIfNotUnsignedSmiCandidate(Register value, Register scratch,
                                            Label* not_smi_label) {
    TestUnsignedSmiCandidate(value, scratch);
    bne(not_smi_label, cr0);
  }

  void SmiUntag(Register reg, RCBit rc = LeaveRC) { SmiUntag(reg, reg, rc); }

  void SmiUntag(Register dst, Register src, RCBit rc = LeaveRC) {
    ShiftRightArithImm(dst, src, kSmiShift, rc);
  }

  void SmiToPtrArrayOffset(Register dst, Register src) {
#if V8_TARGET_ARCH_PPC64
    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
    ShiftRightArithImm(dst, src, kSmiShift - kPointerSizeLog2);
#else
    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
    ShiftLeftImm(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
#endif
  }

  void SmiToByteArrayOffset(Register dst, Register src) { SmiUntag(dst, src); }

  void SmiToShortArrayOffset(Register dst, Register src) {
#if V8_TARGET_ARCH_PPC64
    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 1);
    ShiftRightArithImm(dst, src, kSmiShift - 1);
#else
    STATIC_ASSERT(kSmiTag == 0 && kSmiShift == 1);
    if (!dst.is(src)) {
      mr(dst, src);
    }
#endif
  }

  void SmiToIntArrayOffset(Register dst, Register src) {
#if V8_TARGET_ARCH_PPC64
    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > 2);
    ShiftRightArithImm(dst, src, kSmiShift - 2);
#else
    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < 2);
    ShiftLeftImm(dst, src, Operand(2 - kSmiShift));
#endif
  }

#define SmiToFloatArrayOffset SmiToIntArrayOffset

  void SmiToDoubleArrayOffset(Register dst, Register src) {
#if V8_TARGET_ARCH_PPC64
    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kDoubleSizeLog2);
    ShiftRightArithImm(dst, src, kSmiShift - kDoubleSizeLog2);
#else
    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kDoubleSizeLog2);
    ShiftLeftImm(dst, src, Operand(kDoubleSizeLog2 - kSmiShift));
#endif
  }

  void SmiToArrayOffset(Register dst, Register src, int elementSizeLog2) {
    if (kSmiShift < elementSizeLog2) {
      ShiftLeftImm(dst, src, Operand(elementSizeLog2 - kSmiShift));
    } else if (kSmiShift > elementSizeLog2) {
      ShiftRightArithImm(dst, src, kSmiShift - elementSizeLog2);
    } else if (!dst.is(src)) {
      mr(dst, src);
    }
  }

  void IndexToArrayOffset(Register dst, Register src, int elementSizeLog2,
                          bool isSmi) {
    if (isSmi) {
      SmiToArrayOffset(dst, src, elementSizeLog2);
    } else {
      ShiftLeftImm(dst, src, Operand(elementSizeLog2));
    }
  }

  // Untag the source value into destination and jump if source is a smi.
  // Souce and destination can be the same register.
  void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);

  // Untag the source value into destination and jump if source is not a smi.
  // Souce and destination can be the same register.
  void UntagAndJumpIfNotSmi(Register dst, Register src, Label* non_smi_case);

  inline void TestIfSmi(Register value, Register scratch) {
    TestBitRange(value, kSmiTagSize - 1, 0, scratch);
  }

  inline void TestIfPositiveSmi(Register value, Register scratch) {
#if V8_TARGET_ARCH_PPC64
    rldicl(scratch, value, 1, kBitsPerPointer - (1 + kSmiTagSize), SetRC);
#else
    rlwinm(scratch, value, 1, kBitsPerPointer - (1 + kSmiTagSize),
           kBitsPerPointer - 1, SetRC);
#endif
  }

  // Jump the register contains a smi.
  inline void JumpIfSmi(Register value, Label* smi_label) {
    TestIfSmi(value, r0);
    beq(smi_label, cr0);  // branch if SMI
  }
  // Jump if either of the registers contain a non-smi.
  inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
    TestIfSmi(value, r0);
    bne(not_smi_label, cr0);
  }
  // Jump if either of the registers contain a non-smi.
  void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
  // Jump if either of the registers contain a smi.
  void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);

  // Abort execution if argument is a smi, enabled via --debug-code.
  void AssertNotSmi(Register object);
  void AssertSmi(Register object);


#if V8_TARGET_ARCH_PPC64
  inline void TestIfInt32(Register value, Register scratch,
                          CRegister cr = cr7) {
    // High bits must be identical to fit into an 32-bit integer
    extsw(scratch, value);
    cmp(scratch, value, cr);
  }
#else
  inline void TestIfInt32(Register hi_word, Register lo_word, Register scratch,
                          CRegister cr = cr7) {
    // High bits must be identical to fit into an 32-bit integer
    srawi(scratch, lo_word, 31);
    cmp(scratch, hi_word, cr);
  }
#endif

#if V8_TARGET_ARCH_PPC64
  // Ensure it is permissable to read/write int value directly from
  // upper half of the smi.
  STATIC_ASSERT(kSmiTag == 0);
  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
#endif
#if V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN
#define SmiWordOffset(offset) (offset + kPointerSize / 2)
#else
#define SmiWordOffset(offset) offset
#endif

  // Abort execution if argument is not a string, enabled via --debug-code.
  void AssertString(Register object);

  // Abort execution if argument is not a name, enabled via --debug-code.
  void AssertName(Register object);

  void AssertFunction(Register object);

  // Abort execution if argument is not undefined or an AllocationSite, enabled
  // via --debug-code.
  void AssertUndefinedOrAllocationSite(Register object, Register scratch);

  // Abort execution if reg is not the root value with the given index,
  // enabled via --debug-code.
  void AssertIsRoot(Register reg, Heap::RootListIndex index);

  // ---------------------------------------------------------------------------
  // HeapNumber utilities

  void JumpIfNotHeapNumber(Register object, Register heap_number_map,
                           Register scratch, Label* on_not_heap_number);

  // ---------------------------------------------------------------------------
  // String utilities

  // Checks if both objects are sequential one-byte strings and jumps to label
  // if either is not. Assumes that neither object is a smi.
  void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
                                                    Register object2,
                                                    Register scratch1,
                                                    Register scratch2,
                                                    Label* failure);

  // Checks if both objects are sequential one-byte strings and jumps to label
  // if either is not.
  void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
                                             Register scratch1,
                                             Register scratch2,
                                             Label* not_flat_one_byte_strings);

  // Checks if both instance types are sequential one-byte strings and jumps to
  // label if either is not.
  void JumpIfBothInstanceTypesAreNotSequentialOneByte(
      Register first_object_instance_type, Register second_object_instance_type,
      Register scratch1, Register scratch2, Label* failure);

  // Check if instance type is sequential one-byte string and jump to label if
  // it is not.
  void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch,
                                                Label* failure);

  void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);

  void EmitSeqStringSetCharCheck(Register string, Register index,
                                 Register value, uint32_t encoding_mask);

  // ---------------------------------------------------------------------------
  // Patching helpers.

  // Decode offset from constant pool load instruction(s).
  // Caller must place the instruction word at <location> in <result>.
  void DecodeConstantPoolOffset(Register result, Register location);

  void ClampUint8(Register output_reg, Register input_reg);

  // Saturate a value into 8-bit unsigned integer
  //   if input_value < 0, output_value is 0
  //   if input_value > 255, output_value is 255
  //   otherwise output_value is the (int)input_value (round to nearest)
  void ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg,
                          DoubleRegister temp_double_reg);


  void LoadInstanceDescriptors(Register map, Register descriptors);
  void EnumLength(Register dst, Register map);
  void NumberOfOwnDescriptors(Register dst, Register map);
  void LoadAccessor(Register dst, Register holder, int accessor_index,
                    AccessorComponent accessor);

  template <typename Field>
  void DecodeField(Register dst, Register src, RCBit rc = LeaveRC) {
    ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift,
                    rc);
  }

  template <typename Field>
  void DecodeField(Register reg, RCBit rc = LeaveRC) {
    DecodeField<Field>(reg, reg, rc);
  }

  template <typename Field>
  void DecodeFieldToSmi(Register dst, Register src) {
#if V8_TARGET_ARCH_PPC64
    DecodeField<Field>(dst, src);
    SmiTag(dst);
#else
    // 32-bit can do this in one instruction:
    int start = Field::kSize + kSmiShift - 1;
    int end = kSmiShift;
    int rotate = kSmiShift - Field::kShift;
    if (rotate < 0) {
      rotate += kBitsPerPointer;
    }
    rlwinm(dst, src, rotate, kBitsPerPointer - start - 1,
           kBitsPerPointer - end - 1);
#endif
  }

  template <typename Field>
  void DecodeFieldToSmi(Register reg) {
    DecodeFieldToSmi<Field>(reg, reg);
  }

  // Load the type feedback vector from a JavaScript frame.
  void EmitLoadTypeFeedbackVector(Register vector);

  // Activation support.
  void EnterFrame(StackFrame::Type type,
                  bool load_constant_pool_pointer_reg = false);
  // Returns the pc offset at which the frame ends.
  int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);

  // Expects object in r0 and returns map with validated enum cache
  // in r0.  Assumes that any other register can be used as a scratch.
  void CheckEnumCache(Register null_value, Label* call_runtime);

  // AllocationMemento support. Arrays may have an associated
  // AllocationMemento object that can be checked for in order to pretransition
  // to another type.
  // On entry, receiver_reg should point to the array object.
  // scratch_reg gets clobbered.
  // If allocation info is present, condition flags are set to eq.
  void TestJSArrayForAllocationMemento(Register receiver_reg,
                                       Register scratch_reg,
                                       Label* no_memento_found);

  void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
                                         Register scratch_reg,
                                         Label* memento_found) {
    Label no_memento_found;
    TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
                                    &no_memento_found);
    beq(memento_found);
    bind(&no_memento_found);
  }

  // Jumps to found label if a prototype map has dictionary elements.
  void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
                                        Register scratch1, Label* found);

  // Loads the constant pool pointer (kConstantPoolRegister).
  void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
      Register code_target_address);
  void LoadConstantPoolPointerRegister();
  void LoadConstantPoolPointerRegister(Register base, int code_entry_delta = 0);

  void AbortConstantPoolBuilding() {
#ifdef DEBUG
    // Avoid DCHECK(!is_linked()) failure in ~Label()
    bind(ConstantPoolPosition());
#endif
  }

 private:
  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;

  void CallCFunctionHelper(Register function, int num_reg_arguments,
                           int num_double_arguments);

  void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
            CRegister cr = cr7);

  // Helper functions for generating invokes.
  void InvokePrologue(const ParameterCount& expected,
                      const ParameterCount& actual, Handle<Code> code_constant,
                      Register code_reg, Label* done,
                      bool* definitely_mismatches, InvokeFlag flag,
                      const CallWrapper& call_wrapper);

  void InitializeNewString(Register string, Register length,
                           Heap::RootListIndex map_index, Register scratch1,
                           Register scratch2);

  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
  void InNewSpace(Register object, Register scratch,
                  Condition cond,  // eq for new space, ne otherwise.
                  Label* branch);

  // Helper for finding the mark bits for an address.  Afterwards, the
  // bitmap register points at the word with the mark bits and the mask
  // the position of the first bit.  Leaves addr_reg unchanged.
  inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
                          Register mask_reg);

  static const RegList kSafepointSavedRegisters;
  static const int kNumSafepointSavedRegisters;

  // Compute memory operands for safepoint stack slots.
  static int SafepointRegisterStackIndex(int reg_code);
  MemOperand SafepointRegisterSlot(Register reg);
  MemOperand SafepointRegistersAndDoublesSlot(Register reg);

  bool generating_stub_;
  bool has_frame_;
  // This handle will be patched with the code object on installation.
  Handle<Object> code_object_;

  // Needs access to SafepointRegisterStackIndex for compiled frame
  // traversal.
  friend class StandardFrame;
};


// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. It is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion to fail.
class CodePatcher {
 public:
  enum FlushICache { FLUSH, DONT_FLUSH };

  CodePatcher(byte* address, int instructions, FlushICache flush_cache = FLUSH);
  ~CodePatcher();

  // Macro assembler to emit code.
  MacroAssembler* masm() { return &masm_; }

  // Emit an instruction directly.
  void Emit(Instr instr);

  // Emit the condition part of an instruction leaving the rest of the current
  // instruction unchanged.
  void EmitCondition(Condition cond);

 private:
  byte* address_;            // The address of the code being patched.
  int size_;                 // Number of bytes of the expected patch size.
  MacroAssembler masm_;      // Macro assembler used to generate the code.
  FlushICache flush_cache_;  // Whether to flush the I cache after patching.
};


// -----------------------------------------------------------------------------
// Static helper functions.

inline MemOperand ContextOperand(Register context, int index = 0) {
  return MemOperand(context, Context::SlotOffset(index));
}


inline MemOperand GlobalObjectOperand() {
  return ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX);
}


#ifdef GENERATED_CODE_COVERAGE
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm)    \
  masm->stop(__FILE_LINE__); \
  masm->
#else
#define ACCESS_MASM(masm) masm->
#endif
}  // namespace internal
}  // namespace v8

#endif  // V8_PPC_MACRO_ASSEMBLER_PPC_H_