summaryrefslogtreecommitdiff
path: root/deps/v8/src/ppc/macro-assembler-ppc.h
blob: cc1d7a151e9c9cfd6cc94e17035a04b4b074ec7a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_PPC_MACRO_ASSEMBLER_PPC_H_
#define V8_PPC_MACRO_ASSEMBLER_PPC_H_

#include "src/assembler.h"
#include "src/bailout-reason.h"
#include "src/double.h"
#include "src/globals.h"
#include "src/ppc/assembler-ppc.h"

namespace v8 {
namespace internal {

// Give alias names to registers for calling conventions.
const Register kReturnRegister0 = r3;
const Register kReturnRegister1 = r4;
const Register kReturnRegister2 = r5;
const Register kJSFunctionRegister = r4;
const Register kContextRegister = r30;
const Register kAllocateSizeRegister = r4;
const Register kInterpreterAccumulatorRegister = r3;
const Register kInterpreterBytecodeOffsetRegister = r15;
const Register kInterpreterBytecodeArrayRegister = r16;
const Register kInterpreterDispatchTableRegister = r17;
const Register kJavaScriptCallArgCountRegister = r3;
const Register kJavaScriptCallNewTargetRegister = r6;
const Register kRuntimeCallFunctionRegister = r4;
const Register kRuntimeCallArgCountRegister = r3;

// ----------------------------------------------------------------------------
// Static helper functions

// Generate a MemOperand for loading a field from an object.
inline MemOperand FieldMemOperand(Register object, int offset) {
  return MemOperand(object, offset - kHeapObjectTag);
}


// Flags used for AllocateHeapNumber
enum TaggingMode {
  // Tag the result.
  TAG_RESULT,
  // Don't tag
  DONT_TAG_RESULT
};


enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };


Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2 = no_reg,
                                   Register reg3 = no_reg,
                                   Register reg4 = no_reg,
                                   Register reg5 = no_reg,
                                   Register reg6 = no_reg);


#ifdef DEBUG
bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
                Register reg4 = no_reg, Register reg5 = no_reg,
                Register reg6 = no_reg, Register reg7 = no_reg,
                Register reg8 = no_reg, Register reg9 = no_reg,
                Register reg10 = no_reg);
#endif

// These exist to provide portability between 32 and 64bit
#if V8_TARGET_ARCH_PPC64
#define LoadPX ldx
#define LoadPUX ldux
#define StorePX stdx
#define StorePUX stdux
#define ShiftLeftImm sldi
#define ShiftRightImm srdi
#define ClearLeftImm clrldi
#define ClearRightImm clrrdi
#define ShiftRightArithImm sradi
#define ShiftLeft_ sld
#define ShiftRight_ srd
#define ShiftRightArith srad
#define Mul mulld
#define Div divd
#else
#define LoadPX lwzx
#define LoadPUX lwzux
#define StorePX stwx
#define StorePUX stwux
#define ShiftLeftImm slwi
#define ShiftRightImm srwi
#define ClearLeftImm clrlwi
#define ClearRightImm clrrwi
#define ShiftRightArithImm srawi
#define ShiftLeft_ slw
#define ShiftRight_ srw
#define ShiftRightArith sraw
#define Mul mullw
#define Div divw
#endif

class TurboAssembler : public Assembler {
 public:
  TurboAssembler(Isolate* isolate, void* buffer, int buffer_size,
                 CodeObjectRequired create_code_object);

  void set_has_frame(bool value) { has_frame_ = value; }
  bool has_frame() { return has_frame_; }

  Isolate* isolate() const { return isolate_; }

  Handle<HeapObject> CodeObject() {
    DCHECK(!code_object_.is_null());
    return code_object_;
  }
  // Converts the integer (untagged smi) in |src| to a double, storing
  // the result to |dst|
  void ConvertIntToDouble(Register src, DoubleRegister dst);

  // Converts the unsigned integer (untagged smi) in |src| to
  // a double, storing the result to |dst|
  void ConvertUnsignedIntToDouble(Register src, DoubleRegister dst);

  // Converts the integer (untagged smi) in |src| to
  // a float, storing the result in |dst|
  void ConvertIntToFloat(Register src, DoubleRegister dst);

  // Converts the unsigned integer (untagged smi) in |src| to
  // a float, storing the result in |dst|
  void ConvertUnsignedIntToFloat(Register src, DoubleRegister dst);

#if V8_TARGET_ARCH_PPC64
  void ConvertInt64ToFloat(Register src, DoubleRegister double_dst);
  void ConvertInt64ToDouble(Register src, DoubleRegister double_dst);
  void ConvertUnsignedInt64ToFloat(Register src, DoubleRegister double_dst);
  void ConvertUnsignedInt64ToDouble(Register src, DoubleRegister double_dst);
#endif

  // Converts the double_input to an integer.  Note that, upon return,
  // the contents of double_dst will also hold the fixed point representation.
  void ConvertDoubleToInt64(const DoubleRegister double_input,
#if !V8_TARGET_ARCH_PPC64
                            const Register dst_hi,
#endif
                            const Register dst, const DoubleRegister double_dst,
                            FPRoundingMode rounding_mode = kRoundToZero);

#if V8_TARGET_ARCH_PPC64
  // Converts the double_input to an unsigned integer.  Note that, upon return,
  // the contents of double_dst will also hold the fixed point representation.
  void ConvertDoubleToUnsignedInt64(
      const DoubleRegister double_input, const Register dst,
      const DoubleRegister double_dst,
      FPRoundingMode rounding_mode = kRoundToZero);
#endif

  // Activation support.
  void EnterFrame(StackFrame::Type type,
                  bool load_constant_pool_pointer_reg = false);

  // Returns the pc offset at which the frame ends.
  int LeaveFrame(StackFrame::Type type, int stack_adjustment = 0);

  // Push a fixed frame, consisting of lr, fp, constant pool.
  void PushCommonFrame(Register marker_reg = no_reg);

  // Generates function and stub prologue code.
  void StubPrologue(StackFrame::Type type, Register base = no_reg,
                    int prologue_offset = 0);
  void Prologue(Register base, int prologue_offset = 0);

  // Push a standard frame, consisting of lr, fp, constant pool,
  // context and JS function
  void PushStandardFrame(Register function_reg);

  // Restore caller's frame pointer and return address prior to being
  // overwritten by tail call stack preparation.
  void RestoreFrameStateForTailCall();

  // Get the actual activation frame alignment for target environment.
  static int ActivationFrameAlignment();

  void InitializeRootRegister() {
    ExternalReference roots_array_start =
        ExternalReference::roots_array_start(isolate());
    mov(kRootRegister, Operand(roots_array_start));
  }

  // These exist to provide portability between 32 and 64bit
  void LoadP(Register dst, const MemOperand& mem, Register scratch = no_reg);
  void LoadPU(Register dst, const MemOperand& mem, Register scratch = no_reg);
  void LoadWordArith(Register dst, const MemOperand& mem,
                     Register scratch = no_reg);
  void StoreP(Register src, const MemOperand& mem, Register scratch = no_reg);
  void StorePU(Register src, const MemOperand& mem, Register scratch = no_reg);

  void LoadDouble(DoubleRegister dst, const MemOperand& mem,
                  Register scratch = no_reg);
  void LoadDoubleLiteral(DoubleRegister result, Double value, Register scratch);

  // load a literal signed int value <value> to GPR <dst>
  void LoadIntLiteral(Register dst, int value);
  // load an SMI value <value> to GPR <dst>
  void LoadSmiLiteral(Register dst, Smi* smi);

  void LoadSingle(DoubleRegister dst, const MemOperand& mem,
                  Register scratch = no_reg);
  void LoadSingleU(DoubleRegister dst, const MemOperand& mem,
                   Register scratch = no_reg);

  void StoreDouble(DoubleRegister src, const MemOperand& mem,
                   Register scratch = no_reg);
  void StoreDoubleU(DoubleRegister src, const MemOperand& mem,
                    Register scratch = no_reg);

  void StoreSingle(DoubleRegister src, const MemOperand& mem,
                   Register scratch = no_reg);
  void StoreSingleU(DoubleRegister src, const MemOperand& mem,
                    Register scratch = no_reg);

  void Cmpli(Register src1, const Operand& src2, Register scratch,
             CRegister cr = cr7);
  void Cmpwi(Register src1, const Operand& src2, Register scratch,
             CRegister cr = cr7);
  // Set new rounding mode RN to FPSCR
  void SetRoundingMode(FPRoundingMode RN);

  // reset rounding mode to default (kRoundToNearest)
  void ResetRoundingMode();
  void Add(Register dst, Register src, intptr_t value, Register scratch);

  void Push(Register src) { push(src); }
  // Push a handle.
  void Push(Handle<HeapObject> handle);
  void Push(Smi* smi);

  // Push two registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2) {
    StorePU(src2, MemOperand(sp, -2 * kPointerSize));
    StoreP(src1, MemOperand(sp, kPointerSize));
  }

  // Push three registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3) {
    StorePU(src3, MemOperand(sp, -3 * kPointerSize));
    StoreP(src2, MemOperand(sp, kPointerSize));
    StoreP(src1, MemOperand(sp, 2 * kPointerSize));
  }

  // Push four registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4) {
    StorePU(src4, MemOperand(sp, -4 * kPointerSize));
    StoreP(src3, MemOperand(sp, kPointerSize));
    StoreP(src2, MemOperand(sp, 2 * kPointerSize));
    StoreP(src1, MemOperand(sp, 3 * kPointerSize));
  }

  // Push five registers.  Pushes leftmost register first (to highest address).
  void Push(Register src1, Register src2, Register src3, Register src4,
            Register src5) {
    StorePU(src5, MemOperand(sp, -5 * kPointerSize));
    StoreP(src4, MemOperand(sp, kPointerSize));
    StoreP(src3, MemOperand(sp, 2 * kPointerSize));
    StoreP(src2, MemOperand(sp, 3 * kPointerSize));
    StoreP(src1, MemOperand(sp, 4 * kPointerSize));
  }

  void Pop(Register dst) { pop(dst); }

  // Pop two registers. Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2) {
    LoadP(src2, MemOperand(sp, 0));
    LoadP(src1, MemOperand(sp, kPointerSize));
    addi(sp, sp, Operand(2 * kPointerSize));
  }

  // Pop three registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3) {
    LoadP(src3, MemOperand(sp, 0));
    LoadP(src2, MemOperand(sp, kPointerSize));
    LoadP(src1, MemOperand(sp, 2 * kPointerSize));
    addi(sp, sp, Operand(3 * kPointerSize));
  }

  // Pop four registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3, Register src4) {
    LoadP(src4, MemOperand(sp, 0));
    LoadP(src3, MemOperand(sp, kPointerSize));
    LoadP(src2, MemOperand(sp, 2 * kPointerSize));
    LoadP(src1, MemOperand(sp, 3 * kPointerSize));
    addi(sp, sp, Operand(4 * kPointerSize));
  }

  // Pop five registers.  Pops rightmost register first (from lower address).
  void Pop(Register src1, Register src2, Register src3, Register src4,
           Register src5) {
    LoadP(src5, MemOperand(sp, 0));
    LoadP(src4, MemOperand(sp, kPointerSize));
    LoadP(src3, MemOperand(sp, 2 * kPointerSize));
    LoadP(src2, MemOperand(sp, 3 * kPointerSize));
    LoadP(src1, MemOperand(sp, 4 * kPointerSize));
    addi(sp, sp, Operand(5 * kPointerSize));
  }

  void SaveRegisters(RegList registers);
  void RestoreRegisters(RegList registers);

  void CallRecordWriteStub(Register object, Register address,
                           RememberedSetAction remembered_set_action,
                           SaveFPRegsMode fp_mode);

  void MultiPush(RegList regs, Register location = sp);
  void MultiPop(RegList regs, Register location = sp);

  void MultiPushDoubles(RegList dregs, Register location = sp);
  void MultiPopDoubles(RegList dregs, Register location = sp);

  // Calculate how much stack space (in bytes) are required to store caller
  // registers excluding those specified in the arguments.
  int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
                                      Register exclusion1 = no_reg,
                                      Register exclusion2 = no_reg,
                                      Register exclusion3 = no_reg) const;

  // Push caller saved registers on the stack, and return the number of bytes
  // stack pointer is adjusted.
  int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                      Register exclusion2 = no_reg,
                      Register exclusion3 = no_reg);
  // Restore caller saved registers from the stack, and return the number of
  // bytes stack pointer is adjusted.
  int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
                     Register exclusion2 = no_reg,
                     Register exclusion3 = no_reg);

  // Load an object from the root table.
  void LoadRoot(Register destination, Heap::RootListIndex index,
                Condition cond = al);

  // Before calling a C-function from generated code, align arguments on stack.
  // After aligning the frame, non-register arguments must be stored in
  // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
  // are word sized. If double arguments are used, this function assumes that
  // all double arguments are stored before core registers; otherwise the
  // correct alignment of the double values is not guaranteed.
  // Some compilers/platforms require the stack to be aligned when calling
  // C++ code.
  // Needs a scratch register to do some arithmetic. This register will be
  // trashed.
  void PrepareCallCFunction(int num_reg_arguments, int num_double_registers,
                            Register scratch);
  void PrepareCallCFunction(int num_reg_arguments, Register scratch);

  void PrepareForTailCall(const ParameterCount& callee_args_count,
                          Register caller_args_count_reg, Register scratch0,
                          Register scratch1);

  // There are two ways of passing double arguments on ARM, depending on
  // whether soft or hard floating point ABI is used. These functions
  // abstract parameter passing for the three different ways we call
  // C functions from generated code.
  void MovToFloatParameter(DoubleRegister src);
  void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2);
  void MovToFloatResult(DoubleRegister src);

  // Calls a C function and cleans up the space for arguments allocated
  // by PrepareCallCFunction. The called function is not allowed to trigger a
  // garbage collection, since that might move the code and invalidate the
  // return address (unless this is somehow accounted for by the called
  // function).
  void CallCFunction(ExternalReference function, int num_arguments);
  void CallCFunction(Register function, int num_arguments);
  void CallCFunction(ExternalReference function, int num_reg_arguments,
                     int num_double_arguments);
  void CallCFunction(Register function, int num_reg_arguments,
                     int num_double_arguments);

  void CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid,
                          SaveFPRegsMode save_doubles = kDontSaveFPRegs);
  void MovFromFloatParameter(DoubleRegister dst);
  void MovFromFloatResult(DoubleRegister dst);

  // Calls Abort(msg) if the condition cond is not satisfied.
  // Use --debug_code to enable.
  void Assert(Condition cond, BailoutReason reason, CRegister cr = cr7);

  // Like Assert(), but always enabled.
  void Check(Condition cond, BailoutReason reason, CRegister cr = cr7);

  // Print a message to stdout and abort execution.
  void Abort(BailoutReason reason);

  inline bool AllowThisStubCall(CodeStub* stub);
#if !V8_TARGET_ARCH_PPC64
  void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
                     Register src_high, Register scratch, Register shift);
  void ShiftLeftPair(Register dst_low, Register dst_high, Register src_low,
                     Register src_high, uint32_t shift);
  void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
                      Register src_high, Register scratch, Register shift);
  void ShiftRightPair(Register dst_low, Register dst_high, Register src_low,
                      Register src_high, uint32_t shift);
  void ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low,
                         Register src_high, Register scratch, Register shift);
  void ShiftRightAlgPair(Register dst_low, Register dst_high, Register src_low,
                         Register src_high, uint32_t shift);
#endif
  // Returns the size of a call in instructions. Note, the value returned is
  // only valid as long as no entries are added to the constant pool between
  // checking the call size and emitting the actual call.
  static int CallSize(Register target);
  int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);

  // Jump, Call, and Ret pseudo instructions implementing inter-working.
  void Jump(Register target);
  void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al,
            CRegister cr = cr7);
  void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al,
            CRegister cr = cr7);
  void Call(Register target);
  void Call(Address target, RelocInfo::Mode rmode, Condition cond = al);
  int CallSize(Handle<Code> code,
               RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
               Condition cond = al);
  void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
            Condition cond = al);
  void Call(Label* target);

  void CallForDeoptimization(Address target, RelocInfo::Mode rmode) {
    Call(target, rmode);
  }

  // Emit code to discard a non-negative number of pointer-sized elements
  // from the stack, clobbering only the sp register.
  void Drop(int count);
  void Drop(Register count, Register scratch = r0);

  void Ret() { blr(); }
  void Ret(Condition cond, CRegister cr = cr7) { bclr(cond, cr); }
  void Ret(int drop) {
    Drop(drop);
    blr();
  }

  // If the value is a NaN, canonicalize the value else, do nothing.
  void CanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src);
  void CanonicalizeNaN(const DoubleRegister value) {
    CanonicalizeNaN(value, value);
  }
  void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
                     Label* condition_met);

  // Move values between integer and floating point registers.
  void MovIntToDouble(DoubleRegister dst, Register src, Register scratch);
  void MovUnsignedIntToDouble(DoubleRegister dst, Register src,
                              Register scratch);
  void MovInt64ToDouble(DoubleRegister dst,
#if !V8_TARGET_ARCH_PPC64
                        Register src_hi,
#endif
                        Register src);
#if V8_TARGET_ARCH_PPC64
  void MovInt64ComponentsToDouble(DoubleRegister dst, Register src_hi,
                                  Register src_lo, Register scratch);
#endif
  void InsertDoubleLow(DoubleRegister dst, Register src, Register scratch);
  void InsertDoubleHigh(DoubleRegister dst, Register src, Register scratch);
  void MovDoubleLowToInt(Register dst, DoubleRegister src);
  void MovDoubleHighToInt(Register dst, DoubleRegister src);
  void MovDoubleToInt64(
#if !V8_TARGET_ARCH_PPC64
      Register dst_hi,
#endif
      Register dst, DoubleRegister src);
  void MovIntToFloat(DoubleRegister dst, Register src);
  void MovFloatToInt(Register dst, DoubleRegister src);
  // Register move. May do nothing if the registers are identical.
  void Move(Register dst, Smi* smi) { LoadSmiLiteral(dst, smi); }
  void Move(Register dst, Handle<HeapObject> value);
  void Move(Register dst, Register src, Condition cond = al);
  void Move(DoubleRegister dst, DoubleRegister src);

  void SmiUntag(Register reg, RCBit rc = LeaveRC) { SmiUntag(reg, reg, rc); }

  void SmiUntag(Register dst, Register src, RCBit rc = LeaveRC) {
    ShiftRightArithImm(dst, src, kSmiShift, rc);
  }
  // ---------------------------------------------------------------------------
  // Bit testing/extraction
  //
  // Bit numbering is such that the least significant bit is bit 0
  // (for consistency between 32/64-bit).

  // Extract consecutive bits (defined by rangeStart - rangeEnd) from src
  // and, if !test, shift them into the least significant bits of dst.
  inline void ExtractBitRange(Register dst, Register src, int rangeStart,
                              int rangeEnd, RCBit rc = LeaveRC,
                              bool test = false) {
    DCHECK(rangeStart >= rangeEnd && rangeStart < kBitsPerPointer);
    int rotate = (rangeEnd == 0) ? 0 : kBitsPerPointer - rangeEnd;
    int width = rangeStart - rangeEnd + 1;
    if (rc == SetRC && rangeStart < 16 && (rangeEnd == 0 || test)) {
      // Prefer faster andi when applicable.
      andi(dst, src, Operand(((1 << width) - 1) << rangeEnd));
    } else {
#if V8_TARGET_ARCH_PPC64
      rldicl(dst, src, rotate, kBitsPerPointer - width, rc);
#else
      rlwinm(dst, src, rotate, kBitsPerPointer - width, kBitsPerPointer - 1,
             rc);
#endif
    }
  }

  inline void ExtractBit(Register dst, Register src, uint32_t bitNumber,
                         RCBit rc = LeaveRC, bool test = false) {
    ExtractBitRange(dst, src, bitNumber, bitNumber, rc, test);
  }

  // Extract consecutive bits (defined by mask) from src and place them
  // into the least significant bits of dst.
  inline void ExtractBitMask(Register dst, Register src, uintptr_t mask,
                             RCBit rc = LeaveRC, bool test = false) {
    int start = kBitsPerPointer - 1;
    int end;
    uintptr_t bit = (1L << start);

    while (bit && (mask & bit) == 0) {
      start--;
      bit >>= 1;
    }
    end = start;
    bit >>= 1;

    while (bit && (mask & bit)) {
      end--;
      bit >>= 1;
    }

    // 1-bits in mask must be contiguous
    DCHECK(bit == 0 || (mask & ((bit << 1) - 1)) == 0);

    ExtractBitRange(dst, src, start, end, rc, test);
  }

  // Test single bit in value.
  inline void TestBit(Register value, int bitNumber, Register scratch = r0) {
    ExtractBitRange(scratch, value, bitNumber, bitNumber, SetRC, true);
  }

  // Test consecutive bit range in value.  Range is defined by mask.
  inline void TestBitMask(Register value, uintptr_t mask,
                          Register scratch = r0) {
    ExtractBitMask(scratch, value, mask, SetRC, true);
  }
  // Test consecutive bit range in value.  Range is defined by
  // rangeStart - rangeEnd.
  inline void TestBitRange(Register value, int rangeStart, int rangeEnd,
                           Register scratch = r0) {
    ExtractBitRange(scratch, value, rangeStart, rangeEnd, SetRC, true);
  }

  inline void TestIfSmi(Register value, Register scratch) {
    TestBitRange(value, kSmiTagSize - 1, 0, scratch);
  }
  // Jump the register contains a smi.
  inline void JumpIfSmi(Register value, Label* smi_label) {
    TestIfSmi(value, r0);
    beq(smi_label, cr0);  // branch if SMI
  }
#if V8_TARGET_ARCH_PPC64
  inline void TestIfInt32(Register value, Register scratch,
                          CRegister cr = cr7) {
    // High bits must be identical to fit into an 32-bit integer
    extsw(scratch, value);
    cmp(scratch, value, cr);
  }
#else
  inline void TestIfInt32(Register hi_word, Register lo_word, Register scratch,
                          CRegister cr = cr7) {
    // High bits must be identical to fit into an 32-bit integer
    srawi(scratch, lo_word, 31);
    cmp(scratch, hi_word, cr);
  }
#endif

  // Overflow handling functions.
  // Usage: call the appropriate arithmetic function and then call one of the
  // flow control functions with the corresponding label.

  // Compute dst = left + right, setting condition codes. dst may be same as
  // either left or right (or a unique register). left and right must not be
  // the same register.
  void AddAndCheckForOverflow(Register dst, Register left, Register right,
                              Register overflow_dst, Register scratch = r0);
  void AddAndCheckForOverflow(Register dst, Register left, intptr_t right,
                              Register overflow_dst, Register scratch = r0);

  // Compute dst = left - right, setting condition codes. dst may be same as
  // either left or right (or a unique register). left and right must not be
  // the same register.
  void SubAndCheckForOverflow(Register dst, Register left, Register right,
                              Register overflow_dst, Register scratch = r0);

  // Performs a truncating conversion of a floating point number as used by
  // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
  // succeeds, otherwise falls through if result is saturated. On return
  // 'result' either holds answer, or is clobbered on fall through.
  //
  // Only public for the test code in test-code-stubs-arm.cc.
  void TryInlineTruncateDoubleToI(Register result, DoubleRegister input,
                                  Label* done);
  void TruncateDoubleToIDelayed(Zone* zone, Register result,
                                DoubleRegister double_input);

  // Call a code stub.
  void CallStubDelayed(CodeStub* stub);

  void LoadConstantPoolPointerRegister();
  void LoadConstantPoolPointerRegister(Register base, int code_entry_delta = 0);
  void AbortConstantPoolBuilding() {
#ifdef DEBUG
    // Avoid DCHECK(!is_linked()) failure in ~Label()
    bind(ConstantPoolPosition());
#endif
  }

 private:
  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;

  bool has_frame_ = false;
  Isolate* const isolate_;
  // This handle will be patched with the code object on installation.
  Handle<HeapObject> code_object_;

  void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al,
            CRegister cr = cr7);
  int CalculateStackPassedWords(int num_reg_arguments,
                                int num_double_arguments);
  void CallCFunctionHelper(Register function, int num_reg_arguments,
                           int num_double_arguments);
};

// MacroAssembler implements a collection of frequently used acros.
class MacroAssembler : public TurboAssembler {
 public:
  MacroAssembler(Isolate* isolate, void* buffer, int size,
                 CodeObjectRequired create_code_object);

  // Emit code that loads |parameter_index|'th parameter from the stack to
  // the register according to the CallInterfaceDescriptor definition.
  // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
  // below the caller's sp.
  template <class Descriptor>
  void LoadParameterFromStack(
      Register reg, typename Descriptor::ParameterIndices parameter_index,
      int sp_to_ra_offset_in_words = 0) {
    DCHECK(Descriptor::kPassLastArgsOnStack);
    UNIMPLEMENTED();
  }

  // ---------------------------------------------------------------------------
  // GC Support

  void IncrementalMarkingRecordWriteHelper(Register object, Register value,
                                           Register address);

  // Record in the remembered set the fact that we have a pointer to new space
  // at the address pointed to by the addr register.  Only works if addr is not
  // in new space.
  void RememberedSetHelper(Register object,  // Used for debug code.
                           Register addr, Register scratch,
                           SaveFPRegsMode save_fp);

  void JumpToJSEntry(Register target);
  // Check if object is in new space.  Jumps if the object is not in new space.
  // The register scratch can be object itself, but scratch will be clobbered.
  void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch) {
    InNewSpace(object, scratch, eq, branch);
  }

  // Check if object is in new space.  Jumps if the object is in new space.
  // The register scratch can be object itself, but it will be clobbered.
  void JumpIfInNewSpace(Register object, Register scratch, Label* branch) {
    InNewSpace(object, scratch, ne, branch);
  }

  // Check if an object has a given incremental marking color.
  void HasColor(Register object, Register scratch0, Register scratch1,
                Label* has_color, int first_bit, int second_bit);

  void JumpIfBlack(Register object, Register scratch0, Register scratch1,
                   Label* on_black);

  // Checks the color of an object.  If the object is white we jump to the
  // incremental marker.
  void JumpIfWhite(Register value, Register scratch1, Register scratch2,
                   Register scratch3, Label* value_is_white);

  // Notify the garbage collector that we wrote a pointer into an object.
  // |object| is the object being stored into, |value| is the object being
  // stored.  value and scratch registers are clobbered by the operation.
  // The offset is the offset from the start of the object, not the offset from
  // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
  void RecordWriteField(
      Register object, int offset, Register value, Register scratch,
      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK);

  // For a given |object| notify the garbage collector that the slot |address|
  // has been written.  |value| is the object being stored. The value and
  // address registers are clobbered by the operation.
  void RecordWrite(
      Register object, Register address, Register value,
      LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
      RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
      SmiCheck smi_check = INLINE_SMI_CHECK);

  // Push and pop the registers that can hold pointers, as defined by the
  // RegList constant kSafepointSavedRegisters.
  void PushSafepointRegisters();
  void PopSafepointRegisters();

  // Loads the constant pool pointer (kConstantPoolRegister).
  void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
      Register code_target_address);

  // Flush the I-cache from asm code. You should use CpuFeatures::FlushICache
  // from C.
  // Does not handle errors.
  void FlushICache(Register address, size_t size, Register scratch);

  // Enter exit frame.
  // stack_space - extra stack space, used for parameters before call to C.
  // At least one slot (for the return address) should be provided.
  void EnterExitFrame(bool save_doubles, int stack_space = 1,
                      StackFrame::Type frame_type = StackFrame::EXIT);

  // Leave the current exit frame. Expects the return value in r0.
  // Expect the number of values, pushed prior to the exit frame, to
  // remove in a register (or no_reg, if there is nothing to remove).
  void LeaveExitFrame(bool save_doubles, Register argument_count,
                      bool restore_context,
                      bool argument_count_is_length = false);

  // Load the global proxy from the current context.
  void LoadGlobalProxy(Register dst) {
    LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
  }

  void LoadNativeContextSlot(int index, Register dst);

  // ----------------------------------------------------------------
  // new PPC macro-assembler interfaces that are slightly higher level
  // than assembler-ppc and may generate variable length sequences

  // load a literal double value <value> to FPR <result>
  void LoadWord(Register dst, const MemOperand& mem, Register scratch);
  void StoreWord(Register src, const MemOperand& mem, Register scratch);

  void LoadHalfWord(Register dst, const MemOperand& mem, Register scratch);
  void LoadHalfWordArith(Register dst, const MemOperand& mem,
                         Register scratch = no_reg);
  void StoreHalfWord(Register src, const MemOperand& mem, Register scratch);

  void LoadByte(Register dst, const MemOperand& mem, Register scratch);
  void StoreByte(Register src, const MemOperand& mem, Register scratch);

  void LoadRepresentation(Register dst, const MemOperand& mem, Representation r,
                          Register scratch = no_reg);
  void StoreRepresentation(Register src, const MemOperand& mem,
                           Representation r, Register scratch = no_reg);
  void LoadDoubleU(DoubleRegister dst, const MemOperand& mem,
                   Register scratch = no_reg);

  void Cmpi(Register src1, const Operand& src2, Register scratch,
            CRegister cr = cr7);
  void Cmplwi(Register src1, const Operand& src2, Register scratch,
              CRegister cr = cr7);
  void And(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
  void Or(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);
  void Xor(Register ra, Register rs, const Operand& rb, RCBit rc = LeaveRC);

  void AddSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
  void SubSmiLiteral(Register dst, Register src, Smi* smi, Register scratch);
  void CmpSmiLiteral(Register src1, Smi* smi, Register scratch,
                     CRegister cr = cr7);
  void CmplSmiLiteral(Register src1, Smi* smi, Register scratch,
                      CRegister cr = cr7);
  void AndSmiLiteral(Register dst, Register src, Smi* smi, Register scratch,
                     RCBit rc = LeaveRC);



  // ---------------------------------------------------------------------------
  // JavaScript invokes

  // Removes current frame and its arguments from the stack preserving
  // the arguments and a return address pushed to the stack for the next call.
  // Both |callee_args_count| and |caller_args_count_reg| do not include
  // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
  // is trashed.

  // Invoke the JavaScript function code by either calling or jumping.
  void InvokeFunctionCode(Register function, Register new_target,
                          const ParameterCount& expected,
                          const ParameterCount& actual, InvokeFlag flag);

  // On function call, call into the debugger if necessary.
  void CheckDebugHook(Register fun, Register new_target,
                      const ParameterCount& expected,
                      const ParameterCount& actual);

  // Invoke the JavaScript function in the given register. Changes the
  // current context to the context in the function before invoking.
  void InvokeFunction(Register function, Register new_target,
                      const ParameterCount& actual, InvokeFlag flag);

  void InvokeFunction(Register function, const ParameterCount& expected,
                      const ParameterCount& actual, InvokeFlag flag);

  void InvokeFunction(Handle<JSFunction> function,
                      const ParameterCount& expected,
                      const ParameterCount& actual, InvokeFlag flag);

  void DebugBreak();
  // Frame restart support
  void MaybeDropFrames();

  // Exception handling

  // Push a new stack handler and link into stack handler chain.
  void PushStackHandler();

  // Unlink the stack handler on top of the stack from the stack handler chain.
  // Must preserve the result register.
  void PopStackHandler();

  // ---------------------------------------------------------------------------
  // Support functions.

  // Machine code version of Map::GetConstructor().
  // |temp| holds |result|'s map when done, and |temp2| its instance type.
  void GetMapConstructor(Register result, Register map, Register temp,
                         Register temp2);

  // Compare object type for heap object.  heap_object contains a non-Smi
  // whose object type should be compared with the given type.  This both
  // sets the flags and leaves the object type in the type_reg register.
  // It leaves the map in the map register (unless the type_reg and map register
  // are the same register).  It leaves the heap object in the heap_object
  // register unless the heap_object register is the same register as one of the
  // other registers.
  // Type_reg can be no_reg. In that case ip is used.
  void CompareObjectType(Register heap_object, Register map, Register type_reg,
                         InstanceType type);

  // Compare instance type in a map.  map contains a valid map object whose
  // object type should be compared with the given type.  This both
  // sets the flags and leaves the object type in the type_reg register.
  void CompareInstanceType(Register map, Register type_reg, InstanceType type);

  void GetWeakValue(Register value, Handle<WeakCell> cell);

  // Load the value of the weak cell in the value register. Branch to the given
  // miss label if the weak cell was cleared.
  void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);

  // Compare the object in a register to a value from the root list.
  // Uses the ip register as scratch.
  void CompareRoot(Register obj, Heap::RootListIndex index);
  void PushRoot(Heap::RootListIndex index) {
    LoadRoot(r0, index);
    Push(r0);
  }

  // Compare the object in a register to a value and jump if they are equal.
  void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
    CompareRoot(with, index);
    beq(if_equal);
  }

  // Compare the object in a register to a value and jump if they are not equal.
  void JumpIfNotRoot(Register with, Heap::RootListIndex index,
                     Label* if_not_equal) {
    CompareRoot(with, index);
    bne(if_not_equal);
  }

  // Load the value of a smi object into a double register.
  void SmiToDouble(DoubleRegister value, Register smi);

  // Try to convert a double to a signed 32-bit integer.
  // CR_EQ in cr7 is set and result assigned if the conversion is exact.
  void TryDoubleToInt32Exact(Register result, DoubleRegister double_input,
                             Register scratch, DoubleRegister double_scratch);

  // ---------------------------------------------------------------------------
  // Runtime calls

  static int CallSizeNotPredictableCodeSize(Address target,
                                            RelocInfo::Mode rmode,
                                            Condition cond = al);
  void CallJSEntry(Register target);

  // Call a code stub.
  void CallStub(CodeStub* stub, Condition cond = al);
  void TailCallStub(CodeStub* stub, Condition cond = al);

  // Call a runtime routine.
  void CallRuntime(const Runtime::Function* f, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs);
  void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
    const Runtime::Function* function = Runtime::FunctionForId(fid);
    CallRuntime(function, function->nargs, kSaveFPRegs);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    const Runtime::Function* function = Runtime::FunctionForId(fid);
    CallRuntime(function, function->nargs, save_doubles);
  }

  // Convenience function: Same as above, but takes the fid instead.
  void CallRuntime(Runtime::FunctionId fid, int num_arguments,
                   SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
    CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
  }

  // Convenience function: tail call a runtime routine (jump).
  void TailCallRuntime(Runtime::FunctionId fid);



  // Jump to a runtime routine.
  void JumpToExternalReference(const ExternalReference& builtin,
                               bool builtin_exit_frame = false);

  // ---------------------------------------------------------------------------
  // StatsCounter support

  void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2);
  void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
                        Register scratch2);

  // ---------------------------------------------------------------------------
  // Smi utilities

  // Shift left by kSmiShift
  void SmiTag(Register reg, RCBit rc = LeaveRC) { SmiTag(reg, reg, rc); }
  void SmiTag(Register dst, Register src, RCBit rc = LeaveRC) {
    ShiftLeftImm(dst, src, Operand(kSmiShift), rc);
  }

  void SmiToPtrArrayOffset(Register dst, Register src) {
#if V8_TARGET_ARCH_PPC64
    STATIC_ASSERT(kSmiTag == 0 && kSmiShift > kPointerSizeLog2);
    ShiftRightArithImm(dst, src, kSmiShift - kPointerSizeLog2);
#else
    STATIC_ASSERT(kSmiTag == 0 && kSmiShift < kPointerSizeLog2);
    ShiftLeftImm(dst, src, Operand(kPointerSizeLog2 - kSmiShift));
#endif
  }

  // Untag the source value into destination and jump if source is a smi.
  // Souce and destination can be the same register.
  void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);

  // Jump if either of the registers contain a non-smi.
  inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
    TestIfSmi(value, r0);
    bne(not_smi_label, cr0);
  }
  // Jump if either of the registers contain a smi.
  void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);

  // Abort execution if argument is a smi, enabled via --debug-code.
  void AssertNotSmi(Register object);
  void AssertSmi(Register object);



#if V8_TARGET_ARCH_PPC64
  // Ensure it is permissible to read/write int value directly from
  // upper half of the smi.
  STATIC_ASSERT(kSmiTag == 0);
  STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 32);
#endif
#if V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN
#define SmiWordOffset(offset) (offset + kPointerSize / 2)
#else
#define SmiWordOffset(offset) offset
#endif

  // Abort execution if argument is not a FixedArray, enabled via --debug-code.
  void AssertFixedArray(Register object);

  void AssertFunction(Register object);

  // Abort execution if argument is not a JSBoundFunction,
  // enabled via --debug-code.
  void AssertBoundFunction(Register object);

  // Abort execution if argument is not a JSGeneratorObject (or subclass),
  // enabled via --debug-code.
  void AssertGeneratorObject(Register object);

  // Abort execution if argument is not undefined or an AllocationSite, enabled
  // via --debug-code.
  void AssertUndefinedOrAllocationSite(Register object, Register scratch);

  // ---------------------------------------------------------------------------
  // String utilities

  void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);

  // ---------------------------------------------------------------------------
  // Patching helpers.

  void LoadInstanceDescriptors(Register map, Register descriptors);
  void LoadAccessor(Register dst, Register holder, int accessor_index,
                    AccessorComponent accessor);

  template <typename Field>
  void DecodeField(Register dst, Register src, RCBit rc = LeaveRC) {
    ExtractBitRange(dst, src, Field::kShift + Field::kSize - 1, Field::kShift,
                    rc);
  }

  template <typename Field>
  void DecodeField(Register reg, RCBit rc = LeaveRC) {
    DecodeField<Field>(reg, reg, rc);
  }

  void EnterBuiltinFrame(Register context, Register target, Register argc);
  void LeaveBuiltinFrame(Register context, Register target, Register argc);

 private:
  static const int kSmiShift = kSmiTagSize + kSmiShiftSize;

  // Helper functions for generating invokes.
  void InvokePrologue(const ParameterCount& expected,
                      const ParameterCount& actual, Label* done,
                      bool* definitely_mismatches, InvokeFlag flag);

  // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
  void InNewSpace(Register object, Register scratch,
                  Condition cond,  // eq for new space, ne otherwise.
                  Label* branch);

  // Helper for finding the mark bits for an address.  Afterwards, the
  // bitmap register points at the word with the mark bits and the mask
  // the position of the first bit.  Leaves addr_reg unchanged.
  inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
                          Register mask_reg);

  // Compute memory operands for safepoint stack slots.
  static int SafepointRegisterStackIndex(int reg_code);

  // Needs access to SafepointRegisterStackIndex for compiled frame
  // traversal.
  friend class StandardFrame;
};

// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. It is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion to fail.
class CodePatcher {
 public:
  enum FlushICache { FLUSH, DONT_FLUSH };

  CodePatcher(Isolate* isolate, byte* address, int instructions,
              FlushICache flush_cache = FLUSH);
  ~CodePatcher();

  // Macro assembler to emit code.
  MacroAssembler* masm() { return &masm_; }

  // Emit an instruction directly.
  void Emit(Instr instr);

  // Emit the condition part of an instruction leaving the rest of the current
  // instruction unchanged.
  void EmitCondition(Condition cond);

 private:
  byte* address_;            // The address of the code being patched.
  int size_;                 // Number of bytes of the expected patch size.
  MacroAssembler masm_;      // Macro assembler used to generate the code.
  FlushICache flush_cache_;  // Whether to flush the I cache after patching.
};


// -----------------------------------------------------------------------------
// Static helper functions.

inline MemOperand ContextMemOperand(Register context, int index = 0) {
  return MemOperand(context, Context::SlotOffset(index));
}


inline MemOperand NativeContextMemOperand() {
  return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
}

#define ACCESS_MASM(masm) masm->

}  // namespace internal
}  // namespace v8

#endif  // V8_PPC_MACRO_ASSEMBLER_PPC_H_