summaryrefslogtreecommitdiff
path: root/deps/v8/src/preparser.h
blob: 18004a5096d4c20f0ea81470c4a2f69681289fbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_PREPARSER_H
#define V8_PREPARSER_H

#include "src/v8.h"

#include "src/bailout-reason.h"
#include "src/func-name-inferrer.h"
#include "src/hashmap.h"
#include "src/scanner.h"
#include "src/scopes.h"
#include "src/token.h"

namespace v8 {
namespace internal {

// Common base class shared between parser and pre-parser. Traits encapsulate
// the differences between Parser and PreParser:

// - Return types: For example, Parser functions return Expression* and
// PreParser functions return PreParserExpression.

// - Creating parse tree nodes: Parser generates an AST during the recursive
// descent. PreParser doesn't create a tree. Instead, it passes around minimal
// data objects (PreParserExpression, PreParserIdentifier etc.) which contain
// just enough data for the upper layer functions. PreParserFactory is
// responsible for creating these dummy objects. It provides a similar kind of
// interface as AstNodeFactory, so ParserBase doesn't need to care which one is
// used.

// - Miscellaneous other tasks interleaved with the recursive descent. For
// example, Parser keeps track of which function literals should be marked as
// pretenured, and PreParser doesn't care.

// The traits are expected to contain the following typedefs:
// struct Traits {
//   // In particular...
//   struct Type {
//     // Used by FunctionState and BlockState.
//     typedef Scope;
//     typedef GeneratorVariable;
//     typedef Zone;
//     // Return types for traversing functions.
//     typedef Identifier;
//     typedef Expression;
//     typedef FunctionLiteral;
//     typedef ClassLiteral;
//     typedef ObjectLiteralProperty;
//     typedef Literal;
//     typedef ExpressionList;
//     typedef PropertyList;
//     // For constructing objects returned by the traversing functions.
//     typedef Factory;
//   };
//   // ...
// };

template <typename Traits>
class ParserBase : public Traits {
 public:
  // Shorten type names defined by Traits.
  typedef typename Traits::Type::Expression ExpressionT;
  typedef typename Traits::Type::Identifier IdentifierT;
  typedef typename Traits::Type::FunctionLiteral FunctionLiteralT;
  typedef typename Traits::Type::Literal LiteralT;
  typedef typename Traits::Type::ObjectLiteralProperty ObjectLiteralPropertyT;

  ParserBase(Scanner* scanner, uintptr_t stack_limit, v8::Extension* extension,
             ParserRecorder* log, typename Traits::Type::Zone* zone,
             typename Traits::Type::Parser this_object)
      : Traits(this_object),
        parenthesized_function_(false),
        scope_(NULL),
        function_state_(NULL),
        extension_(extension),
        fni_(NULL),
        log_(log),
        mode_(PARSE_EAGERLY),  // Lazy mode must be set explicitly.
        stack_limit_(stack_limit),
        scanner_(scanner),
        stack_overflow_(false),
        allow_lazy_(false),
        allow_natives_(false),
        allow_harmony_arrow_functions_(false),
        allow_harmony_object_literals_(false),
        allow_harmony_sloppy_(false),
        zone_(zone) {}

  // Getters that indicate whether certain syntactical constructs are
  // allowed to be parsed by this instance of the parser.
  bool allow_lazy() const { return allow_lazy_; }
  bool allow_natives() const { return allow_natives_; }
  bool allow_harmony_arrow_functions() const {
    return allow_harmony_arrow_functions_;
  }
  bool allow_harmony_modules() const { return scanner()->HarmonyModules(); }
  bool allow_harmony_scoping() const { return scanner()->HarmonyScoping(); }
  bool allow_harmony_numeric_literals() const {
    return scanner()->HarmonyNumericLiterals();
  }
  bool allow_harmony_classes() const { return scanner()->HarmonyClasses(); }
  bool allow_harmony_object_literals() const {
    return allow_harmony_object_literals_;
  }
  bool allow_harmony_templates() const { return scanner()->HarmonyTemplates(); }
  bool allow_harmony_sloppy() const { return allow_harmony_sloppy_; }
  bool allow_harmony_unicode() const { return scanner()->HarmonyUnicode(); }

  // Setters that determine whether certain syntactical constructs are
  // allowed to be parsed by this instance of the parser.
  void set_allow_lazy(bool allow) { allow_lazy_ = allow; }
  void set_allow_natives(bool allow) { allow_natives_ = allow; }
  void set_allow_harmony_arrow_functions(bool allow) {
    allow_harmony_arrow_functions_ = allow;
  }
  void set_allow_harmony_modules(bool allow) {
    scanner()->SetHarmonyModules(allow);
  }
  void set_allow_harmony_scoping(bool allow) {
    scanner()->SetHarmonyScoping(allow);
  }
  void set_allow_harmony_numeric_literals(bool allow) {
    scanner()->SetHarmonyNumericLiterals(allow);
  }
  void set_allow_harmony_classes(bool allow) {
    scanner()->SetHarmonyClasses(allow);
  }
  void set_allow_harmony_object_literals(bool allow) {
    allow_harmony_object_literals_ = allow;
  }
  void set_allow_harmony_templates(bool allow) {
    scanner()->SetHarmonyTemplates(allow);
  }
  void set_allow_harmony_sloppy(bool allow) {
    allow_harmony_sloppy_ = allow;
  }
  void set_allow_harmony_unicode(bool allow) {
    scanner()->SetHarmonyUnicode(allow);
  }

 protected:
  enum AllowEvalOrArgumentsAsIdentifier {
    kAllowEvalOrArguments,
    kDontAllowEvalOrArguments
  };

  enum Mode {
    PARSE_LAZILY,
    PARSE_EAGERLY
  };

  class Checkpoint;
  class ObjectLiteralChecker;

  // ---------------------------------------------------------------------------
  // FunctionState and BlockState together implement the parser's scope stack.
  // The parser's current scope is in scope_. BlockState and FunctionState
  // constructors push on the scope stack and the destructors pop. They are also
  // used to hold the parser's per-function and per-block state.
  class BlockState BASE_EMBEDDED {
   public:
    BlockState(typename Traits::Type::Scope** scope_stack,
               typename Traits::Type::Scope* scope)
        : scope_stack_(scope_stack),
          outer_scope_(*scope_stack),
          scope_(scope) {
      *scope_stack_ = scope_;
    }
    ~BlockState() { *scope_stack_ = outer_scope_; }

   private:
    typename Traits::Type::Scope** scope_stack_;
    typename Traits::Type::Scope* outer_scope_;
    typename Traits::Type::Scope* scope_;
  };

  class FunctionState BASE_EMBEDDED {
   public:
    FunctionState(FunctionState** function_state_stack,
                  typename Traits::Type::Scope** scope_stack,
                  typename Traits::Type::Scope* scope,
                  typename Traits::Type::Factory* factory);
    ~FunctionState();

    int NextMaterializedLiteralIndex() {
      return next_materialized_literal_index_++;
    }
    int materialized_literal_count() {
      return next_materialized_literal_index_ - JSFunction::kLiteralsPrefixSize;
    }

    int NextHandlerIndex() { return next_handler_index_++; }
    int handler_count() { return next_handler_index_; }

    void AddProperty() { expected_property_count_++; }
    int expected_property_count() { return expected_property_count_; }

    void set_is_generator(bool is_generator) { is_generator_ = is_generator; }
    bool is_generator() const { return is_generator_; }

    void set_generator_object_variable(
        typename Traits::Type::GeneratorVariable* variable) {
      DCHECK(variable != NULL);
      DCHECK(!is_generator());
      generator_object_variable_ = variable;
      is_generator_ = true;
    }
    typename Traits::Type::GeneratorVariable* generator_object_variable()
        const {
      return generator_object_variable_;
    }

    typename Traits::Type::Factory* factory() { return factory_; }

   private:
    // Used to assign an index to each literal that needs materialization in
    // the function.  Includes regexp literals, and boilerplate for object and
    // array literals.
    int next_materialized_literal_index_;

    // Used to assign a per-function index to try and catch handlers.
    int next_handler_index_;

    // Properties count estimation.
    int expected_property_count_;

    // Whether the function is a generator.
    bool is_generator_;
    // For generators, this variable may hold the generator object. It variable
    // is used by yield expressions and return statements. It is not necessary
    // for generator functions to have this variable set.
    Variable* generator_object_variable_;

    FunctionState** function_state_stack_;
    FunctionState* outer_function_state_;
    typename Traits::Type::Scope** scope_stack_;
    typename Traits::Type::Scope* outer_scope_;
    typename Traits::Type::Zone* extra_param_;
    typename Traits::Type::Factory* factory_;

    friend class ParserTraits;
    friend class Checkpoint;
  };

  // Annoyingly, arrow functions first parse as comma expressions, then when we
  // see the => we have to go back and reinterpret the arguments as being formal
  // parameters.  To do so we need to reset some of the parser state back to
  // what it was before the arguments were first seen.
  class Checkpoint BASE_EMBEDDED {
   public:
    explicit Checkpoint(ParserBase* parser) {
      function_state_ = parser->function_state_;
      next_materialized_literal_index_ =
          function_state_->next_materialized_literal_index_;
      next_handler_index_ = function_state_->next_handler_index_;
      expected_property_count_ = function_state_->expected_property_count_;
    }

    void Restore() {
      function_state_->next_materialized_literal_index_ =
          next_materialized_literal_index_;
      function_state_->next_handler_index_ = next_handler_index_;
      function_state_->expected_property_count_ = expected_property_count_;
    }

   private:
    FunctionState* function_state_;
    int next_materialized_literal_index_;
    int next_handler_index_;
    int expected_property_count_;
  };

  class ParsingModeScope BASE_EMBEDDED {
   public:
    ParsingModeScope(ParserBase* parser, Mode mode)
        : parser_(parser),
          old_mode_(parser->mode()) {
      parser_->mode_ = mode;
    }
    ~ParsingModeScope() {
      parser_->mode_ = old_mode_;
    }

   private:
    ParserBase* parser_;
    Mode old_mode_;
  };

  Scanner* scanner() const { return scanner_; }
  int position() { return scanner_->location().beg_pos; }
  int peek_position() { return scanner_->peek_location().beg_pos; }
  bool stack_overflow() const { return stack_overflow_; }
  void set_stack_overflow() { stack_overflow_ = true; }
  Mode mode() const { return mode_; }
  typename Traits::Type::Zone* zone() const { return zone_; }

  INLINE(Token::Value peek()) {
    if (stack_overflow_) return Token::ILLEGAL;
    return scanner()->peek();
  }

  INLINE(Token::Value Next()) {
    if (stack_overflow_) return Token::ILLEGAL;
    {
      if (GetCurrentStackPosition() < stack_limit_) {
        // Any further calls to Next or peek will return the illegal token.
        // The current call must return the next token, which might already
        // have been peek'ed.
        stack_overflow_ = true;
      }
    }
    return scanner()->Next();
  }

  void Consume(Token::Value token) {
    Token::Value next = Next();
    USE(next);
    USE(token);
    DCHECK(next == token);
  }

  bool Check(Token::Value token) {
    Token::Value next = peek();
    if (next == token) {
      Consume(next);
      return true;
    }
    return false;
  }

  void Expect(Token::Value token, bool* ok) {
    Token::Value next = Next();
    if (next != token) {
      ReportUnexpectedToken(next);
      *ok = false;
    }
  }

  void ExpectSemicolon(bool* ok) {
    // Check for automatic semicolon insertion according to
    // the rules given in ECMA-262, section 7.9, page 21.
    Token::Value tok = peek();
    if (tok == Token::SEMICOLON) {
      Next();
      return;
    }
    if (scanner()->HasAnyLineTerminatorBeforeNext() ||
        tok == Token::RBRACE ||
        tok == Token::EOS) {
      return;
    }
    Expect(Token::SEMICOLON, ok);
  }

  bool peek_any_identifier() {
    Token::Value next = peek();
    return next == Token::IDENTIFIER || next == Token::FUTURE_RESERVED_WORD ||
           next == Token::FUTURE_STRICT_RESERVED_WORD || next == Token::LET ||
           next == Token::STATIC || next == Token::YIELD;
  }

  bool CheckContextualKeyword(Vector<const char> keyword) {
    if (PeekContextualKeyword(keyword)) {
      Consume(Token::IDENTIFIER);
      return true;
    }
    return false;
  }

  bool PeekContextualKeyword(Vector<const char> keyword) {
    return peek() == Token::IDENTIFIER &&
           scanner()->is_next_contextual_keyword(keyword);
  }

  void ExpectContextualKeyword(Vector<const char> keyword, bool* ok) {
    Expect(Token::IDENTIFIER, ok);
    if (!*ok) return;
    if (!scanner()->is_literal_contextual_keyword(keyword)) {
      ReportUnexpectedToken(scanner()->current_token());
      *ok = false;
    }
  }

  // Checks whether an octal literal was last seen between beg_pos and end_pos.
  // If so, reports an error. Only called for strict mode and template strings.
  void CheckOctalLiteral(int beg_pos, int end_pos, const char* error,
                         bool* ok) {
    Scanner::Location octal = scanner()->octal_position();
    if (octal.IsValid() && beg_pos <= octal.beg_pos &&
        octal.end_pos <= end_pos) {
      ReportMessageAt(octal, error);
      scanner()->clear_octal_position();
      *ok = false;
    }
  }

  inline void CheckStrictOctalLiteral(int beg_pos, int end_pos, bool* ok) {
    CheckOctalLiteral(beg_pos, end_pos, "strict_octal_literal", ok);
  }

  inline void CheckTemplateOctalLiteral(int beg_pos, int end_pos, bool* ok) {
    CheckOctalLiteral(beg_pos, end_pos, "template_octal_literal", ok);
  }

  // Validates strict mode for function parameter lists. This has to be
  // done after parsing the function, since the function can declare
  // itself strict.
  void CheckStrictFunctionNameAndParameters(
      IdentifierT function_name,
      bool function_name_is_strict_reserved,
      const Scanner::Location& function_name_loc,
      const Scanner::Location& eval_args_error_loc,
      const Scanner::Location& dupe_error_loc,
      const Scanner::Location& reserved_loc,
      bool* ok) {
    if (this->IsEvalOrArguments(function_name)) {
      Traits::ReportMessageAt(function_name_loc, "strict_eval_arguments");
      *ok = false;
      return;
    }
    if (function_name_is_strict_reserved) {
      Traits::ReportMessageAt(function_name_loc, "unexpected_strict_reserved");
      *ok = false;
      return;
    }
    if (eval_args_error_loc.IsValid()) {
      Traits::ReportMessageAt(eval_args_error_loc, "strict_eval_arguments");
      *ok = false;
      return;
    }
    if (dupe_error_loc.IsValid()) {
      Traits::ReportMessageAt(dupe_error_loc, "strict_param_dupe");
      *ok = false;
      return;
    }
    if (reserved_loc.IsValid()) {
      Traits::ReportMessageAt(reserved_loc, "unexpected_strict_reserved");
      *ok = false;
      return;
    }
  }

  // Determine precedence of given token.
  static int Precedence(Token::Value token, bool accept_IN) {
    if (token == Token::IN && !accept_IN)
      return 0;  // 0 precedence will terminate binary expression parsing
    return Token::Precedence(token);
  }

  typename Traits::Type::Factory* factory() {
    return function_state_->factory();
  }

  StrictMode strict_mode() { return scope_->strict_mode(); }
  bool is_generator() const { return function_state_->is_generator(); }

  // Report syntax errors.
  void ReportMessage(const char* message, const char* arg = NULL,
                     bool is_reference_error = false) {
    Scanner::Location source_location = scanner()->location();
    Traits::ReportMessageAt(source_location, message, arg, is_reference_error);
  }

  void ReportMessageAt(Scanner::Location location, const char* message,
                       bool is_reference_error = false) {
    Traits::ReportMessageAt(location, message,
                            reinterpret_cast<const char*>(NULL),
                            is_reference_error);
  }

  void ReportUnexpectedToken(Token::Value token);

  // Recursive descent functions:

  // Parses an identifier that is valid for the current scope, in particular it
  // fails on strict mode future reserved keywords in a strict scope. If
  // allow_eval_or_arguments is kAllowEvalOrArguments, we allow "eval" or
  // "arguments" as identifier even in strict mode (this is needed in cases like
  // "var foo = eval;").
  IdentifierT ParseIdentifier(
      AllowEvalOrArgumentsAsIdentifier,
      bool* ok);
  // Parses an identifier or a strict mode future reserved word, and indicate
  // whether it is strict mode future reserved.
  IdentifierT ParseIdentifierOrStrictReservedWord(
      bool* is_strict_reserved,
      bool* ok);
  IdentifierT ParseIdentifierName(bool* ok);
  // Parses an identifier and determines whether or not it is 'get' or 'set'.
  IdentifierT ParseIdentifierNameOrGetOrSet(bool* is_get,
                                            bool* is_set,
                                            bool* ok);

  ExpressionT ParseRegExpLiteral(bool seen_equal, bool* ok);

  ExpressionT ParsePrimaryExpression(bool* ok);
  ExpressionT ParseExpression(bool accept_IN, bool* ok);
  ExpressionT ParseArrayLiteral(bool* ok);
  IdentifierT ParsePropertyName(bool* is_get, bool* is_set, bool* is_static,
                                bool* ok);
  ExpressionT ParseObjectLiteral(bool* ok);
  ObjectLiteralPropertyT ParsePropertyDefinition(ObjectLiteralChecker* checker,
                                                 bool in_class, bool is_static,
                                                 bool* has_seen_constructor,
                                                 bool* ok);
  typename Traits::Type::ExpressionList ParseArguments(bool* ok);
  ExpressionT ParseAssignmentExpression(bool accept_IN, bool* ok);
  ExpressionT ParseYieldExpression(bool* ok);
  ExpressionT ParseConditionalExpression(bool accept_IN, bool* ok);
  ExpressionT ParseBinaryExpression(int prec, bool accept_IN, bool* ok);
  ExpressionT ParseUnaryExpression(bool* ok);
  ExpressionT ParsePostfixExpression(bool* ok);
  ExpressionT ParseLeftHandSideExpression(bool* ok);
  ExpressionT ParseMemberWithNewPrefixesExpression(bool* ok);
  ExpressionT ParseMemberExpression(bool* ok);
  ExpressionT ParseMemberExpressionContinuation(ExpressionT expression,
                                                bool* ok);
  ExpressionT ParseArrowFunctionLiteral(int start_pos, ExpressionT params_ast,
                                        bool* ok);
  ExpressionT ParseTemplateLiteral(ExpressionT tag, int start, bool* ok);
  void AddTemplateExpression(ExpressionT);

  // Checks if the expression is a valid reference expression (e.g., on the
  // left-hand side of assignments). Although ruled out by ECMA as early errors,
  // we allow calls for web compatibility and rewrite them to a runtime throw.
  ExpressionT CheckAndRewriteReferenceExpression(
      ExpressionT expression,
      Scanner::Location location, const char* message, bool* ok);

  // Used to detect duplicates in object literals. Each of the values
  // kGetterProperty, kSetterProperty and kValueProperty represents
  // a type of object literal property. When parsing a property, its
  // type value is stored in the DuplicateFinder for the property name.
  // Values are chosen so that having intersection bits means the there is
  // an incompatibility.
  // I.e., you can add a getter to a property that already has a setter, since
  // kGetterProperty and kSetterProperty doesn't intersect, but not if it
  // already has a getter or a value. Adding the getter to an existing
  // setter will store the value (kGetterProperty | kSetterProperty), which
  // is incompatible with adding any further properties.
  enum PropertyKind {
    kNone = 0,
    // Bit patterns representing different object literal property types.
    kGetterProperty = 1,
    kSetterProperty = 2,
    kValueProperty = 7,
    // Helper constants.
    kValueFlag = 4
  };

  // Validation per ECMA 262 - 11.1.5 "Object Initializer".
  class ObjectLiteralChecker {
   public:
    ObjectLiteralChecker(ParserBase* parser, StrictMode strict_mode)
        : parser_(parser),
          finder_(scanner()->unicode_cache()),
          strict_mode_(strict_mode) {}

    void CheckProperty(Token::Value property, PropertyKind type, bool* ok);

   private:
    ParserBase* parser() const { return parser_; }
    Scanner* scanner() const { return parser_->scanner(); }

    // Checks the type of conflict based on values coming from PropertyType.
    bool HasConflict(PropertyKind type1, PropertyKind type2) {
      return (type1 & type2) != 0;
    }
    bool IsDataDataConflict(PropertyKind type1, PropertyKind type2) {
      return ((type1 & type2) & kValueFlag) != 0;
    }
    bool IsDataAccessorConflict(PropertyKind type1, PropertyKind type2) {
      return ((type1 ^ type2) & kValueFlag) != 0;
    }
    bool IsAccessorAccessorConflict(PropertyKind type1, PropertyKind type2) {
      return ((type1 | type2) & kValueFlag) == 0;
    }

    ParserBase* parser_;
    DuplicateFinder finder_;
    StrictMode strict_mode_;
  };

  // If true, the next (and immediately following) function literal is
  // preceded by a parenthesis.
  // Heuristically that means that the function will be called immediately,
  // so never lazily compile it.
  bool parenthesized_function_;

  typename Traits::Type::Scope* scope_;  // Scope stack.
  FunctionState* function_state_;  // Function state stack.
  v8::Extension* extension_;
  FuncNameInferrer* fni_;
  ParserRecorder* log_;
  Mode mode_;
  uintptr_t stack_limit_;

 private:
  Scanner* scanner_;
  bool stack_overflow_;

  bool allow_lazy_;
  bool allow_natives_;
  bool allow_harmony_arrow_functions_;
  bool allow_harmony_object_literals_;
  bool allow_harmony_sloppy_;

  typename Traits::Type::Zone* zone_;  // Only used by Parser.
};


class PreParserIdentifier {
 public:
  PreParserIdentifier() : type_(kUnknownIdentifier) {}
  static PreParserIdentifier Default() {
    return PreParserIdentifier(kUnknownIdentifier);
  }
  static PreParserIdentifier Eval() {
    return PreParserIdentifier(kEvalIdentifier);
  }
  static PreParserIdentifier Arguments() {
    return PreParserIdentifier(kArgumentsIdentifier);
  }
  static PreParserIdentifier FutureReserved() {
    return PreParserIdentifier(kFutureReservedIdentifier);
  }
  static PreParserIdentifier FutureStrictReserved() {
    return PreParserIdentifier(kFutureStrictReservedIdentifier);
  }
  static PreParserIdentifier Let() {
    return PreParserIdentifier(kLetIdentifier);
  }
  static PreParserIdentifier Static() {
    return PreParserIdentifier(kStaticIdentifier);
  }
  static PreParserIdentifier Yield() {
    return PreParserIdentifier(kYieldIdentifier);
  }
  static PreParserIdentifier Prototype() {
    return PreParserIdentifier(kPrototypeIdentifier);
  }
  static PreParserIdentifier Constructor() {
    return PreParserIdentifier(kConstructorIdentifier);
  }
  bool IsEval() const { return type_ == kEvalIdentifier; }
  bool IsArguments(const AstValueFactory* = NULL) const {
    return type_ == kArgumentsIdentifier;
  }
  bool IsLet() const { return type_ == kLetIdentifier; }
  bool IsStatic() const { return type_ == kStaticIdentifier; }
  bool IsYield() const { return type_ == kYieldIdentifier; }
  bool IsPrototype() const { return type_ == kPrototypeIdentifier; }
  bool IsConstructor() const { return type_ == kConstructorIdentifier; }
  bool IsEvalOrArguments() const {
    return type_ == kEvalIdentifier || type_ == kArgumentsIdentifier;
  }
  bool IsFutureReserved() const { return type_ == kFutureReservedIdentifier; }
  bool IsFutureStrictReserved() const {
    return type_ == kFutureStrictReservedIdentifier ||
           type_ == kLetIdentifier || type_ == kStaticIdentifier ||
           type_ == kYieldIdentifier;
  }
  bool IsValidStrictVariable() const { return type_ == kUnknownIdentifier; }
  V8_INLINE bool IsValidArrowParam() const {
    // A valid identifier can be an arrow function parameter
    // except for eval, arguments, yield, and reserved keywords.
    return !(IsEval() || IsArguments() || IsFutureStrictReserved());
  }

  // Allow identifier->name()[->length()] to work. The preparser
  // does not need the actual positions/lengths of the identifiers.
  const PreParserIdentifier* operator->() const { return this; }
  const PreParserIdentifier raw_name() const { return *this; }

  int position() const { return 0; }
  int length() const { return 0; }

 private:
  enum Type {
    kUnknownIdentifier,
    kFutureReservedIdentifier,
    kFutureStrictReservedIdentifier,
    kLetIdentifier,
    kStaticIdentifier,
    kYieldIdentifier,
    kEvalIdentifier,
    kArgumentsIdentifier,
    kPrototypeIdentifier,
    kConstructorIdentifier
  };
  explicit PreParserIdentifier(Type type) : type_(type) {}
  Type type_;

  friend class PreParserExpression;
  friend class PreParserScope;
};


class PreParserExpression {
 public:
  static PreParserExpression Default() {
    return PreParserExpression(TypeField::encode(kExpression));
  }

  static PreParserExpression FromIdentifier(PreParserIdentifier id) {
    return PreParserExpression(TypeField::encode(kIdentifierExpression) |
                               IdentifierTypeField::encode(id.type_));
  }

  static PreParserExpression BinaryOperation(PreParserExpression left,
                                             Token::Value op,
                                             PreParserExpression right) {
    bool valid_arrow_param_list =
        op == Token::COMMA && !left.is_parenthesized() &&
        !right.is_parenthesized() && left.IsValidArrowParams() &&
        right.IsValidArrowParams();
    return PreParserExpression(
        TypeField::encode(kBinaryOperationExpression) |
        IsValidArrowParamListField::encode(valid_arrow_param_list));
  }

  static PreParserExpression EmptyArrowParamList() {
    // Any expression for which IsValidArrowParamList() returns true
    // will work here.
    return FromIdentifier(PreParserIdentifier::Default());
  }

  static PreParserExpression StringLiteral() {
    return PreParserExpression(TypeField::encode(kStringLiteralExpression) |
                               IsUseStrictField::encode(false));
  }

  static PreParserExpression UseStrictStringLiteral() {
    return PreParserExpression(TypeField::encode(kStringLiteralExpression) |
                               IsUseStrictField::encode(true));
  }

  static PreParserExpression This() {
    return PreParserExpression(TypeField::encode(kExpression) |
                               ExpressionTypeField::encode(kThisExpression));
  }

  static PreParserExpression Super() {
    return PreParserExpression(TypeField::encode(kExpression) |
                               ExpressionTypeField::encode(kSuperExpression));
  }

  static PreParserExpression ThisProperty() {
    return PreParserExpression(
        TypeField::encode(kExpression) |
        ExpressionTypeField::encode(kThisPropertyExpression));
  }

  static PreParserExpression Property() {
    return PreParserExpression(
        TypeField::encode(kExpression) |
        ExpressionTypeField::encode(kPropertyExpression));
  }

  static PreParserExpression Call() {
    return PreParserExpression(TypeField::encode(kExpression) |
                               ExpressionTypeField::encode(kCallExpression));
  }

  static PreParserExpression NoTemplateTag() {
    return PreParserExpression(TypeField::encode(kExpression) |
                               ExpressionTypeField::encode(
                                  kNoTemplateTagExpression));
  }

  bool IsIdentifier() const {
    return TypeField::decode(code_) == kIdentifierExpression;
  }

  PreParserIdentifier AsIdentifier() const {
    DCHECK(IsIdentifier());
    return PreParserIdentifier(IdentifierTypeField::decode(code_));
  }

  bool IsStringLiteral() const {
    return TypeField::decode(code_) == kStringLiteralExpression;
  }

  bool IsUseStrictLiteral() const {
    return TypeField::decode(code_) == kStringLiteralExpression &&
           IsUseStrictField::decode(code_);
  }

  bool IsThis() const {
    return TypeField::decode(code_) == kExpression &&
           ExpressionTypeField::decode(code_) == kThisExpression;
  }

  bool IsThisProperty() const {
    return TypeField::decode(code_) == kExpression &&
           ExpressionTypeField::decode(code_) == kThisPropertyExpression;
  }

  bool IsProperty() const {
    return TypeField::decode(code_) == kExpression &&
           (ExpressionTypeField::decode(code_) == kPropertyExpression ||
            ExpressionTypeField::decode(code_) == kThisPropertyExpression);
  }

  bool IsCall() const {
    return TypeField::decode(code_) == kExpression &&
           ExpressionTypeField::decode(code_) == kCallExpression;
  }

  bool IsValidReferenceExpression() const {
    return IsIdentifier() || IsProperty();
  }

  bool IsValidArrowParamList() const {
    return IsValidArrowParams() &&
           ParenthesizationField::decode(code_) !=
               kMultiParenthesizedExpression;
  }

  // At the moment PreParser doesn't track these expression types.
  bool IsFunctionLiteral() const { return false; }
  bool IsCallNew() const { return false; }

  bool IsNoTemplateTag() const {
    return TypeField::decode(code_) == kExpression &&
           ExpressionTypeField::decode(code_) == kNoTemplateTagExpression;
  }

  PreParserExpression AsFunctionLiteral() { return *this; }

  bool IsBinaryOperation() const {
    return TypeField::decode(code_) == kBinaryOperationExpression;
  }

  bool is_parenthesized() const {
    return ParenthesizationField::decode(code_) != kNotParenthesized;
  }

  void increase_parenthesization_level() {
    code_ = ParenthesizationField::update(
        code_, is_parenthesized() ? kMultiParenthesizedExpression
                                  : kParanthesizedExpression);
  }

  // Dummy implementation for making expression->somefunc() work in both Parser
  // and PreParser.
  PreParserExpression* operator->() { return this; }

  // More dummy implementations of things PreParser doesn't need to track:
  void set_index(int index) {}  // For YieldExpressions
  void set_parenthesized() {}

  int position() const { return RelocInfo::kNoPosition; }
  void set_function_token_position(int position) {}

 private:
  enum Type {
    kExpression,
    kIdentifierExpression,
    kStringLiteralExpression,
    kBinaryOperationExpression
  };

  enum Parenthesization {
    kNotParenthesized,
    kParanthesizedExpression,
    kMultiParenthesizedExpression
  };

  enum ExpressionType {
    kThisExpression,
    kThisPropertyExpression,
    kPropertyExpression,
    kCallExpression,
    kSuperExpression,
    kNoTemplateTagExpression
  };

  explicit PreParserExpression(uint32_t expression_code)
      : code_(expression_code) {}

  V8_INLINE bool IsValidArrowParams() const {
    return IsBinaryOperation()
               ? IsValidArrowParamListField::decode(code_)
               : (IsIdentifier() && AsIdentifier().IsValidArrowParam());
  }

  // The first four bits are for the Type and Parenthesization.
  typedef BitField<Type, 0, 2> TypeField;
  typedef BitField<Parenthesization, TypeField::kNext, 2> ParenthesizationField;

  // The rest of the bits are interpreted depending on the value
  // of the Type field, so they can share the storage.
  typedef BitField<ExpressionType, ParenthesizationField::kNext, 3>
      ExpressionTypeField;
  typedef BitField<bool, ParenthesizationField::kNext, 1> IsUseStrictField;
  typedef BitField<bool, ParenthesizationField::kNext, 1>
      IsValidArrowParamListField;
  typedef BitField<PreParserIdentifier::Type, ParenthesizationField::kNext, 10>
      IdentifierTypeField;

  uint32_t code_;
};


// PreParserExpressionList doesn't actually store the expressions because
// PreParser doesn't need to.
class PreParserExpressionList {
 public:
  // These functions make list->Add(some_expression) work (and do nothing).
  PreParserExpressionList() : length_(0) {}
  PreParserExpressionList* operator->() { return this; }
  void Add(PreParserExpression, void*) { ++length_; }
  int length() const { return length_; }
 private:
  int length_;
};


class PreParserStatement {
 public:
  static PreParserStatement Default() {
    return PreParserStatement(kUnknownStatement);
  }

  static PreParserStatement FunctionDeclaration() {
    return PreParserStatement(kFunctionDeclaration);
  }

  // Creates expression statement from expression.
  // Preserves being an unparenthesized string literal, possibly
  // "use strict".
  static PreParserStatement ExpressionStatement(
      PreParserExpression expression) {
    if (expression.IsUseStrictLiteral()) {
      return PreParserStatement(kUseStrictExpressionStatement);
    }
    if (expression.IsStringLiteral()) {
      return PreParserStatement(kStringLiteralExpressionStatement);
    }
    return Default();
  }

  bool IsStringLiteral() {
    return code_ == kStringLiteralExpressionStatement;
  }

  bool IsUseStrictLiteral() {
    return code_ == kUseStrictExpressionStatement;
  }

  bool IsFunctionDeclaration() {
    return code_ == kFunctionDeclaration;
  }

 private:
  enum Type {
    kUnknownStatement,
    kStringLiteralExpressionStatement,
    kUseStrictExpressionStatement,
    kFunctionDeclaration
  };

  explicit PreParserStatement(Type code) : code_(code) {}
  Type code_;
};



// PreParserStatementList doesn't actually store the statements because
// the PreParser does not need them.
class PreParserStatementList {
 public:
  // These functions make list->Add(some_expression) work as no-ops.
  PreParserStatementList() {}
  PreParserStatementList* operator->() { return this; }
  void Add(PreParserStatement, void*) {}
};


class PreParserScope {
 public:
  explicit PreParserScope(PreParserScope* outer_scope, ScopeType scope_type,
                          void* = NULL)
      : scope_type_(scope_type) {
    strict_mode_ = outer_scope ? outer_scope->strict_mode() : SLOPPY;
  }

  ScopeType type() { return scope_type_; }
  StrictMode strict_mode() const { return strict_mode_; }
  void SetStrictMode(StrictMode strict_mode) { strict_mode_ = strict_mode; }
  void SetScopeName(PreParserIdentifier name) {}

  // When PreParser is in use, lazy compilation is already being done,
  // things cannot get lazier than that.
  bool AllowsLazyCompilation() const { return false; }

  void set_start_position(int position) {}
  void set_end_position(int position) {}

  bool IsDeclared(const PreParserIdentifier& identifier) const { return false; }
  void DeclareParameter(const PreParserIdentifier& identifier, VariableMode) {}
  void RecordArgumentsUsage() {}
  void RecordSuperPropertyUsage() {}
  void RecordSuperConstructorCallUsage() {}
  void RecordThisUsage() {}

  // Allow scope->Foo() to work.
  PreParserScope* operator->() { return this; }

 private:
  ScopeType scope_type_;
  StrictMode strict_mode_;
};


class PreParserFactory {
 public:
  explicit PreParserFactory(void* unused_value_factory) {}
  PreParserExpression NewStringLiteral(PreParserIdentifier identifier,
                                       int pos) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewNumberLiteral(double number,
                                       int pos) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewRegExpLiteral(PreParserIdentifier js_pattern,
                                       PreParserIdentifier js_flags,
                                       int literal_index,
                                       int pos) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewArrayLiteral(PreParserExpressionList values,
                                      int literal_index,
                                      int pos) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewObjectLiteralProperty(bool is_getter,
                                               PreParserExpression value,
                                               int pos, bool is_static) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewObjectLiteralProperty(PreParserExpression key,
                                               PreParserExpression value,
                                               bool is_static) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewObjectLiteral(PreParserExpressionList properties,
                                       int literal_index,
                                       int boilerplate_properties,
                                       bool has_function,
                                       int pos) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewVariableProxy(void* variable) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewProperty(PreParserExpression obj,
                                  PreParserExpression key,
                                  int pos) {
    if (obj.IsThis()) {
      return PreParserExpression::ThisProperty();
    }
    return PreParserExpression::Property();
  }
  PreParserExpression NewUnaryOperation(Token::Value op,
                                        PreParserExpression expression,
                                        int pos) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewBinaryOperation(Token::Value op,
                                         PreParserExpression left,
                                         PreParserExpression right, int pos) {
    return PreParserExpression::BinaryOperation(left, op, right);
  }
  PreParserExpression NewCompareOperation(Token::Value op,
                                          PreParserExpression left,
                                          PreParserExpression right, int pos) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewAssignment(Token::Value op,
                                    PreParserExpression left,
                                    PreParserExpression right,
                                    int pos) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewYield(PreParserExpression generator_object,
                               PreParserExpression expression,
                               Yield::Kind yield_kind,
                               int pos) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewConditional(PreParserExpression condition,
                                     PreParserExpression then_expression,
                                     PreParserExpression else_expression,
                                     int pos) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewCountOperation(Token::Value op,
                                        bool is_prefix,
                                        PreParserExpression expression,
                                        int pos) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewCall(PreParserExpression expression,
                              PreParserExpressionList arguments,
                              int pos) {
    return PreParserExpression::Call();
  }
  PreParserExpression NewCallNew(PreParserExpression expression,
                                 PreParserExpressionList arguments,
                                 int pos) {
    return PreParserExpression::Default();
  }
  PreParserStatement NewReturnStatement(PreParserExpression expression,
                                        int pos) {
    return PreParserStatement::Default();
  }
  PreParserExpression NewFunctionLiteral(
      PreParserIdentifier name, AstValueFactory* ast_value_factory,
      const PreParserScope& scope, PreParserStatementList body,
      int materialized_literal_count, int expected_property_count,
      int handler_count, int parameter_count,
      FunctionLiteral::ParameterFlag has_duplicate_parameters,
      FunctionLiteral::FunctionType function_type,
      FunctionLiteral::IsFunctionFlag is_function,
      FunctionLiteral::IsParenthesizedFlag is_parenthesized, FunctionKind kind,
      int position) {
    return PreParserExpression::Default();
  }

  // Return the object itself as AstVisitor and implement the needed
  // dummy method right in this class.
  PreParserFactory* visitor() { return this; }
  int* ast_properties() {
    static int dummy = 42;
    return &dummy;
  }
};


class PreParser;

class PreParserTraits {
 public:
  struct Type {
    // TODO(marja): To be removed. The Traits object should contain all the data
    // it needs.
    typedef PreParser* Parser;

    // Used by FunctionState and BlockState.
    typedef PreParserScope Scope;
    typedef PreParserScope ScopePtr;
    inline static Scope* ptr_to_scope(ScopePtr& scope) { return &scope; }

    // PreParser doesn't need to store generator variables.
    typedef void GeneratorVariable;
    // No interaction with Zones.
    typedef void Zone;

    typedef int AstProperties;
    typedef Vector<PreParserIdentifier> ParameterIdentifierVector;

    // Return types for traversing functions.
    typedef PreParserIdentifier Identifier;
    typedef PreParserExpression Expression;
    typedef PreParserExpression YieldExpression;
    typedef PreParserExpression FunctionLiteral;
    typedef PreParserExpression ClassLiteral;
    typedef PreParserExpression ObjectLiteralProperty;
    typedef PreParserExpression Literal;
    typedef PreParserExpressionList ExpressionList;
    typedef PreParserExpressionList PropertyList;
    typedef PreParserStatementList StatementList;

    // For constructing objects returned by the traversing functions.
    typedef PreParserFactory Factory;
  };

  explicit PreParserTraits(PreParser* pre_parser) : pre_parser_(pre_parser) {}

  // Helper functions for recursive descent.
  static bool IsEvalOrArguments(PreParserIdentifier identifier) {
    return identifier.IsEvalOrArguments();
  }

  static bool IsPrototype(PreParserIdentifier identifier) {
    return identifier.IsPrototype();
  }

  static bool IsConstructor(PreParserIdentifier identifier) {
    return identifier.IsConstructor();
  }

  // Returns true if the expression is of type "this.foo".
  static bool IsThisProperty(PreParserExpression expression) {
    return expression.IsThisProperty();
  }

  static bool IsIdentifier(PreParserExpression expression) {
    return expression.IsIdentifier();
  }

  static PreParserIdentifier AsIdentifier(PreParserExpression expression) {
    return expression.AsIdentifier();
  }

  static bool IsFutureStrictReserved(PreParserIdentifier identifier) {
    return identifier.IsFutureStrictReserved();
  }

  static bool IsBoilerplateProperty(PreParserExpression property) {
    // PreParser doesn't count boilerplate properties.
    return false;
  }

  static bool IsArrayIndex(PreParserIdentifier string, uint32_t* index) {
    return false;
  }

  static PreParserExpression GetPropertyValue(PreParserExpression property) {
    return PreParserExpression::Default();
  }

  // Functions for encapsulating the differences between parsing and preparsing;
  // operations interleaved with the recursive descent.
  static void PushLiteralName(FuncNameInferrer* fni, PreParserIdentifier id) {
    // PreParser should not use FuncNameInferrer.
    UNREACHABLE();
  }
  static void PushPropertyName(FuncNameInferrer* fni,
                               PreParserExpression expression) {
    // PreParser should not use FuncNameInferrer.
    UNREACHABLE();
  }
  static void InferFunctionName(FuncNameInferrer* fni,
                                PreParserExpression expression) {
    // PreParser should not use FuncNameInferrer.
    UNREACHABLE();
  }

  static void CheckFunctionLiteralInsideTopLevelObjectLiteral(
      PreParserScope* scope, PreParserExpression property, bool* has_function) {
  }

  static void CheckAssigningFunctionLiteralToProperty(
      PreParserExpression left, PreParserExpression right) {}

  // PreParser doesn't need to keep track of eval calls.
  static void CheckPossibleEvalCall(PreParserExpression expression,
                                    PreParserScope* scope) {}

  static PreParserExpression MarkExpressionAsAssigned(
      PreParserExpression expression) {
    // TODO(marja): To be able to produce the same errors, the preparser needs
    // to start tracking which expressions are variables and which are assigned.
    return expression;
  }

  bool ShortcutNumericLiteralBinaryExpression(PreParserExpression* x,
                                              PreParserExpression y,
                                              Token::Value op,
                                              int pos,
                                              PreParserFactory* factory) {
    return false;
  }

  PreParserExpression BuildUnaryExpression(PreParserExpression expression,
                                           Token::Value op, int pos,
                                           PreParserFactory* factory) {
    return PreParserExpression::Default();
  }

  PreParserExpression NewThrowReferenceError(const char* type, int pos) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewThrowSyntaxError(
      const char* type, Handle<Object> arg, int pos) {
    return PreParserExpression::Default();
  }
  PreParserExpression NewThrowTypeError(
      const char* type, Handle<Object> arg, int pos) {
    return PreParserExpression::Default();
  }
  PreParserScope NewScope(PreParserScope* outer_scope, ScopeType scope_type) {
    return PreParserScope(outer_scope, scope_type);
  }

  // Reporting errors.
  void ReportMessageAt(Scanner::Location location,
                       const char* message,
                       const char* arg = NULL,
                       bool is_reference_error = false);
  void ReportMessageAt(int start_pos,
                       int end_pos,
                       const char* message,
                       const char* arg = NULL,
                       bool is_reference_error = false);

  // "null" return type creators.
  static PreParserIdentifier EmptyIdentifier() {
    return PreParserIdentifier::Default();
  }
  static PreParserIdentifier EmptyIdentifierString() {
    return PreParserIdentifier::Default();
  }
  static PreParserExpression EmptyExpression() {
    return PreParserExpression::Default();
  }
  static PreParserExpression EmptyArrowParamList() {
    return PreParserExpression::EmptyArrowParamList();
  }
  static PreParserExpression EmptyLiteral() {
    return PreParserExpression::Default();
  }
  static PreParserExpression EmptyObjectLiteralProperty() {
    return PreParserExpression::Default();
  }
  static PreParserExpression EmptyFunctionLiteral() {
    return PreParserExpression::Default();
  }
  static PreParserExpressionList NullExpressionList() {
    return PreParserExpressionList();
  }

  // Odd-ball literal creators.
  static PreParserExpression GetLiteralTheHole(int position,
                                               PreParserFactory* factory) {
    return PreParserExpression::Default();
  }

  // Producing data during the recursive descent.
  PreParserIdentifier GetSymbol(Scanner* scanner);
  PreParserIdentifier GetNumberAsSymbol(Scanner* scanner);

  static PreParserIdentifier GetNextSymbol(Scanner* scanner) {
    return PreParserIdentifier::Default();
  }

  static PreParserExpression ThisExpression(PreParserScope* scope,
                                            PreParserFactory* factory) {
    return PreParserExpression::This();
  }

  static PreParserExpression SuperReference(PreParserScope* scope,
                                            PreParserFactory* factory) {
    return PreParserExpression::Super();
  }

  static PreParserExpression DefaultConstructor(bool call_super,
                                                PreParserScope* scope, int pos,
                                                int end_pos) {
    return PreParserExpression::Default();
  }

  static PreParserExpression ExpressionFromLiteral(
      Token::Value token, int pos, Scanner* scanner,
      PreParserFactory* factory) {
    return PreParserExpression::Default();
  }

  static PreParserExpression ExpressionFromIdentifier(
      PreParserIdentifier name, int pos, PreParserScope* scope,
      PreParserFactory* factory) {
    return PreParserExpression::FromIdentifier(name);
  }

  PreParserExpression ExpressionFromString(int pos,
                                           Scanner* scanner,
                                           PreParserFactory* factory = NULL);

  PreParserExpression GetIterator(PreParserExpression iterable,
                                  PreParserFactory* factory) {
    return PreParserExpression::Default();
  }

  static PreParserExpressionList NewExpressionList(int size, void* zone) {
    return PreParserExpressionList();
  }

  static PreParserStatementList NewStatementList(int size, void* zone) {
    return PreParserStatementList();
  }

  static PreParserExpressionList NewPropertyList(int size, void* zone) {
    return PreParserExpressionList();
  }

  V8_INLINE void SkipLazyFunctionBody(PreParserIdentifier function_name,
                                      int* materialized_literal_count,
                                      int* expected_property_count, bool* ok) {
    UNREACHABLE();
  }

  V8_INLINE PreParserStatementList
      ParseEagerFunctionBody(PreParserIdentifier function_name, int pos,
                             Variable* fvar, Token::Value fvar_init_op,
                             bool is_generator, bool* ok);

  // Utility functions
  int DeclareArrowParametersFromExpression(PreParserExpression expression,
                                           PreParserScope* scope,
                                           Scanner::Location* dupe_loc,
                                           bool* ok) {
    // TODO(aperez): Detect duplicated identifiers in paramlists.
    *ok = expression.IsValidArrowParamList();
    return 0;
  }

  struct TemplateLiteralState {};

  TemplateLiteralState OpenTemplateLiteral(int pos) {
    return TemplateLiteralState();
  }
  void AddTemplateSpan(TemplateLiteralState*, bool) {}
  void AddTemplateExpression(TemplateLiteralState*, PreParserExpression) {}
  PreParserExpression CloseTemplateLiteral(TemplateLiteralState*, int,
                                           PreParserExpression tag) {
    if (IsTaggedTemplate(tag)) {
      // Emulate generation of array literals for tag callsite
      // 1st is array of cooked strings, second is array of raw strings
      MaterializeTemplateCallsiteLiterals();
    }
    return EmptyExpression();
  }
  inline void MaterializeTemplateCallsiteLiterals();
  PreParserExpression NoTemplateTag() {
    return PreParserExpression::NoTemplateTag();
  }
  static bool IsTaggedTemplate(const PreParserExpression tag) {
    return !tag.IsNoTemplateTag();
  }
  static AstValueFactory* ast_value_factory() { return NULL; }

  void CheckConflictingVarDeclarations(PreParserScope scope, bool* ok) {}

  // Temporary glue; these functions will move to ParserBase.
  PreParserExpression ParseV8Intrinsic(bool* ok);
  PreParserExpression ParseFunctionLiteral(
      PreParserIdentifier name, Scanner::Location function_name_location,
      bool name_is_strict_reserved, FunctionKind kind,
      int function_token_position, FunctionLiteral::FunctionType type,
      FunctionLiteral::ArityRestriction arity_restriction, bool* ok);

  PreParserExpression ParseClassLiteral(PreParserIdentifier name,
                                        Scanner::Location class_name_location,
                                        bool name_is_strict_reserved, int pos,
                                        bool* ok);

 private:
  PreParser* pre_parser_;
};


// Preparsing checks a JavaScript program and emits preparse-data that helps
// a later parsing to be faster.
// See preparse-data-format.h for the data format.

// The PreParser checks that the syntax follows the grammar for JavaScript,
// and collects some information about the program along the way.
// The grammar check is only performed in order to understand the program
// sufficiently to deduce some information about it, that can be used
// to speed up later parsing. Finding errors is not the goal of pre-parsing,
// rather it is to speed up properly written and correct programs.
// That means that contextual checks (like a label being declared where
// it is used) are generally omitted.
class PreParser : public ParserBase<PreParserTraits> {
 public:
  typedef PreParserIdentifier Identifier;
  typedef PreParserExpression Expression;
  typedef PreParserStatement Statement;

  enum PreParseResult {
    kPreParseStackOverflow,
    kPreParseSuccess
  };

  PreParser(Scanner* scanner, ParserRecorder* log, uintptr_t stack_limit)
      : ParserBase<PreParserTraits>(scanner, stack_limit, NULL, log, NULL,
                                    this) {}

  // Pre-parse the program from the character stream; returns true on
  // success (even if parsing failed, the pre-parse data successfully
  // captured the syntax error), and false if a stack-overflow happened
  // during parsing.
  PreParseResult PreParseProgram(int* materialized_literals = 0) {
    PreParserScope scope(scope_, SCRIPT_SCOPE);
    PreParserFactory factory(NULL);
    FunctionState top_scope(&function_state_, &scope_, &scope, &factory);
    bool ok = true;
    int start_position = scanner()->peek_location().beg_pos;
    ParseSourceElements(Token::EOS, &ok);
    if (stack_overflow()) return kPreParseStackOverflow;
    if (!ok) {
      ReportUnexpectedToken(scanner()->current_token());
    } else if (scope_->strict_mode() == STRICT) {
      CheckStrictOctalLiteral(start_position, scanner()->location().end_pos,
                              &ok);
    }
    if (materialized_literals) {
      *materialized_literals = function_state_->materialized_literal_count();
    }
    return kPreParseSuccess;
  }

  // Parses a single function literal, from the opening parentheses before
  // parameters to the closing brace after the body.
  // Returns a FunctionEntry describing the body of the function in enough
  // detail that it can be lazily compiled.
  // The scanner is expected to have matched the "function" or "function*"
  // keyword and parameters, and have consumed the initial '{'.
  // At return, unless an error occurred, the scanner is positioned before the
  // the final '}'.
  PreParseResult PreParseLazyFunction(StrictMode strict_mode,
                                      bool is_generator,
                                      ParserRecorder* log);

 private:
  friend class PreParserTraits;

  // These types form an algebra over syntactic categories that is just
  // rich enough to let us recognize and propagate the constructs that
  // are either being counted in the preparser data, or is important
  // to throw the correct syntax error exceptions.

  enum VariableDeclarationContext {
    kSourceElement,
    kStatement,
    kForStatement
  };

  // If a list of variable declarations includes any initializers.
  enum VariableDeclarationProperties {
    kHasInitializers,
    kHasNoInitializers
  };


  enum SourceElements {
    kUnknownSourceElements
  };

  // All ParseXXX functions take as the last argument an *ok parameter
  // which is set to false if parsing failed; it is unchanged otherwise.
  // By making the 'exception handling' explicit, we are forced to check
  // for failure at the call sites.
  Statement ParseSourceElement(bool* ok);
  SourceElements ParseSourceElements(int end_token, bool* ok);
  Statement ParseStatement(bool* ok);
  Statement ParseFunctionDeclaration(bool* ok);
  Statement ParseClassDeclaration(bool* ok);
  Statement ParseBlock(bool* ok);
  Statement ParseVariableStatement(VariableDeclarationContext var_context,
                                   bool* ok);
  Statement ParseVariableDeclarations(VariableDeclarationContext var_context,
                                      VariableDeclarationProperties* decl_props,
                                      int* num_decl,
                                      bool* ok);
  Statement ParseExpressionOrLabelledStatement(bool* ok);
  Statement ParseIfStatement(bool* ok);
  Statement ParseContinueStatement(bool* ok);
  Statement ParseBreakStatement(bool* ok);
  Statement ParseReturnStatement(bool* ok);
  Statement ParseWithStatement(bool* ok);
  Statement ParseSwitchStatement(bool* ok);
  Statement ParseDoWhileStatement(bool* ok);
  Statement ParseWhileStatement(bool* ok);
  Statement ParseForStatement(bool* ok);
  Statement ParseThrowStatement(bool* ok);
  Statement ParseTryStatement(bool* ok);
  Statement ParseDebuggerStatement(bool* ok);
  Expression ParseConditionalExpression(bool accept_IN, bool* ok);
  Expression ParseObjectLiteral(bool* ok);
  Expression ParseV8Intrinsic(bool* ok);

  V8_INLINE void SkipLazyFunctionBody(PreParserIdentifier function_name,
                                      int* materialized_literal_count,
                                      int* expected_property_count, bool* ok);
  V8_INLINE PreParserStatementList
      ParseEagerFunctionBody(PreParserIdentifier function_name, int pos,
                             Variable* fvar, Token::Value fvar_init_op,
                             bool is_generator, bool* ok);

  Expression ParseFunctionLiteral(
      Identifier name, Scanner::Location function_name_location,
      bool name_is_strict_reserved, FunctionKind kind, int function_token_pos,
      FunctionLiteral::FunctionType function_type,
      FunctionLiteral::ArityRestriction arity_restriction, bool* ok);
  void ParseLazyFunctionLiteralBody(bool* ok);

  PreParserExpression ParseClassLiteral(PreParserIdentifier name,
                                        Scanner::Location class_name_location,
                                        bool name_is_strict_reserved, int pos,
                                        bool* ok);

  bool CheckInOrOf(bool accept_OF);
};


void PreParserTraits::MaterializeTemplateCallsiteLiterals() {
  pre_parser_->function_state_->NextMaterializedLiteralIndex();
  pre_parser_->function_state_->NextMaterializedLiteralIndex();
}


PreParserStatementList PreParser::ParseEagerFunctionBody(
    PreParserIdentifier function_name, int pos, Variable* fvar,
    Token::Value fvar_init_op, bool is_generator, bool* ok) {
  ParsingModeScope parsing_mode(this, PARSE_EAGERLY);

  ParseSourceElements(Token::RBRACE, ok);
  if (!*ok) return PreParserStatementList();

  Expect(Token::RBRACE, ok);
  return PreParserStatementList();
}


PreParserStatementList PreParserTraits::ParseEagerFunctionBody(
    PreParserIdentifier function_name, int pos, Variable* fvar,
    Token::Value fvar_init_op, bool is_generator, bool* ok) {
  return pre_parser_->ParseEagerFunctionBody(function_name, pos, fvar,
                                             fvar_init_op, is_generator, ok);
}


template <class Traits>
ParserBase<Traits>::FunctionState::FunctionState(
    FunctionState** function_state_stack,
    typename Traits::Type::Scope** scope_stack,
    typename Traits::Type::Scope* scope,
    typename Traits::Type::Factory* factory)
    : next_materialized_literal_index_(JSFunction::kLiteralsPrefixSize),
      next_handler_index_(0),
      expected_property_count_(0),
      is_generator_(false),
      generator_object_variable_(NULL),
      function_state_stack_(function_state_stack),
      outer_function_state_(*function_state_stack),
      scope_stack_(scope_stack),
      outer_scope_(*scope_stack),
      factory_(factory) {
  *scope_stack_ = scope;
  *function_state_stack = this;
}


template <class Traits>
ParserBase<Traits>::FunctionState::~FunctionState() {
  *scope_stack_ = outer_scope_;
  *function_state_stack_ = outer_function_state_;
}


template<class Traits>
void ParserBase<Traits>::ReportUnexpectedToken(Token::Value token) {
  Scanner::Location source_location = scanner()->location();

  // Four of the tokens are treated specially
  switch (token) {
    case Token::EOS:
      return ReportMessageAt(source_location, "unexpected_eos");
    case Token::NUMBER:
      return ReportMessageAt(source_location, "unexpected_token_number");
    case Token::STRING:
      return ReportMessageAt(source_location, "unexpected_token_string");
    case Token::IDENTIFIER:
      return ReportMessageAt(source_location, "unexpected_token_identifier");
    case Token::FUTURE_RESERVED_WORD:
      return ReportMessageAt(source_location, "unexpected_reserved");
    case Token::LET:
    case Token::STATIC:
    case Token::YIELD:
    case Token::FUTURE_STRICT_RESERVED_WORD:
      return ReportMessageAt(source_location, strict_mode() == SLOPPY
          ? "unexpected_token_identifier" : "unexpected_strict_reserved");
    case Token::TEMPLATE_SPAN:
    case Token::TEMPLATE_TAIL:
      return Traits::ReportMessageAt(source_location,
          "unexpected_template_string");
    default:
      const char* name = Token::String(token);
      DCHECK(name != NULL);
      Traits::ReportMessageAt(source_location, "unexpected_token", name);
  }
}


template<class Traits>
typename ParserBase<Traits>::IdentifierT ParserBase<Traits>::ParseIdentifier(
    AllowEvalOrArgumentsAsIdentifier allow_eval_or_arguments,
    bool* ok) {
  Token::Value next = Next();
  if (next == Token::IDENTIFIER) {
    IdentifierT name = this->GetSymbol(scanner());
    if (allow_eval_or_arguments == kDontAllowEvalOrArguments &&
        strict_mode() == STRICT && this->IsEvalOrArguments(name)) {
      ReportMessage("strict_eval_arguments");
      *ok = false;
    }
    if (name->IsArguments(this->ast_value_factory()))
      scope_->RecordArgumentsUsage();
    return name;
  } else if (strict_mode() == SLOPPY &&
             (next == Token::FUTURE_STRICT_RESERVED_WORD ||
              next == Token::LET || next == Token::STATIC ||
              (next == Token::YIELD && !is_generator()))) {
    return this->GetSymbol(scanner());
  } else {
    this->ReportUnexpectedToken(next);
    *ok = false;
    return Traits::EmptyIdentifier();
  }
}


template <class Traits>
typename ParserBase<Traits>::IdentifierT ParserBase<
    Traits>::ParseIdentifierOrStrictReservedWord(bool* is_strict_reserved,
                                                 bool* ok) {
  Token::Value next = Next();
  if (next == Token::IDENTIFIER) {
    *is_strict_reserved = false;
  } else if (next == Token::FUTURE_STRICT_RESERVED_WORD || next == Token::LET ||
             next == Token::STATIC ||
             (next == Token::YIELD && !this->is_generator())) {
    *is_strict_reserved = true;
  } else {
    ReportUnexpectedToken(next);
    *ok = false;
    return Traits::EmptyIdentifier();
  }

  IdentifierT name = this->GetSymbol(scanner());
  if (name->IsArguments(this->ast_value_factory()))
    scope_->RecordArgumentsUsage();
  return name;
}


template <class Traits>
typename ParserBase<Traits>::IdentifierT
ParserBase<Traits>::ParseIdentifierName(bool* ok) {
  Token::Value next = Next();
  if (next != Token::IDENTIFIER && next != Token::FUTURE_RESERVED_WORD &&
      next != Token::LET && next != Token::STATIC && next != Token::YIELD &&
      next != Token::FUTURE_STRICT_RESERVED_WORD && !Token::IsKeyword(next)) {
    this->ReportUnexpectedToken(next);
    *ok = false;
    return Traits::EmptyIdentifier();
  }

  IdentifierT name = this->GetSymbol(scanner());
  if (name->IsArguments(this->ast_value_factory()))
    scope_->RecordArgumentsUsage();
  return name;
}


template <class Traits>
typename ParserBase<Traits>::IdentifierT
ParserBase<Traits>::ParseIdentifierNameOrGetOrSet(bool* is_get,
                                                  bool* is_set,
                                                  bool* ok) {
  IdentifierT result = ParseIdentifierName(ok);
  if (!*ok) return Traits::EmptyIdentifier();
  scanner()->IsGetOrSet(is_get, is_set);
  return result;
}


template <class Traits>
typename ParserBase<Traits>::ExpressionT ParserBase<Traits>::ParseRegExpLiteral(
    bool seen_equal, bool* ok) {
  int pos = peek_position();
  if (!scanner()->ScanRegExpPattern(seen_equal)) {
    Next();
    ReportMessage("unterminated_regexp");
    *ok = false;
    return Traits::EmptyExpression();
  }

  int literal_index = function_state_->NextMaterializedLiteralIndex();

  IdentifierT js_pattern = this->GetNextSymbol(scanner());
  if (!scanner()->ScanRegExpFlags()) {
    Next();
    ReportMessage("malformed_regexp_flags");
    *ok = false;
    return Traits::EmptyExpression();
  }
  IdentifierT js_flags = this->GetNextSymbol(scanner());
  Next();
  return factory()->NewRegExpLiteral(js_pattern, js_flags, literal_index, pos);
}


#define CHECK_OK  ok); \
  if (!*ok) return this->EmptyExpression(); \
  ((void)0
#define DUMMY )  // to make indentation work
#undef DUMMY

// Used in functions where the return type is not ExpressionT.
#define CHECK_OK_CUSTOM(x) ok); \
  if (!*ok) return this->x(); \
  ((void)0
#define DUMMY )  // to make indentation work
#undef DUMMY

template <class Traits>
typename ParserBase<Traits>::ExpressionT
ParserBase<Traits>::ParsePrimaryExpression(bool* ok) {
  // PrimaryExpression ::
  //   'this'
  //   'null'
  //   'true'
  //   'false'
  //   Identifier
  //   Number
  //   String
  //   ArrayLiteral
  //   ObjectLiteral
  //   RegExpLiteral
  //   ClassLiteral
  //   '(' Expression ')'
  //   TemplateLiteral

  int pos = peek_position();
  ExpressionT result = this->EmptyExpression();
  Token::Value token = peek();
  switch (token) {
    case Token::THIS: {
      Consume(Token::THIS);
      scope_->RecordThisUsage();
      result = this->ThisExpression(scope_, factory());
      break;
    }

    case Token::NULL_LITERAL:
    case Token::TRUE_LITERAL:
    case Token::FALSE_LITERAL:
    case Token::NUMBER:
      Next();
      result = this->ExpressionFromLiteral(token, pos, scanner(), factory());
      break;

    case Token::IDENTIFIER:
    case Token::LET:
    case Token::STATIC:
    case Token::YIELD:
    case Token::FUTURE_STRICT_RESERVED_WORD: {
      // Using eval or arguments in this context is OK even in strict mode.
      IdentifierT name = ParseIdentifier(kAllowEvalOrArguments, CHECK_OK);
      result = this->ExpressionFromIdentifier(name, pos, scope_, factory());
      break;
    }

    case Token::STRING: {
      Consume(Token::STRING);
      result = this->ExpressionFromString(pos, scanner(), factory());
      break;
    }

    case Token::ASSIGN_DIV:
      result = this->ParseRegExpLiteral(true, CHECK_OK);
      break;

    case Token::DIV:
      result = this->ParseRegExpLiteral(false, CHECK_OK);
      break;

    case Token::LBRACK:
      result = this->ParseArrayLiteral(CHECK_OK);
      break;

    case Token::LBRACE:
      result = this->ParseObjectLiteral(CHECK_OK);
      break;

    case Token::LPAREN:
      Consume(Token::LPAREN);
      if (allow_harmony_arrow_functions() && peek() == Token::RPAREN) {
        // Arrow functions are the only expression type constructions
        // for which an empty parameter list "()" is valid input.
        Consume(Token::RPAREN);
        result = this->ParseArrowFunctionLiteral(
            pos, this->EmptyArrowParamList(), CHECK_OK);
      } else {
        // Heuristically try to detect immediately called functions before
        // seeing the call parentheses.
        parenthesized_function_ = (peek() == Token::FUNCTION);
        result = this->ParseExpression(true, CHECK_OK);
        result->increase_parenthesization_level();
        Expect(Token::RPAREN, CHECK_OK);
      }
      break;

    case Token::CLASS: {
      Consume(Token::CLASS);
      if (!allow_harmony_sloppy() && strict_mode() == SLOPPY) {
        ReportMessage("sloppy_lexical", NULL);
        *ok = false;
        break;
      }
      int class_token_position = position();
      IdentifierT name = this->EmptyIdentifier();
      bool is_strict_reserved_name = false;
      Scanner::Location class_name_location = Scanner::Location::invalid();
      if (peek_any_identifier()) {
        name = ParseIdentifierOrStrictReservedWord(&is_strict_reserved_name,
                                                   CHECK_OK);
        class_name_location = scanner()->location();
      }
      result = this->ParseClassLiteral(name, class_name_location,
                                       is_strict_reserved_name,
                                       class_token_position, CHECK_OK);
      break;
    }

    case Token::TEMPLATE_SPAN:
    case Token::TEMPLATE_TAIL:
      result =
          this->ParseTemplateLiteral(Traits::NoTemplateTag(), pos, CHECK_OK);
      break;

    case Token::MOD:
      if (allow_natives() || extension_ != NULL) {
        result = this->ParseV8Intrinsic(CHECK_OK);
        break;
      }
      // If we're not allowing special syntax we fall-through to the
      // default case.

    default: {
      Next();
      ReportUnexpectedToken(token);
      *ok = false;
    }
  }

  return result;
}

// Precedence = 1
template <class Traits>
typename ParserBase<Traits>::ExpressionT ParserBase<Traits>::ParseExpression(
    bool accept_IN, bool* ok) {
  // Expression ::
  //   AssignmentExpression
  //   Expression ',' AssignmentExpression

  ExpressionT result = this->ParseAssignmentExpression(accept_IN, CHECK_OK);
  while (peek() == Token::COMMA) {
    Expect(Token::COMMA, CHECK_OK);
    int pos = position();
    ExpressionT right = this->ParseAssignmentExpression(accept_IN, CHECK_OK);
    result = factory()->NewBinaryOperation(Token::COMMA, result, right, pos);
  }
  return result;
}


template <class Traits>
typename ParserBase<Traits>::ExpressionT ParserBase<Traits>::ParseArrayLiteral(
    bool* ok) {
  // ArrayLiteral ::
  //   '[' Expression? (',' Expression?)* ']'

  int pos = peek_position();
  typename Traits::Type::ExpressionList values =
      this->NewExpressionList(4, zone_);
  Expect(Token::LBRACK, CHECK_OK);
  while (peek() != Token::RBRACK) {
    ExpressionT elem = this->EmptyExpression();
    if (peek() == Token::COMMA) {
      elem = this->GetLiteralTheHole(peek_position(), factory());
    } else {
      elem = this->ParseAssignmentExpression(true, CHECK_OK);
    }
    values->Add(elem, zone_);
    if (peek() != Token::RBRACK) {
      Expect(Token::COMMA, CHECK_OK);
    }
  }
  Expect(Token::RBRACK, CHECK_OK);

  // Update the scope information before the pre-parsing bailout.
  int literal_index = function_state_->NextMaterializedLiteralIndex();

  return factory()->NewArrayLiteral(values, literal_index, pos);
}


template <class Traits>
typename ParserBase<Traits>::IdentifierT ParserBase<Traits>::ParsePropertyName(
    bool* is_get, bool* is_set, bool* is_static, bool* ok) {
  Token::Value next = peek();
  switch (next) {
    case Token::STRING:
      Consume(Token::STRING);
      return this->GetSymbol(scanner_);
    case Token::NUMBER:
      Consume(Token::NUMBER);
      return this->GetNumberAsSymbol(scanner_);
    case Token::STATIC:
      *is_static = true;
      // Fall through.
    default:
      return ParseIdentifierNameOrGetOrSet(is_get, is_set, ok);
  }
  UNREACHABLE();
  return this->EmptyIdentifier();
}


template <class Traits>
typename ParserBase<Traits>::ObjectLiteralPropertyT ParserBase<
    Traits>::ParsePropertyDefinition(ObjectLiteralChecker* checker,
                                     bool in_class, bool is_static,
                                     bool* has_seen_constructor, bool* ok) {
  DCHECK(!in_class || is_static || has_seen_constructor != NULL);
  ExpressionT value = this->EmptyExpression();
  bool is_get = false;
  bool is_set = false;
  bool name_is_static = false;
  bool is_generator = allow_harmony_object_literals_ && Check(Token::MUL);

  Token::Value name_token = peek();
  int next_pos = peek_position();
  IdentifierT name =
      ParsePropertyName(&is_get, &is_set, &name_is_static,
                        CHECK_OK_CUSTOM(EmptyObjectLiteralProperty));

  if (fni_ != NULL) this->PushLiteralName(fni_, name);

  if (!in_class && !is_generator && peek() == Token::COLON) {
    // PropertyDefinition : PropertyName ':' AssignmentExpression
    if (checker != NULL) {
      checker->CheckProperty(name_token, kValueProperty,
                             CHECK_OK_CUSTOM(EmptyObjectLiteralProperty));
    }
    Consume(Token::COLON);
    value = this->ParseAssignmentExpression(
        true, CHECK_OK_CUSTOM(EmptyObjectLiteralProperty));

  } else if (is_generator ||
             (allow_harmony_object_literals_ && peek() == Token::LPAREN)) {
    // Concise Method

    if (is_static && this->IsPrototype(name)) {
      ReportMessageAt(scanner()->location(), "static_prototype");
      *ok = false;
      return this->EmptyObjectLiteralProperty();
    }

    FunctionKind kind = is_generator ? FunctionKind::kConciseGeneratorMethod
                                     : FunctionKind::kConciseMethod;

    if (in_class && !is_static && this->IsConstructor(name)) {
      if (is_generator) {
        ReportMessageAt(scanner()->location(), "constructor_special_method");
        *ok = false;
        return this->EmptyObjectLiteralProperty();
      }

      if (*has_seen_constructor) {
        ReportMessageAt(scanner()->location(), "duplicate_constructor");
        *ok = false;
        return this->EmptyObjectLiteralProperty();
      }

      *has_seen_constructor = true;
      kind = FunctionKind::kNormalFunction;
    }

    if (checker != NULL) {
      checker->CheckProperty(name_token, kValueProperty,
                             CHECK_OK_CUSTOM(EmptyObjectLiteralProperty));
    }

    value = this->ParseFunctionLiteral(
        name, scanner()->location(),
        false,  // reserved words are allowed here
        kind, RelocInfo::kNoPosition, FunctionLiteral::ANONYMOUS_EXPRESSION,
        FunctionLiteral::NORMAL_ARITY,
        CHECK_OK_CUSTOM(EmptyObjectLiteralProperty));

  } else if (in_class && name_is_static && !is_static) {
    // static MethodDefinition
    return ParsePropertyDefinition(checker, true, true, NULL, ok);

  } else if (is_get || is_set) {
    // Accessor
    bool dont_care = false;
    name_token = peek();
    name = ParsePropertyName(&dont_care, &dont_care, &dont_care,
                             CHECK_OK_CUSTOM(EmptyObjectLiteralProperty));

    // Validate the property.
    if (is_static && this->IsPrototype(name)) {
      ReportMessageAt(scanner()->location(), "static_prototype");
      *ok = false;
      return this->EmptyObjectLiteralProperty();
    } else if (in_class && !is_static && this->IsConstructor(name)) {
      ReportMessageAt(scanner()->location(), "constructor_special_method");
      *ok = false;
      return this->EmptyObjectLiteralProperty();
    }
    if (checker != NULL) {
      checker->CheckProperty(name_token,
                             is_get ? kGetterProperty : kSetterProperty,
                             CHECK_OK_CUSTOM(EmptyObjectLiteralProperty));
    }

    typename Traits::Type::FunctionLiteral value = this->ParseFunctionLiteral(
        name, scanner()->location(),
        false,  // reserved words are allowed here
        FunctionKind::kNormalFunction, RelocInfo::kNoPosition,
        FunctionLiteral::ANONYMOUS_EXPRESSION,
        is_get ? FunctionLiteral::GETTER_ARITY : FunctionLiteral::SETTER_ARITY,
        CHECK_OK_CUSTOM(EmptyObjectLiteralProperty));
    return factory()->NewObjectLiteralProperty(is_get, value, next_pos,
                                               is_static);

  } else if (!in_class && allow_harmony_object_literals_ &&
             Token::IsIdentifier(name_token, strict_mode(),
                                 this->is_generator())) {
    value = this->ExpressionFromIdentifier(name, next_pos, scope_, factory());

  } else {
    Token::Value next = Next();
    ReportUnexpectedToken(next);
    *ok = false;
    return this->EmptyObjectLiteralProperty();
  }

  uint32_t index;
  LiteralT key = this->IsArrayIndex(name, &index)
                     ? factory()->NewNumberLiteral(index, next_pos)
                     : factory()->NewStringLiteral(name, next_pos);

  return factory()->NewObjectLiteralProperty(key, value, is_static);
}


template <class Traits>
typename ParserBase<Traits>::ExpressionT ParserBase<Traits>::ParseObjectLiteral(
    bool* ok) {
  // ObjectLiteral ::
  // '{' (PropertyDefinition (',' PropertyDefinition)* ','? )? '}'

  int pos = peek_position();
  typename Traits::Type::PropertyList properties =
      this->NewPropertyList(4, zone_);
  int number_of_boilerplate_properties = 0;
  bool has_function = false;

  ObjectLiteralChecker checker(this, strict_mode());

  Expect(Token::LBRACE, CHECK_OK);

  while (peek() != Token::RBRACE) {
    if (fni_ != NULL) fni_->Enter();

    const bool in_class = false;
    const bool is_static = false;
    ObjectLiteralPropertyT property = this->ParsePropertyDefinition(
        &checker, in_class, is_static, NULL, CHECK_OK);

    // Mark top-level object literals that contain function literals and
    // pretenure the literal so it can be added as a constant function
    // property. (Parser only.)
    this->CheckFunctionLiteralInsideTopLevelObjectLiteral(scope_, property,
                                                          &has_function);

    // Count CONSTANT or COMPUTED properties to maintain the enumeration order.
    if (this->IsBoilerplateProperty(property)) {
      number_of_boilerplate_properties++;
    }
    properties->Add(property, zone());

    if (peek() != Token::RBRACE) {
      // Need {} because of the CHECK_OK macro.
      Expect(Token::COMMA, CHECK_OK);
    }

    if (fni_ != NULL) {
      fni_->Infer();
      fni_->Leave();
    }
  }
  Expect(Token::RBRACE, CHECK_OK);

  // Computation of literal_index must happen before pre parse bailout.
  int literal_index = function_state_->NextMaterializedLiteralIndex();

  return factory()->NewObjectLiteral(properties,
                                     literal_index,
                                     number_of_boilerplate_properties,
                                     has_function,
                                     pos);
}


template <class Traits>
typename Traits::Type::ExpressionList ParserBase<Traits>::ParseArguments(
    bool* ok) {
  // Arguments ::
  //   '(' (AssignmentExpression)*[','] ')'

  typename Traits::Type::ExpressionList result =
      this->NewExpressionList(4, zone_);
  Expect(Token::LPAREN, CHECK_OK_CUSTOM(NullExpressionList));
  bool done = (peek() == Token::RPAREN);
  while (!done) {
    ExpressionT argument = this->ParseAssignmentExpression(
        true, CHECK_OK_CUSTOM(NullExpressionList));
    result->Add(argument, zone_);
    if (result->length() > Code::kMaxArguments) {
      ReportMessage("too_many_arguments");
      *ok = false;
      return this->NullExpressionList();
    }
    done = (peek() == Token::RPAREN);
    if (!done) {
      // Need {} because of the CHECK_OK_CUSTOM macro.
      Expect(Token::COMMA, CHECK_OK_CUSTOM(NullExpressionList));
    }
  }
  Expect(Token::RPAREN, CHECK_OK_CUSTOM(NullExpressionList));
  return result;
}

// Precedence = 2
template <class Traits>
typename ParserBase<Traits>::ExpressionT
ParserBase<Traits>::ParseAssignmentExpression(bool accept_IN, bool* ok) {
  // AssignmentExpression ::
  //   ConditionalExpression
  //   ArrowFunction
  //   YieldExpression
  //   LeftHandSideExpression AssignmentOperator AssignmentExpression

  Scanner::Location lhs_location = scanner()->peek_location();

  if (peek() == Token::YIELD && is_generator()) {
    return this->ParseYieldExpression(ok);
  }

  if (fni_ != NULL) fni_->Enter();
  ParserBase<Traits>::Checkpoint checkpoint(this);
  ExpressionT expression =
      this->ParseConditionalExpression(accept_IN, CHECK_OK);

  if (allow_harmony_arrow_functions() && peek() == Token::ARROW) {
    checkpoint.Restore();
    expression = this->ParseArrowFunctionLiteral(lhs_location.beg_pos,
                                                 expression, CHECK_OK);
    return expression;
  }

  if (!Token::IsAssignmentOp(peek())) {
    if (fni_ != NULL) fni_->Leave();
    // Parsed conditional expression only (no assignment).
    return expression;
  }

  expression = this->CheckAndRewriteReferenceExpression(
      expression, lhs_location, "invalid_lhs_in_assignment", CHECK_OK);
  expression = this->MarkExpressionAsAssigned(expression);

  Token::Value op = Next();  // Get assignment operator.
  int pos = position();
  ExpressionT right = this->ParseAssignmentExpression(accept_IN, CHECK_OK);

  // TODO(1231235): We try to estimate the set of properties set by
  // constructors. We define a new property whenever there is an
  // assignment to a property of 'this'. We should probably only add
  // properties if we haven't seen them before. Otherwise we'll
  // probably overestimate the number of properties.
  if (op == Token::ASSIGN && this->IsThisProperty(expression)) {
    function_state_->AddProperty();
  }

  this->CheckAssigningFunctionLiteralToProperty(expression, right);

  if (fni_ != NULL) {
    // Check if the right hand side is a call to avoid inferring a
    // name if we're dealing with "a = function(){...}();"-like
    // expression.
    if ((op == Token::INIT_VAR
         || op == Token::INIT_CONST_LEGACY
         || op == Token::ASSIGN)
        && (!right->IsCall() && !right->IsCallNew())) {
      fni_->Infer();
    } else {
      fni_->RemoveLastFunction();
    }
    fni_->Leave();
  }

  return factory()->NewAssignment(op, expression, right, pos);
}

template <class Traits>
typename ParserBase<Traits>::ExpressionT
ParserBase<Traits>::ParseYieldExpression(bool* ok) {
  // YieldExpression ::
  //   'yield' ([no line terminator] '*'? AssignmentExpression)?
  int pos = peek_position();
  Expect(Token::YIELD, CHECK_OK);
  ExpressionT generator_object =
      factory()->NewVariableProxy(function_state_->generator_object_variable());
  ExpressionT expression = Traits::EmptyExpression();
  Yield::Kind kind = Yield::kSuspend;
  if (!scanner()->HasAnyLineTerminatorBeforeNext()) {
    if (Check(Token::MUL)) kind = Yield::kDelegating;
    switch (peek()) {
      case Token::EOS:
      case Token::SEMICOLON:
      case Token::RBRACE:
      case Token::RBRACK:
      case Token::RPAREN:
      case Token::COLON:
      case Token::COMMA:
        // The above set of tokens is the complete set of tokens that can appear
        // after an AssignmentExpression, and none of them can start an
        // AssignmentExpression.  This allows us to avoid looking for an RHS for
        // a Yield::kSuspend operation, given only one look-ahead token.
        if (kind == Yield::kSuspend)
          break;
        DCHECK_EQ(Yield::kDelegating, kind);
        // Delegating yields require an RHS; fall through.
      default:
        expression = ParseAssignmentExpression(false, CHECK_OK);
        break;
    }
  }
  if (kind == Yield::kDelegating) {
    // var iterator = subject[Symbol.iterator]();
    expression = this->GetIterator(expression, factory());
  }
  typename Traits::Type::YieldExpression yield =
      factory()->NewYield(generator_object, expression, kind, pos);
  if (kind == Yield::kDelegating) {
    yield->set_index(function_state_->NextHandlerIndex());
  }
  return yield;
}


// Precedence = 3
template <class Traits>
typename ParserBase<Traits>::ExpressionT
ParserBase<Traits>::ParseConditionalExpression(bool accept_IN, bool* ok) {
  // ConditionalExpression ::
  //   LogicalOrExpression
  //   LogicalOrExpression '?' AssignmentExpression ':' AssignmentExpression

  int pos = peek_position();
  // We start using the binary expression parser for prec >= 4 only!
  ExpressionT expression = this->ParseBinaryExpression(4, accept_IN, CHECK_OK);
  if (peek() != Token::CONDITIONAL) return expression;
  Consume(Token::CONDITIONAL);
  // In parsing the first assignment expression in conditional
  // expressions we always accept the 'in' keyword; see ECMA-262,
  // section 11.12, page 58.
  ExpressionT left = ParseAssignmentExpression(true, CHECK_OK);
  Expect(Token::COLON, CHECK_OK);
  ExpressionT right = ParseAssignmentExpression(accept_IN, CHECK_OK);
  return factory()->NewConditional(expression, left, right, pos);
}


// Precedence >= 4
template <class Traits>
typename ParserBase<Traits>::ExpressionT
ParserBase<Traits>::ParseBinaryExpression(int prec, bool accept_IN, bool* ok) {
  DCHECK(prec >= 4);
  ExpressionT x = this->ParseUnaryExpression(CHECK_OK);
  for (int prec1 = Precedence(peek(), accept_IN); prec1 >= prec; prec1--) {
    // prec1 >= 4
    while (Precedence(peek(), accept_IN) == prec1) {
      Token::Value op = Next();
      int pos = position();
      ExpressionT y = ParseBinaryExpression(prec1 + 1, accept_IN, CHECK_OK);

      if (this->ShortcutNumericLiteralBinaryExpression(&x, y, op, pos,
                                                       factory())) {
        continue;
      }

      // For now we distinguish between comparisons and other binary
      // operations.  (We could combine the two and get rid of this
      // code and AST node eventually.)
      if (Token::IsCompareOp(op)) {
        // We have a comparison.
        Token::Value cmp = op;
        switch (op) {
          case Token::NE: cmp = Token::EQ; break;
          case Token::NE_STRICT: cmp = Token::EQ_STRICT; break;
          default: break;
        }
        x = factory()->NewCompareOperation(cmp, x, y, pos);
        if (cmp != op) {
          // The comparison was negated - add a NOT.
          x = factory()->NewUnaryOperation(Token::NOT, x, pos);
        }

      } else {
        // We have a "normal" binary operation.
        x = factory()->NewBinaryOperation(op, x, y, pos);
      }
    }
  }
  return x;
}


template <class Traits>
typename ParserBase<Traits>::ExpressionT
ParserBase<Traits>::ParseUnaryExpression(bool* ok) {
  // UnaryExpression ::
  //   PostfixExpression
  //   'delete' UnaryExpression
  //   'void' UnaryExpression
  //   'typeof' UnaryExpression
  //   '++' UnaryExpression
  //   '--' UnaryExpression
  //   '+' UnaryExpression
  //   '-' UnaryExpression
  //   '~' UnaryExpression
  //   '!' UnaryExpression

  Token::Value op = peek();
  if (Token::IsUnaryOp(op)) {
    op = Next();
    int pos = position();
    ExpressionT expression = ParseUnaryExpression(CHECK_OK);

    // "delete identifier" is a syntax error in strict mode.
    if (op == Token::DELETE && strict_mode() == STRICT &&
        this->IsIdentifier(expression)) {
      ReportMessage("strict_delete");
      *ok = false;
      return this->EmptyExpression();
    }

    // Allow Traits do rewrite the expression.
    return this->BuildUnaryExpression(expression, op, pos, factory());
  } else if (Token::IsCountOp(op)) {
    op = Next();
    Scanner::Location lhs_location = scanner()->peek_location();
    ExpressionT expression = this->ParseUnaryExpression(CHECK_OK);
    expression = this->CheckAndRewriteReferenceExpression(
        expression, lhs_location, "invalid_lhs_in_prefix_op", CHECK_OK);
    this->MarkExpressionAsAssigned(expression);

    return factory()->NewCountOperation(op,
                                        true /* prefix */,
                                        expression,
                                        position());

  } else {
    return this->ParsePostfixExpression(ok);
  }
}


template <class Traits>
typename ParserBase<Traits>::ExpressionT
ParserBase<Traits>::ParsePostfixExpression(bool* ok) {
  // PostfixExpression ::
  //   LeftHandSideExpression ('++' | '--')?

  Scanner::Location lhs_location = scanner()->peek_location();
  ExpressionT expression = this->ParseLeftHandSideExpression(CHECK_OK);
  if (!scanner()->HasAnyLineTerminatorBeforeNext() &&
      Token::IsCountOp(peek())) {
    expression = this->CheckAndRewriteReferenceExpression(
        expression, lhs_location, "invalid_lhs_in_postfix_op", CHECK_OK);
    expression = this->MarkExpressionAsAssigned(expression);

    Token::Value next = Next();
    expression =
        factory()->NewCountOperation(next,
                                     false /* postfix */,
                                     expression,
                                     position());
  }
  return expression;
}


template <class Traits>
typename ParserBase<Traits>::ExpressionT
ParserBase<Traits>::ParseLeftHandSideExpression(bool* ok) {
  // LeftHandSideExpression ::
  //   (NewExpression | MemberExpression) ...

  ExpressionT result = this->ParseMemberWithNewPrefixesExpression(CHECK_OK);

  while (true) {
    switch (peek()) {
      case Token::LBRACK: {
        Consume(Token::LBRACK);
        int pos = position();
        ExpressionT index = ParseExpression(true, CHECK_OK);
        result = factory()->NewProperty(result, index, pos);
        Expect(Token::RBRACK, CHECK_OK);
        break;
      }

      case Token::LPAREN: {
        int pos;
        if (scanner()->current_token() == Token::IDENTIFIER) {
          // For call of an identifier we want to report position of
          // the identifier as position of the call in the stack trace.
          pos = position();
        } else {
          // For other kinds of calls we record position of the parenthesis as
          // position of the call. Note that this is extremely important for
          // expressions of the form function(){...}() for which call position
          // should not point to the closing brace otherwise it will intersect
          // with positions recorded for function literal and confuse debugger.
          pos = peek_position();
          // Also the trailing parenthesis are a hint that the function will
          // be called immediately. If we happen to have parsed a preceding
          // function literal eagerly, we can also compile it eagerly.
          if (result->IsFunctionLiteral() && mode() == PARSE_EAGERLY) {
            result->AsFunctionLiteral()->set_parenthesized();
          }
        }
        typename Traits::Type::ExpressionList args = ParseArguments(CHECK_OK);

        // Keep track of eval() calls since they disable all local variable
        // optimizations.
        // The calls that need special treatment are the
        // direct eval calls. These calls are all of the form eval(...), with
        // no explicit receiver.
        // These calls are marked as potentially direct eval calls. Whether
        // they are actually direct calls to eval is determined at run time.
        this->CheckPossibleEvalCall(result, scope_);
        result = factory()->NewCall(result, args, pos);
        if (fni_ != NULL) fni_->RemoveLastFunction();
        break;
      }

      case Token::TEMPLATE_SPAN:
      case Token::TEMPLATE_TAIL: {
        int pos;
        if (scanner()->current_token() == Token::IDENTIFIER) {
          pos = position();
        } else {
          pos = peek_position();
          if (result->IsFunctionLiteral() && mode() == PARSE_EAGERLY) {
            // If the tag function looks like an IIFE, set_parenthesized() to
            // force eager compilation.
            result->AsFunctionLiteral()->set_parenthesized();
          }
        }
        result = ParseTemplateLiteral(result, pos, CHECK_OK);
        break;
      }

      case Token::PERIOD: {
        Consume(Token::PERIOD);
        int pos = position();
        IdentifierT name = ParseIdentifierName(CHECK_OK);
        result = factory()->NewProperty(
            result, factory()->NewStringLiteral(name, pos), pos);
        if (fni_ != NULL) this->PushLiteralName(fni_, name);
        break;
      }

      default:
        return result;
    }
  }
}


template <class Traits>
typename ParserBase<Traits>::ExpressionT
ParserBase<Traits>::ParseMemberWithNewPrefixesExpression(bool* ok) {
  // NewExpression ::
  //   ('new')+ MemberExpression

  // The grammar for new expressions is pretty warped. We can have several 'new'
  // keywords following each other, and then a MemberExpression. When we see '('
  // after the MemberExpression, it's associated with the rightmost unassociated
  // 'new' to create a NewExpression with arguments. However, a NewExpression
  // can also occur without arguments.

  // Examples of new expression:
  // new foo.bar().baz means (new (foo.bar)()).baz
  // new foo()() means (new foo())()
  // new new foo()() means (new (new foo())())
  // new new foo means new (new foo)
  // new new foo() means new (new foo())
  // new new foo().bar().baz means (new (new foo()).bar()).baz

  if (peek() == Token::NEW) {
    Consume(Token::NEW);
    int new_pos = position();
    ExpressionT result = this->EmptyExpression();
    if (Check(Token::SUPER)) {
      result = this->SuperReference(scope_, factory());
    } else {
      result = this->ParseMemberWithNewPrefixesExpression(CHECK_OK);
    }
    if (peek() == Token::LPAREN) {
      // NewExpression with arguments.
      typename Traits::Type::ExpressionList args =
          this->ParseArguments(CHECK_OK);
      result = factory()->NewCallNew(result, args, new_pos);
      // The expression can still continue with . or [ after the arguments.
      result = this->ParseMemberExpressionContinuation(result, CHECK_OK);
      return result;
    }
    // NewExpression without arguments.
    return factory()->NewCallNew(result, this->NewExpressionList(0, zone_),
                                 new_pos);
  }
  // No 'new' or 'super' keyword.
  return this->ParseMemberExpression(ok);
}


template <class Traits>
typename ParserBase<Traits>::ExpressionT
ParserBase<Traits>::ParseMemberExpression(bool* ok) {
  // MemberExpression ::
  //   (PrimaryExpression | FunctionLiteral | ClassLiteral)
  //     ('[' Expression ']' | '.' Identifier | Arguments)*

  // The '[' Expression ']' and '.' Identifier parts are parsed by
  // ParseMemberExpressionContinuation, and the Arguments part is parsed by the
  // caller.

  // Parse the initial primary or function expression.
  ExpressionT result = this->EmptyExpression();
  if (peek() == Token::FUNCTION) {
    Consume(Token::FUNCTION);
    int function_token_position = position();
    bool is_generator = Check(Token::MUL);
    IdentifierT name = this->EmptyIdentifier();
    bool is_strict_reserved_name = false;
    Scanner::Location function_name_location = Scanner::Location::invalid();
    FunctionLiteral::FunctionType function_type =
        FunctionLiteral::ANONYMOUS_EXPRESSION;
    if (peek_any_identifier()) {
      name = ParseIdentifierOrStrictReservedWord(&is_strict_reserved_name,
                                                 CHECK_OK);
      function_name_location = scanner()->location();
      function_type = FunctionLiteral::NAMED_EXPRESSION;
    }
    result = this->ParseFunctionLiteral(
        name, function_name_location, is_strict_reserved_name,
        is_generator ? FunctionKind::kGeneratorFunction
                     : FunctionKind::kNormalFunction,
        function_token_position, function_type, FunctionLiteral::NORMAL_ARITY,
        CHECK_OK);
  } else if (peek() == Token::SUPER) {
    int beg_pos = position();
    Consume(Token::SUPER);
    Token::Value next = peek();
    if (next == Token::PERIOD || next == Token::LBRACK) {
      scope_->RecordSuperPropertyUsage();
      result = this->SuperReference(scope_, factory());
    } else if (next == Token::LPAREN) {
      scope_->RecordSuperConstructorCallUsage();
      result = this->SuperReference(scope_, factory());
    } else {
      ReportMessageAt(Scanner::Location(beg_pos, position()),
                      "unexpected_super");
      *ok = false;
      return this->EmptyExpression();
    }
  } else {
    result = ParsePrimaryExpression(CHECK_OK);
  }

  result = ParseMemberExpressionContinuation(result, CHECK_OK);
  return result;
}


template <class Traits>
typename ParserBase<Traits>::ExpressionT
ParserBase<Traits>::ParseMemberExpressionContinuation(ExpressionT expression,
                                                      bool* ok) {
  // Parses this part of MemberExpression:
  // ('[' Expression ']' | '.' Identifier)*
  while (true) {
    switch (peek()) {
      case Token::LBRACK: {
        Consume(Token::LBRACK);
        int pos = position();
        ExpressionT index = this->ParseExpression(true, CHECK_OK);
        expression = factory()->NewProperty(expression, index, pos);
        if (fni_ != NULL) {
          this->PushPropertyName(fni_, index);
        }
        Expect(Token::RBRACK, CHECK_OK);
        break;
      }
      case Token::PERIOD: {
        Consume(Token::PERIOD);
        int pos = position();
        IdentifierT name = ParseIdentifierName(CHECK_OK);
        expression = factory()->NewProperty(
            expression, factory()->NewStringLiteral(name, pos), pos);
        if (fni_ != NULL) {
          this->PushLiteralName(fni_, name);
        }
        break;
      }
      default:
        return expression;
    }
  }
  DCHECK(false);
  return this->EmptyExpression();
}


template <class Traits>
typename ParserBase<Traits>::ExpressionT ParserBase<
    Traits>::ParseArrowFunctionLiteral(int start_pos, ExpressionT params_ast,
                                       bool* ok) {
  typename Traits::Type::ScopePtr scope = this->NewScope(scope_, ARROW_SCOPE);
  typename Traits::Type::StatementList body;
  int num_parameters = -1;
  int materialized_literal_count = -1;
  int expected_property_count = -1;
  int handler_count = 0;

  {
    typename Traits::Type::Factory function_factory(this->ast_value_factory());
    FunctionState function_state(&function_state_, &scope_,
                                 Traits::Type::ptr_to_scope(scope),
                                 &function_factory);
    Scanner::Location dupe_error_loc = Scanner::Location::invalid();
    num_parameters = Traits::DeclareArrowParametersFromExpression(
        params_ast, scope_, &dupe_error_loc, ok);
    if (!*ok) {
      ReportMessageAt(
          Scanner::Location(start_pos, scanner()->location().beg_pos),
          "malformed_arrow_function_parameter_list");
      return this->EmptyExpression();
    }

    if (num_parameters > Code::kMaxArguments) {
      ReportMessageAt(Scanner::Location(params_ast->position(), position()),
                      "too_many_parameters");
      *ok = false;
      return this->EmptyExpression();
    }

    Expect(Token::ARROW, CHECK_OK);

    if (peek() == Token::LBRACE) {
      // Multiple statemente body
      Consume(Token::LBRACE);
      bool is_lazily_parsed =
          (mode() == PARSE_LAZILY && scope_->AllowsLazyCompilation());
      if (is_lazily_parsed) {
        body = this->NewStatementList(0, zone());
        this->SkipLazyFunctionBody(this->EmptyIdentifier(),
                                   &materialized_literal_count,
                                   &expected_property_count, CHECK_OK);
      } else {
        body = this->ParseEagerFunctionBody(
            this->EmptyIdentifier(), RelocInfo::kNoPosition, NULL,
            Token::INIT_VAR, false,  // Not a generator.
            CHECK_OK);
        materialized_literal_count =
            function_state.materialized_literal_count();
        expected_property_count = function_state.expected_property_count();
        handler_count = function_state.handler_count();
      }
    } else {
      // Single-expression body
      int pos = position();
      parenthesized_function_ = false;
      ExpressionT expression = ParseAssignmentExpression(true, CHECK_OK);
      body = this->NewStatementList(1, zone());
      body->Add(factory()->NewReturnStatement(expression, pos), zone());
      materialized_literal_count = function_state.materialized_literal_count();
      expected_property_count = function_state.expected_property_count();
      handler_count = function_state.handler_count();
    }

    scope->set_start_position(start_pos);
    scope->set_end_position(scanner()->location().end_pos);

    // Arrow function *parameter lists* are always checked as in strict mode.
    bool function_name_is_strict_reserved = false;
    Scanner::Location function_name_loc = Scanner::Location::invalid();
    Scanner::Location eval_args_error_loc = Scanner::Location::invalid();
    Scanner::Location reserved_loc = Scanner::Location::invalid();
    this->CheckStrictFunctionNameAndParameters(
        this->EmptyIdentifier(), function_name_is_strict_reserved,
        function_name_loc, eval_args_error_loc, dupe_error_loc, reserved_loc,
        CHECK_OK);

    // Validate strict mode.
    if (strict_mode() == STRICT) {
      CheckStrictOctalLiteral(start_pos, scanner()->location().end_pos,
                              CHECK_OK);
    }

    if (allow_harmony_scoping() && strict_mode() == STRICT)
      this->CheckConflictingVarDeclarations(scope, CHECK_OK);
  }

  FunctionLiteralT function_literal = factory()->NewFunctionLiteral(
      this->EmptyIdentifierString(), this->ast_value_factory(), scope, body,
      materialized_literal_count, expected_property_count, handler_count,
      num_parameters, FunctionLiteral::kNoDuplicateParameters,
      FunctionLiteral::ANONYMOUS_EXPRESSION, FunctionLiteral::kIsFunction,
      FunctionLiteral::kNotParenthesized, FunctionKind::kArrowFunction,
      start_pos);

  function_literal->set_function_token_position(start_pos);

  if (fni_ != NULL) this->InferFunctionName(fni_, function_literal);

  return function_literal;
}


template <typename Traits>
typename ParserBase<Traits>::ExpressionT
ParserBase<Traits>::ParseTemplateLiteral(ExpressionT tag, int start, bool* ok) {
  // A TemplateLiteral is made up of 0 or more TEMPLATE_SPAN tokens (literal
  // text followed by a substitution expression), finalized by a single
  // TEMPLATE_TAIL.
  //
  // In terms of draft language, TEMPLATE_SPAN may be either the TemplateHead or
  // TemplateMiddle productions, while TEMPLATE_TAIL is either TemplateTail, or
  // NoSubstitutionTemplate.
  //
  // When parsing a TemplateLiteral, we must have scanned either an initial
  // TEMPLATE_SPAN, or a TEMPLATE_TAIL.
  CHECK(peek() == Token::TEMPLATE_SPAN || peek() == Token::TEMPLATE_TAIL);

  // If we reach a TEMPLATE_TAIL first, we are parsing a NoSubstitutionTemplate.
  // In this case we may simply consume the token and build a template with a
  // single TEMPLATE_SPAN and no expressions.
  if (peek() == Token::TEMPLATE_TAIL) {
    Consume(Token::TEMPLATE_TAIL);
    int pos = position();
    CheckTemplateOctalLiteral(pos, peek_position(), CHECK_OK);
    typename Traits::TemplateLiteralState ts = Traits::OpenTemplateLiteral(pos);
    Traits::AddTemplateSpan(&ts, true);
    return Traits::CloseTemplateLiteral(&ts, start, tag);
  }

  Consume(Token::TEMPLATE_SPAN);
  int pos = position();
  typename Traits::TemplateLiteralState ts = Traits::OpenTemplateLiteral(pos);
  Traits::AddTemplateSpan(&ts, false);
  Token::Value next;

  // If we open with a TEMPLATE_SPAN, we must scan the subsequent expression,
  // and repeat if the following token is a TEMPLATE_SPAN as well (in this
  // case, representing a TemplateMiddle).

  do {
    next = peek();
    if (!next) {
      ReportMessageAt(Scanner::Location(start, peek_position()),
                      "unterminated_template");
      *ok = false;
      return Traits::EmptyExpression();
    }

    int expr_pos = peek_position();
    ExpressionT expression = this->ParseExpression(true, CHECK_OK);
    Traits::AddTemplateExpression(&ts, expression);

    if (peek() != Token::RBRACE) {
      ReportMessageAt(Scanner::Location(expr_pos, peek_position()),
                      "unterminated_template_expr");
      *ok = false;
      return Traits::EmptyExpression();
    }

    // If we didn't die parsing that expression, our next token should be a
    // TEMPLATE_SPAN or TEMPLATE_TAIL.
    next = scanner()->ScanTemplateContinuation();
    Next();

    if (!next) {
      ReportMessageAt(Scanner::Location(start, position()),
                      "unterminated_template");
      *ok = false;
      return Traits::EmptyExpression();
    }

    Traits::AddTemplateSpan(&ts, next == Token::TEMPLATE_TAIL);
  } while (next == Token::TEMPLATE_SPAN);

  DCHECK_EQ(next, Token::TEMPLATE_TAIL);
  CheckTemplateOctalLiteral(pos, peek_position(), CHECK_OK);
  // Once we've reached a TEMPLATE_TAIL, we can close the TemplateLiteral.
  return Traits::CloseTemplateLiteral(&ts, start, tag);
}


template <typename Traits>
typename ParserBase<Traits>::ExpressionT ParserBase<
    Traits>::CheckAndRewriteReferenceExpression(ExpressionT expression,
                                                Scanner::Location location,
                                                const char* message, bool* ok) {
  if (strict_mode() == STRICT && this->IsIdentifier(expression) &&
      this->IsEvalOrArguments(this->AsIdentifier(expression))) {
    this->ReportMessageAt(location, "strict_eval_arguments", false);
    *ok = false;
    return this->EmptyExpression();
  } else if (expression->IsValidReferenceExpression()) {
    return expression;
  } else if (expression->IsCall()) {
    // If it is a call, make it a runtime error for legacy web compatibility.
    // Rewrite `expr' to `expr[throw ReferenceError]'.
    int pos = location.beg_pos;
    ExpressionT error = this->NewThrowReferenceError(message, pos);
    return factory()->NewProperty(expression, error, pos);
  } else {
    this->ReportMessageAt(location, message, true);
    *ok = false;
    return this->EmptyExpression();
  }
}


#undef CHECK_OK
#undef CHECK_OK_CUSTOM


template <typename Traits>
void ParserBase<Traits>::ObjectLiteralChecker::CheckProperty(
    Token::Value property, PropertyKind type, bool* ok) {
  int old;
  if (property == Token::NUMBER) {
    old = scanner()->FindNumber(&finder_, type);
  } else {
    old = scanner()->FindSymbol(&finder_, type);
  }
  PropertyKind old_type = static_cast<PropertyKind>(old);
  if (HasConflict(old_type, type)) {
    if (IsDataDataConflict(old_type, type)) {
      // Both are data properties.
      if (strict_mode_ == SLOPPY) return;
      parser()->ReportMessage("strict_duplicate_property");
    } else if (IsDataAccessorConflict(old_type, type)) {
      // Both a data and an accessor property with the same name.
      parser()->ReportMessage("accessor_data_property");
    } else {
      DCHECK(IsAccessorAccessorConflict(old_type, type));
      // Both accessors of the same type.
      parser()->ReportMessage("accessor_get_set");
    }
    *ok = false;
  }
}
} }  // v8::internal

#endif  // V8_PREPARSER_H