summaryrefslogtreecommitdiff
path: root/deps/v8/src/runtime.cc
blob: 834983344d9597cf0cef4563bc590642d964b072 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <stdlib.h>

#include "v8.h"

#include "accessors.h"
#include "api.h"
#include "arguments.h"
#include "compiler.h"
#include "cpu.h"
#include "dateparser-inl.h"
#include "debug.h"
#include "execution.h"
#include "jsregexp.h"
#include "parser.h"
#include "platform.h"
#include "runtime.h"
#include "scopeinfo.h"
#include "smart-pointer.h"
#include "stub-cache.h"
#include "v8threads.h"

namespace v8 {
namespace internal {


#define RUNTIME_ASSERT(value) \
  if (!(value)) return Top::ThrowIllegalOperation();

// Cast the given object to a value of the specified type and store
// it in a variable with the given name.  If the object is not of the
// expected type call IllegalOperation and return.
#define CONVERT_CHECKED(Type, name, obj)                             \
  RUNTIME_ASSERT(obj->Is##Type());                                   \
  Type* name = Type::cast(obj);

#define CONVERT_ARG_CHECKED(Type, name, index)                       \
  RUNTIME_ASSERT(args[index]->Is##Type());                           \
  Handle<Type> name = args.at<Type>(index);

// Cast the given object to a boolean and store it in a variable with
// the given name.  If the object is not a boolean call IllegalOperation
// and return.
#define CONVERT_BOOLEAN_CHECKED(name, obj)                            \
  RUNTIME_ASSERT(obj->IsBoolean());                                   \
  bool name = (obj)->IsTrue();

// Cast the given object to a Smi and store its value in an int variable
// with the given name.  If the object is not a Smi call IllegalOperation
// and return.
#define CONVERT_SMI_CHECKED(name, obj)                            \
  RUNTIME_ASSERT(obj->IsSmi());                                   \
  int name = Smi::cast(obj)->value();

// Cast the given object to a double and store it in a variable with
// the given name.  If the object is not a number (as opposed to
// the number not-a-number) call IllegalOperation and return.
#define CONVERT_DOUBLE_CHECKED(name, obj)                            \
  RUNTIME_ASSERT(obj->IsNumber());                                   \
  double name = (obj)->Number();

// Call the specified converter on the object *comand store the result in
// a variable of the specified type with the given name.  If the
// object is not a Number call IllegalOperation and return.
#define CONVERT_NUMBER_CHECKED(type, name, Type, obj)                \
  RUNTIME_ASSERT(obj->IsNumber());                                   \
  type name = NumberTo##Type(obj);

// Non-reentrant string buffer for efficient general use in this file.
static StaticResource<StringInputBuffer> runtime_string_input_buffer;


static Object* DeepCopyBoilerplate(JSObject* boilerplate) {
  StackLimitCheck check;
  if (check.HasOverflowed()) return Top::StackOverflow();

  Object* result = Heap::CopyJSObject(boilerplate);
  if (result->IsFailure()) return result;
  JSObject* copy = JSObject::cast(result);

  // Deep copy local properties.
  if (copy->HasFastProperties()) {
    FixedArray* properties = copy->properties();
    WriteBarrierMode mode = properties->GetWriteBarrierMode();
    for (int i = 0; i < properties->length(); i++) {
      Object* value = properties->get(i);
      if (value->IsJSObject()) {
        JSObject* jsObject = JSObject::cast(value);
        result = DeepCopyBoilerplate(jsObject);
        if (result->IsFailure()) return result;
        properties->set(i, result, mode);
      }
    }
    mode = copy->GetWriteBarrierMode();
    int nof = copy->map()->inobject_properties();
    for (int i = 0; i < nof; i++) {
      Object* value = copy->InObjectPropertyAt(i);
      if (value->IsJSObject()) {
        JSObject* jsObject = JSObject::cast(value);
        result = DeepCopyBoilerplate(jsObject);
        if (result->IsFailure()) return result;
        copy->InObjectPropertyAtPut(i, result, mode);
      }
    }
  } else {
    result = Heap::AllocateFixedArray(copy->NumberOfLocalProperties(NONE));
    if (result->IsFailure()) return result;
    FixedArray* names = FixedArray::cast(result);
    copy->GetLocalPropertyNames(names, 0);
    for (int i = 0; i < names->length(); i++) {
      ASSERT(names->get(i)->IsString());
      String* keyString = String::cast(names->get(i));
      PropertyAttributes attributes =
        copy->GetLocalPropertyAttribute(keyString);
      // Only deep copy fields from the object literal expression.
      // In particular, don't try to copy the length attribute of
      // an array.
      if (attributes != NONE) continue;
      Object* value = copy->GetProperty(keyString, &attributes);
      ASSERT(!value->IsFailure());
      if (value->IsJSObject()) {
        JSObject* jsObject = JSObject::cast(value);
        result = DeepCopyBoilerplate(jsObject);
        if (result->IsFailure()) return result;
        result = copy->SetProperty(keyString, result, NONE);
        if (result->IsFailure()) return result;
      }
    }
  }

  // Deep copy local elements.
  // Pixel elements cannot be created using an object literal.
  ASSERT(!copy->HasPixelElements() && !copy->HasExternalArrayElements());
  switch (copy->GetElementsKind()) {
    case JSObject::FAST_ELEMENTS: {
      FixedArray* elements = FixedArray::cast(copy->elements());
      WriteBarrierMode mode = elements->GetWriteBarrierMode();
      for (int i = 0; i < elements->length(); i++) {
        Object* value = elements->get(i);
        if (value->IsJSObject()) {
          JSObject* jsObject = JSObject::cast(value);
          result = DeepCopyBoilerplate(jsObject);
          if (result->IsFailure()) return result;
          elements->set(i, result, mode);
        }
      }
      break;
    }
    case JSObject::DICTIONARY_ELEMENTS: {
      NumberDictionary* element_dictionary = copy->element_dictionary();
      int capacity = element_dictionary->Capacity();
      for (int i = 0; i < capacity; i++) {
        Object* k = element_dictionary->KeyAt(i);
        if (element_dictionary->IsKey(k)) {
          Object* value = element_dictionary->ValueAt(i);
          if (value->IsJSObject()) {
            JSObject* jsObject = JSObject::cast(value);
            result = DeepCopyBoilerplate(jsObject);
            if (result->IsFailure()) return result;
            element_dictionary->ValueAtPut(i, result);
          }
        }
      }
      break;
    }
    default:
      UNREACHABLE();
      break;
  }
  return copy;
}


static Object* Runtime_CloneLiteralBoilerplate(Arguments args) {
  CONVERT_CHECKED(JSObject, boilerplate, args[0]);
  return DeepCopyBoilerplate(boilerplate);
}


static Object* Runtime_CloneShallowLiteralBoilerplate(Arguments args) {
  CONVERT_CHECKED(JSObject, boilerplate, args[0]);
  return Heap::CopyJSObject(boilerplate);
}


static Handle<Map> ComputeObjectLiteralMap(
    Handle<Context> context,
    Handle<FixedArray> constant_properties,
    bool* is_result_from_cache) {
  int number_of_properties = constant_properties->length() / 2;
  if (FLAG_canonicalize_object_literal_maps) {
    // First find prefix of consecutive symbol keys.
    int number_of_symbol_keys = 0;
    while ((number_of_symbol_keys < number_of_properties) &&
           (constant_properties->get(number_of_symbol_keys*2)->IsSymbol())) {
      number_of_symbol_keys++;
    }
    // Based on the number of prefix symbols key we decide whether
    // to use the map cache in the global context.
    const int kMaxKeys = 10;
    if ((number_of_symbol_keys == number_of_properties) &&
        (number_of_symbol_keys < kMaxKeys)) {
      // Create the fixed array with the key.
      Handle<FixedArray> keys = Factory::NewFixedArray(number_of_symbol_keys);
      for (int i = 0; i < number_of_symbol_keys; i++) {
        keys->set(i, constant_properties->get(i*2));
      }
      *is_result_from_cache = true;
      return Factory::ObjectLiteralMapFromCache(context, keys);
    }
  }
  *is_result_from_cache = false;
  return Factory::CopyMap(
      Handle<Map>(context->object_function()->initial_map()),
      number_of_properties);
}


static Handle<Object> CreateLiteralBoilerplate(
    Handle<FixedArray> literals,
    Handle<FixedArray> constant_properties);


static Handle<Object> CreateObjectLiteralBoilerplate(
    Handle<FixedArray> literals,
    Handle<FixedArray> constant_properties) {
  // Get the global context from the literals array.  This is the
  // context in which the function was created and we use the object
  // function from this context to create the object literal.  We do
  // not use the object function from the current global context
  // because this might be the object function from another context
  // which we should not have access to.
  Handle<Context> context =
      Handle<Context>(JSFunction::GlobalContextFromLiterals(*literals));

  bool is_result_from_cache;
  Handle<Map> map = ComputeObjectLiteralMap(context,
                                            constant_properties,
                                            &is_result_from_cache);

  Handle<JSObject> boilerplate = Factory::NewJSObjectFromMap(map);
  {  // Add the constant properties to the boilerplate.
    int length = constant_properties->length();
    OptimizedObjectForAddingMultipleProperties opt(boilerplate,
                                                   length / 2,
                                                   !is_result_from_cache);
    for (int index = 0; index < length; index +=2) {
      Handle<Object> key(constant_properties->get(index+0));
      Handle<Object> value(constant_properties->get(index+1));
      if (value->IsFixedArray()) {
        // The value contains the constant_properties of a
        // simple object literal.
        Handle<FixedArray> array = Handle<FixedArray>::cast(value);
        value = CreateLiteralBoilerplate(literals, array);
        if (value.is_null()) return value;
      }
      Handle<Object> result;
      uint32_t element_index = 0;
      if (key->IsSymbol()) {
        // If key is a symbol it is not an array element.
        Handle<String> name(String::cast(*key));
        ASSERT(!name->AsArrayIndex(&element_index));
        result = SetProperty(boilerplate, name, value, NONE);
      } else if (Array::IndexFromObject(*key, &element_index)) {
        // Array index (uint32).
        result = SetElement(boilerplate, element_index, value);
      } else {
        // Non-uint32 number.
        ASSERT(key->IsNumber());
        double num = key->Number();
        char arr[100];
        Vector<char> buffer(arr, ARRAY_SIZE(arr));
        const char* str = DoubleToCString(num, buffer);
        Handle<String> name = Factory::NewStringFromAscii(CStrVector(str));
        result = SetProperty(boilerplate, name, value, NONE);
      }
      // If setting the property on the boilerplate throws an
      // exception, the exception is converted to an empty handle in
      // the handle based operations.  In that case, we need to
      // convert back to an exception.
      if (result.is_null()) return result;
    }
  }

  return boilerplate;
}


static Handle<Object> CreateArrayLiteralBoilerplate(
    Handle<FixedArray> literals,
    Handle<FixedArray> elements) {
  // Create the JSArray.
  Handle<JSFunction> constructor(
      JSFunction::GlobalContextFromLiterals(*literals)->array_function());
  Handle<Object> object = Factory::NewJSObject(constructor);

  Handle<Object> copied_elements = Factory::CopyFixedArray(elements);

  Handle<FixedArray> content = Handle<FixedArray>::cast(copied_elements);
  for (int i = 0; i < content->length(); i++) {
    if (content->get(i)->IsFixedArray()) {
      // The value contains the constant_properties of a
      // simple object literal.
      Handle<FixedArray> fa(FixedArray::cast(content->get(i)));
      Handle<Object> result =
        CreateLiteralBoilerplate(literals, fa);
      if (result.is_null()) return result;
      content->set(i, *result);
    }
  }

  // Set the elements.
  Handle<JSArray>::cast(object)->SetContent(*content);
  return object;
}


static Handle<Object> CreateLiteralBoilerplate(
    Handle<FixedArray> literals,
    Handle<FixedArray> array) {
  Handle<FixedArray> elements = CompileTimeValue::GetElements(array);
  switch (CompileTimeValue::GetType(array)) {
    case CompileTimeValue::OBJECT_LITERAL:
      return CreateObjectLiteralBoilerplate(literals, elements);
    case CompileTimeValue::ARRAY_LITERAL:
      return CreateArrayLiteralBoilerplate(literals, elements);
    default:
      UNREACHABLE();
      return Handle<Object>::null();
  }
}


static Object* Runtime_CreateObjectLiteralBoilerplate(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 3);
  // Copy the arguments.
  CONVERT_ARG_CHECKED(FixedArray, literals, 0);
  CONVERT_SMI_CHECKED(literals_index, args[1]);
  CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2);

  Handle<Object> result =
    CreateObjectLiteralBoilerplate(literals, constant_properties);

  if (result.is_null()) return Failure::Exception();

  // Update the functions literal and return the boilerplate.
  literals->set(literals_index, *result);

  return *result;
}


static Object* Runtime_CreateArrayLiteralBoilerplate(Arguments args) {
  // Takes a FixedArray of elements containing the literal elements of
  // the array literal and produces JSArray with those elements.
  // Additionally takes the literals array of the surrounding function
  // which contains the context from which to get the Array function
  // to use for creating the array literal.
  HandleScope scope;
  ASSERT(args.length() == 3);
  CONVERT_ARG_CHECKED(FixedArray, literals, 0);
  CONVERT_SMI_CHECKED(literals_index, args[1]);
  CONVERT_ARG_CHECKED(FixedArray, elements, 2);

  Handle<Object> object = CreateArrayLiteralBoilerplate(literals, elements);
  if (object.is_null()) return Failure::Exception();

  // Update the functions literal and return the boilerplate.
  literals->set(literals_index, *object);
  return *object;
}


static Object* Runtime_CreateObjectLiteral(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 3);
  CONVERT_ARG_CHECKED(FixedArray, literals, 0);
  CONVERT_SMI_CHECKED(literals_index, args[1]);
  CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2);

  // Check if boilerplate exists. If not, create it first.
  Handle<Object> boilerplate(literals->get(literals_index));
  if (*boilerplate == Heap::undefined_value()) {
    boilerplate = CreateObjectLiteralBoilerplate(literals, constant_properties);
    if (boilerplate.is_null()) return Failure::Exception();
    // Update the functions literal and return the boilerplate.
    literals->set(literals_index, *boilerplate);
  }
  return DeepCopyBoilerplate(JSObject::cast(*boilerplate));
}


static Object* Runtime_CreateObjectLiteralShallow(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 3);
  CONVERT_ARG_CHECKED(FixedArray, literals, 0);
  CONVERT_SMI_CHECKED(literals_index, args[1]);
  CONVERT_ARG_CHECKED(FixedArray, constant_properties, 2);

  // Check if boilerplate exists. If not, create it first.
  Handle<Object> boilerplate(literals->get(literals_index));
  if (*boilerplate == Heap::undefined_value()) {
    boilerplate = CreateObjectLiteralBoilerplate(literals, constant_properties);
    if (boilerplate.is_null()) return Failure::Exception();
    // Update the functions literal and return the boilerplate.
    literals->set(literals_index, *boilerplate);
  }
  return Heap::CopyJSObject(JSObject::cast(*boilerplate));
}


static Object* Runtime_CreateArrayLiteral(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 3);
  CONVERT_ARG_CHECKED(FixedArray, literals, 0);
  CONVERT_SMI_CHECKED(literals_index, args[1]);
  CONVERT_ARG_CHECKED(FixedArray, elements, 2);

  // Check if boilerplate exists. If not, create it first.
  Handle<Object> boilerplate(literals->get(literals_index));
  if (*boilerplate == Heap::undefined_value()) {
    boilerplate = CreateArrayLiteralBoilerplate(literals, elements);
    if (boilerplate.is_null()) return Failure::Exception();
    // Update the functions literal and return the boilerplate.
    literals->set(literals_index, *boilerplate);
  }
  return DeepCopyBoilerplate(JSObject::cast(*boilerplate));
}


static Object* Runtime_CreateArrayLiteralShallow(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 3);
  CONVERT_ARG_CHECKED(FixedArray, literals, 0);
  CONVERT_SMI_CHECKED(literals_index, args[1]);
  CONVERT_ARG_CHECKED(FixedArray, elements, 2);

  // Check if boilerplate exists. If not, create it first.
  Handle<Object> boilerplate(literals->get(literals_index));
  if (*boilerplate == Heap::undefined_value()) {
    boilerplate = CreateArrayLiteralBoilerplate(literals, elements);
    if (boilerplate.is_null()) return Failure::Exception();
    // Update the functions literal and return the boilerplate.
    literals->set(literals_index, *boilerplate);
  }
  return Heap::CopyJSObject(JSObject::cast(*boilerplate));
}


static Object* Runtime_CreateCatchExtensionObject(Arguments args) {
  ASSERT(args.length() == 2);
  CONVERT_CHECKED(String, key, args[0]);
  Object* value = args[1];
  // Create a catch context extension object.
  JSFunction* constructor =
      Top::context()->global_context()->context_extension_function();
  Object* object = Heap::AllocateJSObject(constructor);
  if (object->IsFailure()) return object;
  // Assign the exception value to the catch variable and make sure
  // that the catch variable is DontDelete.
  value = JSObject::cast(object)->SetProperty(key, value, DONT_DELETE);
  if (value->IsFailure()) return value;
  return object;
}


static Object* Runtime_ClassOf(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);
  Object* obj = args[0];
  if (!obj->IsJSObject()) return Heap::null_value();
  return JSObject::cast(obj)->class_name();
}


static Object* Runtime_IsInPrototypeChain(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);
  // See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8).
  Object* O = args[0];
  Object* V = args[1];
  while (true) {
    Object* prototype = V->GetPrototype();
    if (prototype->IsNull()) return Heap::false_value();
    if (O == prototype) return Heap::true_value();
    V = prototype;
  }
}


// Inserts an object as the hidden prototype of another object.
static Object* Runtime_SetHiddenPrototype(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);
  CONVERT_CHECKED(JSObject, jsobject, args[0]);
  CONVERT_CHECKED(JSObject, proto, args[1]);

  // Sanity checks.  The old prototype (that we are replacing) could
  // theoretically be null, but if it is not null then check that we
  // didn't already install a hidden prototype here.
  RUNTIME_ASSERT(!jsobject->GetPrototype()->IsHeapObject() ||
    !HeapObject::cast(jsobject->GetPrototype())->map()->is_hidden_prototype());
  RUNTIME_ASSERT(!proto->map()->is_hidden_prototype());

  // Allocate up front before we start altering state in case we get a GC.
  Object* map_or_failure = proto->map()->CopyDropTransitions();
  if (map_or_failure->IsFailure()) return map_or_failure;
  Map* new_proto_map = Map::cast(map_or_failure);

  map_or_failure = jsobject->map()->CopyDropTransitions();
  if (map_or_failure->IsFailure()) return map_or_failure;
  Map* new_map = Map::cast(map_or_failure);

  // Set proto's prototype to be the old prototype of the object.
  new_proto_map->set_prototype(jsobject->GetPrototype());
  proto->set_map(new_proto_map);
  new_proto_map->set_is_hidden_prototype();

  // Set the object's prototype to proto.
  new_map->set_prototype(proto);
  jsobject->set_map(new_map);

  return Heap::undefined_value();
}


static Object* Runtime_IsConstructCall(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 0);
  JavaScriptFrameIterator it;
  return Heap::ToBoolean(it.frame()->IsConstructor());
}


static Object* Runtime_RegExpCompile(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 3);
  CONVERT_ARG_CHECKED(JSRegExp, re, 0);
  CONVERT_ARG_CHECKED(String, pattern, 1);
  CONVERT_ARG_CHECKED(String, flags, 2);
  Handle<Object> result = RegExpImpl::Compile(re, pattern, flags);
  if (result.is_null()) return Failure::Exception();
  return *result;
}


static Object* Runtime_CreateApiFunction(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);
  CONVERT_ARG_CHECKED(FunctionTemplateInfo, data, 0);
  return *Factory::CreateApiFunction(data);
}


static Object* Runtime_IsTemplate(Arguments args) {
  ASSERT(args.length() == 1);
  Object* arg = args[0];
  bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo();
  return Heap::ToBoolean(result);
}


static Object* Runtime_GetTemplateField(Arguments args) {
  ASSERT(args.length() == 2);
  CONVERT_CHECKED(HeapObject, templ, args[0]);
  CONVERT_CHECKED(Smi, field, args[1]);
  int index = field->value();
  int offset = index * kPointerSize + HeapObject::kHeaderSize;
  InstanceType type = templ->map()->instance_type();
  RUNTIME_ASSERT(type ==  FUNCTION_TEMPLATE_INFO_TYPE ||
                 type ==  OBJECT_TEMPLATE_INFO_TYPE);
  RUNTIME_ASSERT(offset > 0);
  if (type == FUNCTION_TEMPLATE_INFO_TYPE) {
    RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize);
  } else {
    RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize);
  }
  return *HeapObject::RawField(templ, offset);
}


static Object* Runtime_DisableAccessChecks(Arguments args) {
  ASSERT(args.length() == 1);
  CONVERT_CHECKED(HeapObject, object, args[0]);
  Map* old_map = object->map();
  bool needs_access_checks = old_map->is_access_check_needed();
  if (needs_access_checks) {
    // Copy map so it won't interfere constructor's initial map.
    Object* new_map = old_map->CopyDropTransitions();
    if (new_map->IsFailure()) return new_map;

    Map::cast(new_map)->set_is_access_check_needed(false);
    object->set_map(Map::cast(new_map));
  }
  return needs_access_checks ? Heap::true_value() : Heap::false_value();
}


static Object* Runtime_EnableAccessChecks(Arguments args) {
  ASSERT(args.length() == 1);
  CONVERT_CHECKED(HeapObject, object, args[0]);
  Map* old_map = object->map();
  if (!old_map->is_access_check_needed()) {
    // Copy map so it won't interfere constructor's initial map.
    Object* new_map = old_map->CopyDropTransitions();
    if (new_map->IsFailure()) return new_map;

    Map::cast(new_map)->set_is_access_check_needed(true);
    object->set_map(Map::cast(new_map));
  }
  return Heap::undefined_value();
}


static Object* ThrowRedeclarationError(const char* type, Handle<String> name) {
  HandleScope scope;
  Handle<Object> type_handle = Factory::NewStringFromAscii(CStrVector(type));
  Handle<Object> args[2] = { type_handle, name };
  Handle<Object> error =
      Factory::NewTypeError("redeclaration", HandleVector(args, 2));
  return Top::Throw(*error);
}


static Object* Runtime_DeclareGlobals(Arguments args) {
  HandleScope scope;
  Handle<GlobalObject> global = Handle<GlobalObject>(Top::context()->global());

  Handle<Context> context = args.at<Context>(0);
  CONVERT_ARG_CHECKED(FixedArray, pairs, 1);
  bool is_eval = Smi::cast(args[2])->value() == 1;

  // Compute the property attributes. According to ECMA-262, section
  // 13, page 71, the property must be read-only and
  // non-deletable. However, neither SpiderMonkey nor KJS creates the
  // property as read-only, so we don't either.
  PropertyAttributes base = is_eval ? NONE : DONT_DELETE;

  // Traverse the name/value pairs and set the properties.
  int length = pairs->length();
  for (int i = 0; i < length; i += 2) {
    HandleScope scope;
    Handle<String> name(String::cast(pairs->get(i)));
    Handle<Object> value(pairs->get(i + 1));

    // We have to declare a global const property. To capture we only
    // assign to it when evaluating the assignment for "const x =
    // <expr>" the initial value is the hole.
    bool is_const_property = value->IsTheHole();

    if (value->IsUndefined() || is_const_property) {
      // Lookup the property in the global object, and don't set the
      // value of the variable if the property is already there.
      LookupResult lookup;
      global->Lookup(*name, &lookup);
      if (lookup.IsProperty()) {
        // Determine if the property is local by comparing the holder
        // against the global object. The information will be used to
        // avoid throwing re-declaration errors when declaring
        // variables or constants that exist in the prototype chain.
        bool is_local = (*global == lookup.holder());
        // Get the property attributes and determine if the property is
        // read-only.
        PropertyAttributes attributes = global->GetPropertyAttribute(*name);
        bool is_read_only = (attributes & READ_ONLY) != 0;
        if (lookup.type() == INTERCEPTOR) {
          // If the interceptor says the property is there, we
          // just return undefined without overwriting the property.
          // Otherwise, we continue to setting the property.
          if (attributes != ABSENT) {
            // Check if the existing property conflicts with regards to const.
            if (is_local && (is_read_only || is_const_property)) {
              const char* type = (is_read_only) ? "const" : "var";
              return ThrowRedeclarationError(type, name);
            };
            // The property already exists without conflicting: Go to
            // the next declaration.
            continue;
          }
          // Fall-through and introduce the absent property by using
          // SetProperty.
        } else {
          if (is_local && (is_read_only || is_const_property)) {
            const char* type = (is_read_only) ? "const" : "var";
            return ThrowRedeclarationError(type, name);
          }
          // The property already exists without conflicting: Go to
          // the next declaration.
          continue;
        }
      }
    } else {
      // Copy the function and update its context. Use it as value.
      Handle<JSFunction> boilerplate = Handle<JSFunction>::cast(value);
      Handle<JSFunction> function =
          Factory::NewFunctionFromBoilerplate(boilerplate, context, TENURED);
      value = function;
    }

    LookupResult lookup;
    global->LocalLookup(*name, &lookup);

    PropertyAttributes attributes = is_const_property
        ? static_cast<PropertyAttributes>(base | READ_ONLY)
        : base;

    if (lookup.IsProperty()) {
      // There's a local property that we need to overwrite because
      // we're either declaring a function or there's an interceptor
      // that claims the property is absent.

      // Check for conflicting re-declarations. We cannot have
      // conflicting types in case of intercepted properties because
      // they are absent.
      if (lookup.type() != INTERCEPTOR &&
          (lookup.IsReadOnly() || is_const_property)) {
        const char* type = (lookup.IsReadOnly()) ? "const" : "var";
        return ThrowRedeclarationError(type, name);
      }
      SetProperty(global, name, value, attributes);
    } else {
      // If a property with this name does not already exist on the
      // global object add the property locally.  We take special
      // precautions to always add it as a local property even in case
      // of callbacks in the prototype chain (this rules out using
      // SetProperty).  Also, we must use the handle-based version to
      // avoid GC issues.
      IgnoreAttributesAndSetLocalProperty(global, name, value, attributes);
    }
  }

  return Heap::undefined_value();
}


static Object* Runtime_DeclareContextSlot(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 4);

  CONVERT_ARG_CHECKED(Context, context, 0);
  Handle<String> name(String::cast(args[1]));
  PropertyAttributes mode =
      static_cast<PropertyAttributes>(Smi::cast(args[2])->value());
  ASSERT(mode == READ_ONLY || mode == NONE);
  Handle<Object> initial_value(args[3]);

  // Declarations are always done in the function context.
  context = Handle<Context>(context->fcontext());

  int index;
  PropertyAttributes attributes;
  ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
  Handle<Object> holder =
      context->Lookup(name, flags, &index, &attributes);

  if (attributes != ABSENT) {
    // The name was declared before; check for conflicting
    // re-declarations: This is similar to the code in parser.cc in
    // the AstBuildingParser::Declare function.
    if (((attributes & READ_ONLY) != 0) || (mode == READ_ONLY)) {
      // Functions are not read-only.
      ASSERT(mode != READ_ONLY || initial_value->IsTheHole());
      const char* type = ((attributes & READ_ONLY) != 0) ? "const" : "var";
      return ThrowRedeclarationError(type, name);
    }

    // Initialize it if necessary.
    if (*initial_value != NULL) {
      if (index >= 0) {
        // The variable or constant context slot should always be in
        // the function context or the arguments object.
        if (holder->IsContext()) {
          ASSERT(holder.is_identical_to(context));
          if (((attributes & READ_ONLY) == 0) ||
              context->get(index)->IsTheHole()) {
            context->set(index, *initial_value);
          }
        } else {
          Handle<JSObject>::cast(holder)->SetElement(index, *initial_value);
        }
      } else {
        // Slow case: The property is not in the FixedArray part of the context.
        Handle<JSObject> context_ext = Handle<JSObject>::cast(holder);
        SetProperty(context_ext, name, initial_value, mode);
      }
    }

  } else {
    // The property is not in the function context. It needs to be
    // "declared" in the function context's extension context, or in the
    // global context.
    Handle<JSObject> context_ext;
    if (context->has_extension()) {
      // The function context's extension context exists - use it.
      context_ext = Handle<JSObject>(context->extension());
    } else {
      // The function context's extension context does not exists - allocate
      // it.
      context_ext = Factory::NewJSObject(Top::context_extension_function());
      // And store it in the extension slot.
      context->set_extension(*context_ext);
    }
    ASSERT(*context_ext != NULL);

    // Declare the property by setting it to the initial value if provided,
    // or undefined, and use the correct mode (e.g. READ_ONLY attribute for
    // constant declarations).
    ASSERT(!context_ext->HasLocalProperty(*name));
    Handle<Object> value(Heap::undefined_value());
    if (*initial_value != NULL) value = initial_value;
    SetProperty(context_ext, name, value, mode);
    ASSERT(context_ext->GetLocalPropertyAttribute(*name) == mode);
  }

  return Heap::undefined_value();
}


static Object* Runtime_InitializeVarGlobal(Arguments args) {
  NoHandleAllocation nha;

  // Determine if we need to assign to the variable if it already
  // exists (based on the number of arguments).
  RUNTIME_ASSERT(args.length() == 1 || args.length() == 2);
  bool assign = args.length() == 2;

  CONVERT_ARG_CHECKED(String, name, 0);
  GlobalObject* global = Top::context()->global();

  // According to ECMA-262, section 12.2, page 62, the property must
  // not be deletable.
  PropertyAttributes attributes = DONT_DELETE;

  // Lookup the property locally in the global object. If it isn't
  // there, there is a property with this name in the prototype chain.
  // We follow Safari and Firefox behavior and only set the property
  // locally if there is an explicit initialization value that we have
  // to assign to the property. When adding the property we take
  // special precautions to always add it as a local property even in
  // case of callbacks in the prototype chain (this rules out using
  // SetProperty).  We have IgnoreAttributesAndSetLocalProperty for
  // this.
  // Note that objects can have hidden prototypes, so we need to traverse
  // the whole chain of hidden prototypes to do a 'local' lookup.
  JSObject* real_holder = global;
  LookupResult lookup;
  while (true) {
    real_holder->LocalLookup(*name, &lookup);
    if (lookup.IsProperty()) {
      // Determine if this is a redeclaration of something read-only.
      if (lookup.IsReadOnly()) {
        // If we found readonly property on one of hidden prototypes,
        // just shadow it.
        if (real_holder != Top::context()->global()) break;
        return ThrowRedeclarationError("const", name);
      }

      // Determine if this is a redeclaration of an intercepted read-only
      // property and figure out if the property exists at all.
      bool found = true;
      PropertyType type = lookup.type();
      if (type == INTERCEPTOR) {
        HandleScope handle_scope;
        Handle<JSObject> holder(real_holder);
        PropertyAttributes intercepted = holder->GetPropertyAttribute(*name);
        real_holder = *holder;
        if (intercepted == ABSENT) {
          // The interceptor claims the property isn't there. We need to
          // make sure to introduce it.
          found = false;
        } else if ((intercepted & READ_ONLY) != 0) {
          // The property is present, but read-only. Since we're trying to
          // overwrite it with a variable declaration we must throw a
          // re-declaration error.  However if we found readonly property
          // on one of hidden prototypes, just shadow it.
          if (real_holder != Top::context()->global()) break;
          return ThrowRedeclarationError("const", name);
        }
      }

      if (found && !assign) {
        // The global property is there and we're not assigning any value
        // to it. Just return.
        return Heap::undefined_value();
      }

      // Assign the value (or undefined) to the property.
      Object* value = (assign) ? args[1] : Heap::undefined_value();
      return real_holder->SetProperty(&lookup, *name, value, attributes);
    }

    Object* proto = real_holder->GetPrototype();
    if (!proto->IsJSObject())
      break;

    if (!JSObject::cast(proto)->map()->is_hidden_prototype())
      break;

    real_holder = JSObject::cast(proto);
  }

  global = Top::context()->global();
  if (assign) {
    return global->IgnoreAttributesAndSetLocalProperty(*name,
                                                       args[1],
                                                       attributes);
  }
  return Heap::undefined_value();
}


static Object* Runtime_InitializeConstGlobal(Arguments args) {
  // All constants are declared with an initial value. The name
  // of the constant is the first argument and the initial value
  // is the second.
  RUNTIME_ASSERT(args.length() == 2);
  CONVERT_ARG_CHECKED(String, name, 0);
  Handle<Object> value = args.at<Object>(1);

  // Get the current global object from top.
  GlobalObject* global = Top::context()->global();

  // According to ECMA-262, section 12.2, page 62, the property must
  // not be deletable. Since it's a const, it must be READ_ONLY too.
  PropertyAttributes attributes =
      static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);

  // Lookup the property locally in the global object. If it isn't
  // there, we add the property and take special precautions to always
  // add it as a local property even in case of callbacks in the
  // prototype chain (this rules out using SetProperty).
  // We use IgnoreAttributesAndSetLocalProperty instead
  LookupResult lookup;
  global->LocalLookup(*name, &lookup);
  if (!lookup.IsProperty()) {
    return global->IgnoreAttributesAndSetLocalProperty(*name,
                                                       *value,
                                                       attributes);
  }

  // Determine if this is a redeclaration of something not
  // read-only. In case the result is hidden behind an interceptor we
  // need to ask it for the property attributes.
  if (!lookup.IsReadOnly()) {
    if (lookup.type() != INTERCEPTOR) {
      return ThrowRedeclarationError("var", name);
    }

    PropertyAttributes intercepted = global->GetPropertyAttribute(*name);

    // Throw re-declaration error if the intercepted property is present
    // but not read-only.
    if (intercepted != ABSENT && (intercepted & READ_ONLY) == 0) {
      return ThrowRedeclarationError("var", name);
    }

    // Restore global object from context (in case of GC) and continue
    // with setting the value because the property is either absent or
    // read-only. We also have to do redo the lookup.
    global = Top::context()->global();

    // BUG 1213579: Handle the case where we have to set a read-only
    // property through an interceptor and only do it if it's
    // uninitialized, e.g. the hole. Nirk...
    global->SetProperty(*name, *value, attributes);
    return *value;
  }

  // Set the value, but only we're assigning the initial value to a
  // constant. For now, we determine this by checking if the
  // current value is the hole.
  PropertyType type = lookup.type();
  if (type == FIELD) {
    FixedArray* properties = global->properties();
    int index = lookup.GetFieldIndex();
    if (properties->get(index)->IsTheHole()) {
      properties->set(index, *value);
    }
  } else if (type == NORMAL) {
    if (global->GetNormalizedProperty(&lookup)->IsTheHole()) {
      global->SetNormalizedProperty(&lookup, *value);
    }
  } else {
    // Ignore re-initialization of constants that have already been
    // assigned a function value.
    ASSERT(lookup.IsReadOnly() && type == CONSTANT_FUNCTION);
  }

  // Use the set value as the result of the operation.
  return *value;
}


static Object* Runtime_InitializeConstContextSlot(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 3);

  Handle<Object> value(args[0]);
  ASSERT(!value->IsTheHole());
  CONVERT_ARG_CHECKED(Context, context, 1);
  Handle<String> name(String::cast(args[2]));

  // Initializations are always done in the function context.
  context = Handle<Context>(context->fcontext());

  int index;
  PropertyAttributes attributes;
  ContextLookupFlags flags = FOLLOW_CHAINS;
  Handle<Object> holder =
      context->Lookup(name, flags, &index, &attributes);

  // In most situations, the property introduced by the const
  // declaration should be present in the context extension object.
  // However, because declaration and initialization are separate, the
  // property might have been deleted (if it was introduced by eval)
  // before we reach the initialization point.
  //
  // Example:
  //
  //    function f() { eval("delete x; const x;"); }
  //
  // In that case, the initialization behaves like a normal assignment
  // to property 'x'.
  if (index >= 0) {
    // Property was found in a context.
    if (holder->IsContext()) {
      // The holder cannot be the function context.  If it is, there
      // should have been a const redeclaration error when declaring
      // the const property.
      ASSERT(!holder.is_identical_to(context));
      if ((attributes & READ_ONLY) == 0) {
        Handle<Context>::cast(holder)->set(index, *value);
      }
    } else {
      // The holder is an arguments object.
      ASSERT((attributes & READ_ONLY) == 0);
      Handle<JSObject>::cast(holder)->SetElement(index, *value);
    }
    return *value;
  }

  // The property could not be found, we introduce it in the global
  // context.
  if (attributes == ABSENT) {
    Handle<JSObject> global = Handle<JSObject>(Top::context()->global());
    SetProperty(global, name, value, NONE);
    return *value;
  }

  // The property was present in a context extension object.
  Handle<JSObject> context_ext = Handle<JSObject>::cast(holder);

  if (*context_ext == context->extension()) {
    // This is the property that was introduced by the const
    // declaration.  Set it if it hasn't been set before.  NOTE: We
    // cannot use GetProperty() to get the current value as it
    // 'unholes' the value.
    LookupResult lookup;
    context_ext->LocalLookupRealNamedProperty(*name, &lookup);
    ASSERT(lookup.IsProperty());  // the property was declared
    ASSERT(lookup.IsReadOnly());  // and it was declared as read-only

    PropertyType type = lookup.type();
    if (type == FIELD) {
      FixedArray* properties = context_ext->properties();
      int index = lookup.GetFieldIndex();
      if (properties->get(index)->IsTheHole()) {
        properties->set(index, *value);
      }
    } else if (type == NORMAL) {
      if (context_ext->GetNormalizedProperty(&lookup)->IsTheHole()) {
        context_ext->SetNormalizedProperty(&lookup, *value);
      }
    } else {
      // We should not reach here. Any real, named property should be
      // either a field or a dictionary slot.
      UNREACHABLE();
    }
  } else {
    // The property was found in a different context extension object.
    // Set it if it is not a read-only property.
    if ((attributes & READ_ONLY) == 0) {
      Handle<Object> set = SetProperty(context_ext, name, value, attributes);
      // Setting a property might throw an exception.  Exceptions
      // are converted to empty handles in handle operations.  We
      // need to convert back to exceptions here.
      if (set.is_null()) {
        ASSERT(Top::has_pending_exception());
        return Failure::Exception();
      }
    }
  }

  return *value;
}


static Object* Runtime_OptimizeObjectForAddingMultipleProperties(
    Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 2);
  CONVERT_ARG_CHECKED(JSObject, object, 0);
  CONVERT_SMI_CHECKED(properties, args[1]);
  if (object->HasFastProperties()) {
    NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties);
  }
  return *object;
}


static Object* Runtime_TransformToFastProperties(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);
  CONVERT_ARG_CHECKED(JSObject, object, 0);
  if (!object->HasFastProperties() && !object->IsGlobalObject()) {
    TransformToFastProperties(object, 0);
  }
  return *object;
}


static Object* Runtime_RegExpExec(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 4);
  CONVERT_ARG_CHECKED(JSRegExp, regexp, 0);
  CONVERT_ARG_CHECKED(String, subject, 1);
  // Due to the way the JS calls are constructed this must be less than the
  // length of a string, i.e. it is always a Smi.  We check anyway for security.
  CONVERT_SMI_CHECKED(index, args[2]);
  CONVERT_ARG_CHECKED(JSArray, last_match_info, 3);
  RUNTIME_ASSERT(last_match_info->HasFastElements());
  RUNTIME_ASSERT(index >= 0);
  RUNTIME_ASSERT(index <= subject->length());
  Handle<Object> result = RegExpImpl::Exec(regexp,
                                           subject,
                                           index,
                                           last_match_info);
  if (result.is_null()) return Failure::Exception();
  return *result;
}


static Object* Runtime_MaterializeRegExpLiteral(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 4);
  CONVERT_ARG_CHECKED(FixedArray, literals, 0);
  int index = Smi::cast(args[1])->value();
  Handle<String> pattern = args.at<String>(2);
  Handle<String> flags = args.at<String>(3);

  // Get the RegExp function from the context in the literals array.
  // This is the RegExp function from the context in which the
  // function was created.  We do not use the RegExp function from the
  // current global context because this might be the RegExp function
  // from another context which we should not have access to.
  Handle<JSFunction> constructor =
      Handle<JSFunction>(
          JSFunction::GlobalContextFromLiterals(*literals)->regexp_function());
  // Compute the regular expression literal.
  bool has_pending_exception;
  Handle<Object> regexp =
      RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags,
                                      &has_pending_exception);
  if (has_pending_exception) {
    ASSERT(Top::has_pending_exception());
    return Failure::Exception();
  }
  literals->set(index, *regexp);
  return *regexp;
}


static Object* Runtime_FunctionGetName(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(JSFunction, f, args[0]);
  return f->shared()->name();
}


static Object* Runtime_FunctionSetName(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_CHECKED(JSFunction, f, args[0]);
  CONVERT_CHECKED(String, name, args[1]);
  f->shared()->set_name(name);
  return Heap::undefined_value();
}


static Object* Runtime_FunctionGetScript(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(JSFunction, fun, args[0]);
  Handle<Object> script = Handle<Object>(fun->shared()->script());
  if (!script->IsScript()) return Heap::undefined_value();

  return *GetScriptWrapper(Handle<Script>::cast(script));
}


static Object* Runtime_FunctionGetSourceCode(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(JSFunction, f, args[0]);
  return f->shared()->GetSourceCode();
}


static Object* Runtime_FunctionGetScriptSourcePosition(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(JSFunction, fun, args[0]);
  int pos = fun->shared()->start_position();
  return Smi::FromInt(pos);
}


static Object* Runtime_FunctionGetPositionForOffset(Arguments args) {
  ASSERT(args.length() == 2);

  CONVERT_CHECKED(JSFunction, fun, args[0]);
  CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]);

  Code* code = fun->code();
  RUNTIME_ASSERT(0 <= offset && offset < code->Size());

  Address pc = code->address() + offset;
  return Smi::FromInt(fun->code()->SourcePosition(pc));
}



static Object* Runtime_FunctionSetInstanceClassName(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_CHECKED(JSFunction, fun, args[0]);
  CONVERT_CHECKED(String, name, args[1]);
  fun->SetInstanceClassName(name);
  return Heap::undefined_value();
}


static Object* Runtime_FunctionSetLength(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_CHECKED(JSFunction, fun, args[0]);
  CONVERT_CHECKED(Smi, length, args[1]);
  fun->shared()->set_length(length->value());
  return length;
}


static Object* Runtime_FunctionSetPrototype(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_CHECKED(JSFunction, fun, args[0]);
  Object* obj = Accessors::FunctionSetPrototype(fun, args[1], NULL);
  if (obj->IsFailure()) return obj;
  return args[0];  // return TOS
}


static Object* Runtime_FunctionIsAPIFunction(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(JSFunction, f, args[0]);
  // The function_data field of the shared function info is used exclusively by
  // the API.
  return !f->shared()->function_data()->IsUndefined() ? Heap::true_value()
                                                      : Heap::false_value();
}

static Object* Runtime_FunctionIsBuiltin(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(JSFunction, f, args[0]);
  return f->IsBuiltin() ? Heap::true_value() : Heap::false_value();
}


static Object* Runtime_SetCode(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 2);

  CONVERT_ARG_CHECKED(JSFunction, target, 0);
  Handle<Object> code = args.at<Object>(1);

  Handle<Context> context(target->context());

  if (!code->IsNull()) {
    RUNTIME_ASSERT(code->IsJSFunction());
    Handle<JSFunction> fun = Handle<JSFunction>::cast(code);
    SetExpectedNofProperties(target, fun->shared()->expected_nof_properties());
    if (!fun->is_compiled() && !CompileLazy(fun, KEEP_EXCEPTION)) {
      return Failure::Exception();
    }
    // Set the code, formal parameter count, and the length of the target
    // function.
    target->set_code(fun->code());
    target->shared()->set_length(fun->shared()->length());
    target->shared()->set_formal_parameter_count(
        fun->shared()->formal_parameter_count());
    // Set the source code of the target function to undefined.
    // SetCode is only used for built-in constructors like String,
    // Array, and Object, and some web code
    // doesn't like seeing source code for constructors.
    target->shared()->set_script(Heap::undefined_value());
    // Clear the optimization hints related to the compiled code as these are no
    // longer valid when the code is overwritten.
    target->shared()->ClearThisPropertyAssignmentsInfo();
    context = Handle<Context>(fun->context());

    // Make sure we get a fresh copy of the literal vector to avoid
    // cross context contamination.
    int number_of_literals = fun->NumberOfLiterals();
    Handle<FixedArray> literals =
        Factory::NewFixedArray(number_of_literals, TENURED);
    if (number_of_literals > 0) {
      // Insert the object, regexp and array functions in the literals
      // array prefix.  These are the functions that will be used when
      // creating object, regexp and array literals.
      literals->set(JSFunction::kLiteralGlobalContextIndex,
                    context->global_context());
    }
    target->set_literals(*literals, SKIP_WRITE_BARRIER);
  }

  target->set_context(*context);
  return *target;
}


static Object* CharCodeAt(String* subject, Object* index) {
  uint32_t i = 0;
  if (!Array::IndexFromObject(index, &i)) return Heap::nan_value();
  // Flatten the string.  If someone wants to get a char at an index
  // in a cons string, it is likely that more indices will be
  // accessed.
  Object* flat = subject->TryFlatten();
  if (flat->IsFailure()) return flat;
  subject = String::cast(flat);
  if (i >= static_cast<uint32_t>(subject->length())) {
    return Heap::nan_value();
  }
  return Smi::FromInt(subject->Get(i));
}


static Object* Runtime_StringCharCodeAt(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_CHECKED(String, subject, args[0]);
  Object* index = args[1];
  return CharCodeAt(subject, index);
}


static Object* Runtime_CharFromCode(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);
  uint32_t code;
  if (Array::IndexFromObject(args[0], &code)) {
    if (code <= 0xffff) {
      return Heap::LookupSingleCharacterStringFromCode(code);
    }
  }
  return Heap::empty_string();
}

// Forward declarations.
static const int kStringBuilderConcatHelperLengthBits = 11;
static const int kStringBuilderConcatHelperPositionBits = 19;

template <typename schar>
static inline void StringBuilderConcatHelper(String*,
                                             schar*,
                                             FixedArray*,
                                             int);

typedef BitField<int, 0, 11> StringBuilderSubstringLength;
typedef BitField<int, 11, 19> StringBuilderSubstringPosition;

class ReplacementStringBuilder {
 public:
  ReplacementStringBuilder(Handle<String> subject, int estimated_part_count)
      : subject_(subject),
        parts_(Factory::NewFixedArray(estimated_part_count)),
        part_count_(0),
        character_count_(0),
        is_ascii_(subject->IsAsciiRepresentation()) {
    // Require a non-zero initial size. Ensures that doubling the size to
    // extend the array will work.
    ASSERT(estimated_part_count > 0);
  }

  void EnsureCapacity(int elements) {
    int length = parts_->length();
    int required_length = part_count_ + elements;
    if (length < required_length) {
      int new_length = length;
      do {
        new_length *= 2;
      } while (new_length < required_length);
      Handle<FixedArray> extended_array =
          Factory::NewFixedArray(new_length);
      parts_->CopyTo(0, *extended_array, 0, part_count_);
      parts_ = extended_array;
    }
  }

  void AddSubjectSlice(int from, int to) {
    ASSERT(from >= 0);
    int length = to - from;
    ASSERT(length > 0);
    // Can we encode the slice in 11 bits for length and 19 bits for
    // start position - as used by StringBuilderConcatHelper?
    if (StringBuilderSubstringLength::is_valid(length) &&
        StringBuilderSubstringPosition::is_valid(from)) {
      int encoded_slice = StringBuilderSubstringLength::encode(length) |
          StringBuilderSubstringPosition::encode(from);
      AddElement(Smi::FromInt(encoded_slice));
    } else {
      // Otherwise encode as two smis.
      AddElement(Smi::FromInt(-length));
      AddElement(Smi::FromInt(from));
    }
    IncrementCharacterCount(length);
  }


  void AddString(Handle<String> string) {
    int length = string->length();
    ASSERT(length > 0);
    AddElement(*string);
    if (!string->IsAsciiRepresentation()) {
      is_ascii_ = false;
    }
    IncrementCharacterCount(length);
  }


  Handle<String> ToString() {
    if (part_count_ == 0) {
      return Factory::empty_string();
    }

    Handle<String> joined_string;
    if (is_ascii_) {
      joined_string = NewRawAsciiString(character_count_);
      AssertNoAllocation no_alloc;
      SeqAsciiString* seq = SeqAsciiString::cast(*joined_string);
      char* char_buffer = seq->GetChars();
      StringBuilderConcatHelper(*subject_,
                                char_buffer,
                                *parts_,
                                part_count_);
    } else {
      // Non-ASCII.
      joined_string = NewRawTwoByteString(character_count_);
      AssertNoAllocation no_alloc;
      SeqTwoByteString* seq = SeqTwoByteString::cast(*joined_string);
      uc16* char_buffer = seq->GetChars();
      StringBuilderConcatHelper(*subject_,
                                char_buffer,
                                *parts_,
                                part_count_);
    }
    return joined_string;
  }


  void IncrementCharacterCount(int by) {
    if (character_count_ > Smi::kMaxValue - by) {
      V8::FatalProcessOutOfMemory("String.replace result too large.");
    }
    character_count_ += by;
  }

 private:

  Handle<String> NewRawAsciiString(int size) {
    CALL_HEAP_FUNCTION(Heap::AllocateRawAsciiString(size), String);
  }


  Handle<String> NewRawTwoByteString(int size) {
    CALL_HEAP_FUNCTION(Heap::AllocateRawTwoByteString(size), String);
  }


  void AddElement(Object* element) {
    ASSERT(element->IsSmi() || element->IsString());
    ASSERT(parts_->length() > part_count_);
    parts_->set(part_count_, element);
    part_count_++;
  }

  Handle<String> subject_;
  Handle<FixedArray> parts_;
  int part_count_;
  int character_count_;
  bool is_ascii_;
};


class CompiledReplacement {
 public:
  CompiledReplacement()
      : parts_(1), replacement_substrings_(0) {}

  void Compile(Handle<String> replacement,
               int capture_count,
               int subject_length);

  void Apply(ReplacementStringBuilder* builder,
             int match_from,
             int match_to,
             Handle<JSArray> last_match_info);

  // Number of distinct parts of the replacement pattern.
  int parts() {
    return parts_.length();
  }
 private:
  enum PartType {
    SUBJECT_PREFIX = 1,
    SUBJECT_SUFFIX,
    SUBJECT_CAPTURE,
    REPLACEMENT_SUBSTRING,
    REPLACEMENT_STRING,

    NUMBER_OF_PART_TYPES
  };

  struct ReplacementPart {
    static inline ReplacementPart SubjectMatch() {
      return ReplacementPart(SUBJECT_CAPTURE, 0);
    }
    static inline ReplacementPart SubjectCapture(int capture_index) {
      return ReplacementPart(SUBJECT_CAPTURE, capture_index);
    }
    static inline ReplacementPart SubjectPrefix() {
      return ReplacementPart(SUBJECT_PREFIX, 0);
    }
    static inline ReplacementPart SubjectSuffix(int subject_length) {
      return ReplacementPart(SUBJECT_SUFFIX, subject_length);
    }
    static inline ReplacementPart ReplacementString() {
      return ReplacementPart(REPLACEMENT_STRING, 0);
    }
    static inline ReplacementPart ReplacementSubString(int from, int to) {
      ASSERT(from >= 0);
      ASSERT(to > from);
      return ReplacementPart(-from, to);
    }

    // If tag <= 0 then it is the negation of a start index of a substring of
    // the replacement pattern, otherwise it's a value from PartType.
    ReplacementPart(int tag, int data)
        : tag(tag), data(data) {
      // Must be non-positive or a PartType value.
      ASSERT(tag < NUMBER_OF_PART_TYPES);
    }
    // Either a value of PartType or a non-positive number that is
    // the negation of an index into the replacement string.
    int tag;
    // The data value's interpretation depends on the value of tag:
    // tag == SUBJECT_PREFIX ||
    // tag == SUBJECT_SUFFIX:  data is unused.
    // tag == SUBJECT_CAPTURE: data is the number of the capture.
    // tag == REPLACEMENT_SUBSTRING ||
    // tag == REPLACEMENT_STRING:    data is index into array of substrings
    //                               of the replacement string.
    // tag <= 0: Temporary representation of the substring of the replacement
    //           string ranging over -tag .. data.
    //           Is replaced by REPLACEMENT_{SUB,}STRING when we create the
    //           substring objects.
    int data;
  };

  template<typename Char>
  static void ParseReplacementPattern(ZoneList<ReplacementPart>* parts,
                                      Vector<Char> characters,
                                      int capture_count,
                                      int subject_length) {
    int length = characters.length();
    int last = 0;
    for (int i = 0; i < length; i++) {
      Char c = characters[i];
      if (c == '$') {
        int next_index = i + 1;
        if (next_index == length) {  // No next character!
          break;
        }
        Char c2 = characters[next_index];
        switch (c2) {
        case '$':
          if (i > last) {
            // There is a substring before. Include the first "$".
            parts->Add(ReplacementPart::ReplacementSubString(last, next_index));
            last = next_index + 1;  // Continue after the second "$".
          } else {
            // Let the next substring start with the second "$".
            last = next_index;
          }
          i = next_index;
          break;
        case '`':
          if (i > last) {
            parts->Add(ReplacementPart::ReplacementSubString(last, i));
          }
          parts->Add(ReplacementPart::SubjectPrefix());
          i = next_index;
          last = i + 1;
          break;
        case '\'':
          if (i > last) {
            parts->Add(ReplacementPart::ReplacementSubString(last, i));
          }
          parts->Add(ReplacementPart::SubjectSuffix(subject_length));
          i = next_index;
          last = i + 1;
          break;
        case '&':
          if (i > last) {
            parts->Add(ReplacementPart::ReplacementSubString(last, i));
          }
          parts->Add(ReplacementPart::SubjectMatch());
          i = next_index;
          last = i + 1;
          break;
        case '0':
        case '1':
        case '2':
        case '3':
        case '4':
        case '5':
        case '6':
        case '7':
        case '8':
        case '9': {
          int capture_ref = c2 - '0';
          if (capture_ref > capture_count) {
            i = next_index;
            continue;
          }
          int second_digit_index = next_index + 1;
          if (second_digit_index < length) {
            // Peek ahead to see if we have two digits.
            Char c3 = characters[second_digit_index];
            if ('0' <= c3 && c3 <= '9') {  // Double digits.
              int double_digit_ref = capture_ref * 10 + c3 - '0';
              if (double_digit_ref <= capture_count) {
                next_index = second_digit_index;
                capture_ref = double_digit_ref;
              }
            }
          }
          if (capture_ref > 0) {
            if (i > last) {
              parts->Add(ReplacementPart::ReplacementSubString(last, i));
            }
            ASSERT(capture_ref <= capture_count);
            parts->Add(ReplacementPart::SubjectCapture(capture_ref));
            last = next_index + 1;
          }
          i = next_index;
          break;
        }
        default:
          i = next_index;
          break;
        }
      }
    }
    if (length > last) {
      if (last == 0) {
        parts->Add(ReplacementPart::ReplacementString());
      } else {
        parts->Add(ReplacementPart::ReplacementSubString(last, length));
      }
    }
  }

  ZoneList<ReplacementPart> parts_;
  ZoneList<Handle<String> > replacement_substrings_;
};


void CompiledReplacement::Compile(Handle<String> replacement,
                                  int capture_count,
                                  int subject_length) {
  ASSERT(replacement->IsFlat());
  if (replacement->IsAsciiRepresentation()) {
    AssertNoAllocation no_alloc;
    ParseReplacementPattern(&parts_,
                            replacement->ToAsciiVector(),
                            capture_count,
                            subject_length);
  } else {
    ASSERT(replacement->IsTwoByteRepresentation());
    AssertNoAllocation no_alloc;

    ParseReplacementPattern(&parts_,
                            replacement->ToUC16Vector(),
                            capture_count,
                            subject_length);
  }
  // Find substrings of replacement string and create them as String objects.
  int substring_index = 0;
  for (int i = 0, n = parts_.length(); i < n; i++) {
    int tag = parts_[i].tag;
    if (tag <= 0) {  // A replacement string slice.
      int from = -tag;
      int to = parts_[i].data;
      replacement_substrings_.Add(Factory::NewSubString(replacement, from, to));
      parts_[i].tag = REPLACEMENT_SUBSTRING;
      parts_[i].data = substring_index;
      substring_index++;
    } else if (tag == REPLACEMENT_STRING) {
      replacement_substrings_.Add(replacement);
      parts_[i].data = substring_index;
      substring_index++;
    }
  }
}


void CompiledReplacement::Apply(ReplacementStringBuilder* builder,
                                int match_from,
                                int match_to,
                                Handle<JSArray> last_match_info) {
  for (int i = 0, n = parts_.length(); i < n; i++) {
    ReplacementPart part = parts_[i];
    switch (part.tag) {
      case SUBJECT_PREFIX:
        if (match_from > 0) builder->AddSubjectSlice(0, match_from);
        break;
      case SUBJECT_SUFFIX: {
        int subject_length = part.data;
        if (match_to < subject_length) {
          builder->AddSubjectSlice(match_to, subject_length);
        }
        break;
      }
      case SUBJECT_CAPTURE: {
        int capture = part.data;
        FixedArray* match_info = FixedArray::cast(last_match_info->elements());
        int from = RegExpImpl::GetCapture(match_info, capture * 2);
        int to = RegExpImpl::GetCapture(match_info, capture * 2 + 1);
        if (from >= 0 && to > from) {
          builder->AddSubjectSlice(from, to);
        }
        break;
      }
      case REPLACEMENT_SUBSTRING:
      case REPLACEMENT_STRING:
        builder->AddString(replacement_substrings_[part.data]);
        break;
      default:
        UNREACHABLE();
    }
  }
}



static Object* StringReplaceRegExpWithString(String* subject,
                                             JSRegExp* regexp,
                                             String* replacement,
                                             JSArray* last_match_info) {
  ASSERT(subject->IsFlat());
  ASSERT(replacement->IsFlat());

  HandleScope handles;

  int length = subject->length();
  Handle<String> subject_handle(subject);
  Handle<JSRegExp> regexp_handle(regexp);
  Handle<String> replacement_handle(replacement);
  Handle<JSArray> last_match_info_handle(last_match_info);
  Handle<Object> match = RegExpImpl::Exec(regexp_handle,
                                          subject_handle,
                                          0,
                                          last_match_info_handle);
  if (match.is_null()) {
    return Failure::Exception();
  }
  if (match->IsNull()) {
    return *subject_handle;
  }

  int capture_count = regexp_handle->CaptureCount();

  // CompiledReplacement uses zone allocation.
  CompilationZoneScope zone(DELETE_ON_EXIT);
  CompiledReplacement compiled_replacement;
  compiled_replacement.Compile(replacement_handle,
                               capture_count,
                               length);

  bool is_global = regexp_handle->GetFlags().is_global();

  // Guessing the number of parts that the final result string is built
  // from. Global regexps can match any number of times, so we guess
  // conservatively.
  int expected_parts =
      (compiled_replacement.parts() + 1) * (is_global ? 4 : 1) + 1;
  ReplacementStringBuilder builder(subject_handle, expected_parts);

  // Index of end of last match.
  int prev = 0;

  // Number of parts added by compiled replacement plus preceeding
  // string and possibly suffix after last match.  It is possible for
  // all components to use two elements when encoded as two smis.
  const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2);
  bool matched = true;
  do {
    ASSERT(last_match_info_handle->HasFastElements());
    // Increase the capacity of the builder before entering local handle-scope,
    // so its internal buffer can safely allocate a new handle if it grows.
    builder.EnsureCapacity(parts_added_per_loop);

    HandleScope loop_scope;
    int start, end;
    {
      AssertNoAllocation match_info_array_is_not_in_a_handle;
      FixedArray* match_info_array =
          FixedArray::cast(last_match_info_handle->elements());

      ASSERT_EQ(capture_count * 2 + 2,
                RegExpImpl::GetLastCaptureCount(match_info_array));
      start = RegExpImpl::GetCapture(match_info_array, 0);
      end = RegExpImpl::GetCapture(match_info_array, 1);
    }

    if (prev < start) {
      builder.AddSubjectSlice(prev, start);
    }
    compiled_replacement.Apply(&builder,
                               start,
                               end,
                               last_match_info_handle);
    prev = end;

    // Only continue checking for global regexps.
    if (!is_global) break;

    // Continue from where the match ended, unless it was an empty match.
    int next = end;
    if (start == end) {
      next = end + 1;
      if (next > length) break;
    }

    match = RegExpImpl::Exec(regexp_handle,
                             subject_handle,
                             next,
                             last_match_info_handle);
    if (match.is_null()) {
      return Failure::Exception();
    }
    matched = !match->IsNull();
  } while (matched);

  if (prev < length) {
    builder.AddSubjectSlice(prev, length);
  }

  return *(builder.ToString());
}


static Object* Runtime_StringReplaceRegExpWithString(Arguments args) {
  ASSERT(args.length() == 4);

  CONVERT_CHECKED(String, subject, args[0]);
  if (!subject->IsFlat()) {
    Object* flat_subject = subject->TryFlatten();
    if (flat_subject->IsFailure()) {
      return flat_subject;
    }
    subject = String::cast(flat_subject);
  }

  CONVERT_CHECKED(String, replacement, args[2]);
  if (!replacement->IsFlat()) {
    Object* flat_replacement = replacement->TryFlatten();
    if (flat_replacement->IsFailure()) {
      return flat_replacement;
    }
    replacement = String::cast(flat_replacement);
  }

  CONVERT_CHECKED(JSRegExp, regexp, args[1]);
  CONVERT_CHECKED(JSArray, last_match_info, args[3]);

  ASSERT(last_match_info->HasFastElements());

  return StringReplaceRegExpWithString(subject,
                                       regexp,
                                       replacement,
                                       last_match_info);
}



// Cap on the maximal shift in the Boyer-Moore implementation. By setting a
// limit, we can fix the size of tables.
static const int kBMMaxShift = 0xff;
// Reduce alphabet to this size.
static const int kBMAlphabetSize = 0x100;
// For patterns below this length, the skip length of Boyer-Moore is too short
// to compensate for the algorithmic overhead compared to simple brute force.
static const int kBMMinPatternLength = 5;

// Holds the two buffers used by Boyer-Moore string search's Good Suffix
// shift. Only allows the last kBMMaxShift characters of the needle
// to be indexed.
class BMGoodSuffixBuffers {
 public:
  BMGoodSuffixBuffers() {}
  inline void init(int needle_length) {
    ASSERT(needle_length > 1);
    int start = needle_length < kBMMaxShift ? 0 : needle_length - kBMMaxShift;
    int len = needle_length - start;
    biased_suffixes_ = suffixes_ - start;
    biased_good_suffix_shift_ = good_suffix_shift_ - start;
    for (int i = 0; i <= len; i++) {
      good_suffix_shift_[i] = len;
    }
  }
  inline int& suffix(int index) {
    ASSERT(biased_suffixes_ + index >= suffixes_);
    return biased_suffixes_[index];
  }
  inline int& shift(int index) {
    ASSERT(biased_good_suffix_shift_ + index >= good_suffix_shift_);
    return biased_good_suffix_shift_[index];
  }
 private:
  int suffixes_[kBMMaxShift + 1];
  int good_suffix_shift_[kBMMaxShift + 1];
  int* biased_suffixes_;
  int* biased_good_suffix_shift_;
  DISALLOW_COPY_AND_ASSIGN(BMGoodSuffixBuffers);
};

// buffers reused by BoyerMoore
static int bad_char_occurrence[kBMAlphabetSize];
static BMGoodSuffixBuffers bmgs_buffers;

// Compute the bad-char table for Boyer-Moore in the static buffer.
template <typename pchar>
static void BoyerMoorePopulateBadCharTable(Vector<const pchar> pattern,
                                          int start) {
  // Run forwards to populate bad_char_table, so that *last* instance
  // of character equivalence class is the one registered.
  // Notice: Doesn't include the last character.
  int table_size = (sizeof(pchar) == 1) ? String::kMaxAsciiCharCode + 1
                                        : kBMAlphabetSize;
  if (start == 0) {  // All patterns less than kBMMaxShift in length.
    memset(bad_char_occurrence, -1, table_size * sizeof(*bad_char_occurrence));
  } else {
    for (int i = 0; i < table_size; i++) {
      bad_char_occurrence[i] = start - 1;
    }
  }
  for (int i = start; i < pattern.length() - 1; i++) {
    pchar c = pattern[i];
    int bucket = (sizeof(pchar) ==1) ? c : c % kBMAlphabetSize;
    bad_char_occurrence[bucket] = i;
  }
}

template <typename pchar>
static void BoyerMoorePopulateGoodSuffixTable(Vector<const pchar> pattern,
                                              int start) {
  int m = pattern.length();
  int len = m - start;
  // Compute Good Suffix tables.
  bmgs_buffers.init(m);

  bmgs_buffers.shift(m-1) = 1;
  bmgs_buffers.suffix(m) = m + 1;
  pchar last_char = pattern[m - 1];
  int suffix = m + 1;
  for (int i = m; i > start;) {
    for (pchar c = pattern[i - 1]; suffix <= m && c != pattern[suffix - 1];) {
      if (bmgs_buffers.shift(suffix) == len) {
        bmgs_buffers.shift(suffix) = suffix - i;
      }
      suffix = bmgs_buffers.suffix(suffix);
    }
    i--;
    suffix--;
    bmgs_buffers.suffix(i) = suffix;
    if (suffix == m) {
      // No suffix to extend, so we check against last_char only.
      while (i > start && pattern[i - 1] != last_char) {
        if (bmgs_buffers.shift(m) == len) {
          bmgs_buffers.shift(m) = m - i;
        }
        i--;
        bmgs_buffers.suffix(i) = m;
      }
      if (i > start) {
        i--;
        suffix--;
        bmgs_buffers.suffix(i) = suffix;
      }
    }
  }
  if (suffix < m) {
    for (int i = start; i <= m; i++) {
      if (bmgs_buffers.shift(i) == len) {
        bmgs_buffers.shift(i) = suffix - start;
      }
      if (i == suffix) {
        suffix = bmgs_buffers.suffix(suffix);
      }
    }
  }
}

template <typename schar, typename pchar>
static inline int CharOccurrence(int char_code) {
  if (sizeof(schar) == 1) {
    return bad_char_occurrence[char_code];
  }
  if (sizeof(pchar) == 1) {
    if (char_code > String::kMaxAsciiCharCode) {
      return -1;
    }
    return bad_char_occurrence[char_code];
  }
  return bad_char_occurrence[char_code % kBMAlphabetSize];
}

// Restricted simplified Boyer-Moore string matching.
// Uses only the bad-shift table of Boyer-Moore and only uses it
// for the character compared to the last character of the needle.
template <typename schar, typename pchar>
static int BoyerMooreHorspool(Vector<const schar> subject,
                              Vector<const pchar> pattern,
                              int start_index,
                              bool* complete) {
  int n = subject.length();
  int m = pattern.length();
  // Only preprocess at most kBMMaxShift last characters of pattern.
  int start = m < kBMMaxShift ? 0 : m - kBMMaxShift;

  BoyerMoorePopulateBadCharTable(pattern, start);

  int badness = -m;  // How bad we are doing without a good-suffix table.
  int idx;  // No matches found prior to this index.
  pchar last_char = pattern[m - 1];
  int last_char_shift = m - 1 - CharOccurrence<schar, pchar>(last_char);
  // Perform search
  for (idx = start_index; idx <= n - m;) {
    int j = m - 1;
    int c;
    while (last_char != (c = subject[idx + j])) {
      int bc_occ = CharOccurrence<schar, pchar>(c);
      int shift = j - bc_occ;
      idx += shift;
      badness += 1 - shift;  // at most zero, so badness cannot increase.
      if (idx > n - m) {
        *complete = true;
        return -1;
      }
    }
    j--;
    while (j >= 0 && pattern[j] == (subject[idx + j])) j--;
    if (j < 0) {
      *complete = true;
      return idx;
    } else {
      idx += last_char_shift;
      // Badness increases by the number of characters we have
      // checked, and decreases by the number of characters we
      // can skip by shifting. It's a measure of how we are doing
      // compared to reading each character exactly once.
      badness += (m - j) - last_char_shift;
      if (badness > 0) {
        *complete = false;
        return idx;
      }
    }
  }
  *complete = true;
  return -1;
}


template <typename schar, typename pchar>
static int BoyerMooreIndexOf(Vector<const schar> subject,
                             Vector<const pchar> pattern,
                             int idx) {
  int n = subject.length();
  int m = pattern.length();
  // Only preprocess at most kBMMaxShift last characters of pattern.
  int start = m < kBMMaxShift ? 0 : m - kBMMaxShift;

  // Build the Good Suffix table and continue searching.
  BoyerMoorePopulateGoodSuffixTable(pattern, start);
  pchar last_char = pattern[m - 1];
  // Continue search from i.
  while (idx <= n - m) {
    int j = m - 1;
    schar c;
    while (last_char != (c = subject[idx + j])) {
      int shift = j - CharOccurrence<schar, pchar>(c);
      idx += shift;
      if (idx > n - m) {
        return -1;
      }
    }
    while (j >= 0 && pattern[j] == (c = subject[idx + j])) j--;
    if (j < 0) {
      return idx;
    } else if (j < start) {
      // we have matched more than our tables allow us to be smart about.
      // Fall back on BMH shift.
      idx += m - 1 - CharOccurrence<schar, pchar>(last_char);
    } else {
      int gs_shift = bmgs_buffers.shift(j + 1);       // Good suffix shift.
      int bc_occ = CharOccurrence<schar, pchar>(c);
      int shift = j - bc_occ;                         // Bad-char shift.
      if (gs_shift > shift) {
        shift = gs_shift;
      }
      idx += shift;
    }
  }

  return -1;
}


template <typename schar>
static int SingleCharIndexOf(Vector<const schar> string,
                             schar pattern_char,
                             int start_index) {
  for (int i = start_index, n = string.length(); i < n; i++) {
    if (pattern_char == string[i]) {
      return i;
    }
  }
  return -1;
}

// Trivial string search for shorter strings.
// On return, if "complete" is set to true, the return value is the
// final result of searching for the patter in the subject.
// If "complete" is set to false, the return value is the index where
// further checking should start, i.e., it's guaranteed that the pattern
// does not occur at a position prior to the returned index.
template <typename pchar, typename schar>
static int SimpleIndexOf(Vector<const schar> subject,
                         Vector<const pchar> pattern,
                         int idx,
                         bool* complete) {
  // Badness is a count of how much work we have done.  When we have
  // done enough work we decide it's probably worth switching to a better
  // algorithm.
  int badness = -10 - (pattern.length() << 2);
  // We know our pattern is at least 2 characters, we cache the first so
  // the common case of the first character not matching is faster.
  pchar pattern_first_char = pattern[0];

  for (int i = idx, n = subject.length() - pattern.length(); i <= n; i++) {
    badness++;
    if (badness > 0) {
      *complete = false;
      return i;
    }
    if (subject[i] != pattern_first_char) continue;
    int j = 1;
    do {
      if (pattern[j] != subject[i+j]) {
        break;
      }
      j++;
    } while (j < pattern.length());
    if (j == pattern.length()) {
      *complete = true;
      return i;
    }
    badness += j;
  }
  *complete = true;
  return -1;
}

// Simple indexOf that never bails out. For short patterns only.
template <typename pchar, typename schar>
static int SimpleIndexOf(Vector<const schar> subject,
                         Vector<const pchar> pattern,
                         int idx) {
  pchar pattern_first_char = pattern[0];
  for (int i = idx, n = subject.length() - pattern.length(); i <= n; i++) {
    if (subject[i] != pattern_first_char) continue;
    int j = 1;
    do {
      if (pattern[j] != subject[i+j]) {
        break;
      }
      j++;
    } while (j < pattern.length());
    if (j == pattern.length()) {
      return i;
    }
  }
  return -1;
}


// Dispatch to different algorithms.
template <typename schar, typename pchar>
static int StringMatchStrategy(Vector<const schar> sub,
                               Vector<const pchar> pat,
                               int start_index) {
  ASSERT(pat.length() > 1);

  // We have an ASCII haystack and a non-ASCII needle. Check if there
  // really is a non-ASCII character in the needle and bail out if there
  // is.
  if (sizeof(pchar) > 1 && sizeof(schar) == 1) {
    for (int i = 0; i < pat.length(); i++) {
      uc16 c = pat[i];
      if (c > String::kMaxAsciiCharCode) {
        return -1;
      }
    }
  }
  if (pat.length() < kBMMinPatternLength) {
    // We don't believe fancy searching can ever be more efficient.
    // The max shift of Boyer-Moore on a pattern of this length does
    // not compensate for the overhead.
    return SimpleIndexOf(sub, pat, start_index);
  }
  // Try algorithms in order of increasing setup cost and expected performance.
  bool complete;
  int idx = SimpleIndexOf(sub, pat, start_index, &complete);
  if (complete) return idx;
  idx = BoyerMooreHorspool(sub, pat, idx, &complete);
  if (complete) return idx;
  return BoyerMooreIndexOf(sub, pat, idx);
}

// Perform string match of pattern on subject, starting at start index.
// Caller must ensure that 0 <= start_index <= sub->length(),
// and should check that pat->length() + start_index <= sub->length()
int Runtime::StringMatch(Handle<String> sub,
                         Handle<String> pat,
                         int start_index) {
  ASSERT(0 <= start_index);
  ASSERT(start_index <= sub->length());

  int pattern_length = pat->length();
  if (pattern_length == 0) return start_index;

  int subject_length = sub->length();
  if (start_index + pattern_length > subject_length) return -1;

  if (!sub->IsFlat()) {
    FlattenString(sub);
  }
  // Searching for one specific character is common.  For one
  // character patterns linear search is necessary, so any smart
  // algorithm is unnecessary overhead.
  if (pattern_length == 1) {
    AssertNoAllocation no_heap_allocation;  // ensure vectors stay valid
    if (sub->IsAsciiRepresentation()) {
      uc16 pchar = pat->Get(0);
      if (pchar > String::kMaxAsciiCharCode) {
        return -1;
      }
      Vector<const char> ascii_vector =
        sub->ToAsciiVector().SubVector(start_index, subject_length);
      const void* pos = memchr(ascii_vector.start(),
                               static_cast<const char>(pchar),
                               static_cast<size_t>(ascii_vector.length()));
      if (pos == NULL) {
        return -1;
      }
      return static_cast<int>(reinterpret_cast<const char*>(pos)
          - ascii_vector.start() + start_index);
    }
    return SingleCharIndexOf(sub->ToUC16Vector(), pat->Get(0), start_index);
  }

  if (!pat->IsFlat()) {
    FlattenString(pat);
  }

  AssertNoAllocation no_heap_allocation;  // ensure vectors stay valid
  // dispatch on type of strings
  if (pat->IsAsciiRepresentation()) {
    Vector<const char> pat_vector = pat->ToAsciiVector();
    if (sub->IsAsciiRepresentation()) {
      return StringMatchStrategy(sub->ToAsciiVector(), pat_vector, start_index);
    }
    return StringMatchStrategy(sub->ToUC16Vector(), pat_vector, start_index);
  }
  Vector<const uc16> pat_vector = pat->ToUC16Vector();
  if (sub->IsAsciiRepresentation()) {
    return StringMatchStrategy(sub->ToAsciiVector(), pat_vector, start_index);
  }
  return StringMatchStrategy(sub->ToUC16Vector(), pat_vector, start_index);
}


static Object* Runtime_StringIndexOf(Arguments args) {
  HandleScope scope;  // create a new handle scope
  ASSERT(args.length() == 3);

  CONVERT_ARG_CHECKED(String, sub, 0);
  CONVERT_ARG_CHECKED(String, pat, 1);

  Object* index = args[2];
  uint32_t start_index;
  if (!Array::IndexFromObject(index, &start_index)) return Smi::FromInt(-1);

  RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length()));
  int position = Runtime::StringMatch(sub, pat, start_index);
  return Smi::FromInt(position);
}


static Object* Runtime_StringLastIndexOf(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 3);

  CONVERT_CHECKED(String, sub, args[0]);
  CONVERT_CHECKED(String, pat, args[1]);
  Object* index = args[2];

  sub->TryFlattenIfNotFlat();
  pat->TryFlattenIfNotFlat();

  uint32_t start_index;
  if (!Array::IndexFromObject(index, &start_index)) return Smi::FromInt(-1);

  uint32_t pattern_length = pat->length();
  uint32_t sub_length = sub->length();

  if (start_index + pattern_length > sub_length) {
    start_index = sub_length - pattern_length;
  }

  for (int i = start_index; i >= 0; i--) {
    bool found = true;
    for (uint32_t j = 0; j < pattern_length; j++) {
      if (sub->Get(i + j) != pat->Get(j)) {
        found = false;
        break;
      }
    }
    if (found) return Smi::FromInt(i);
  }

  return Smi::FromInt(-1);
}


static Object* Runtime_StringLocaleCompare(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_CHECKED(String, str1, args[0]);
  CONVERT_CHECKED(String, str2, args[1]);

  if (str1 == str2) return Smi::FromInt(0);  // Equal.
  int str1_length = str1->length();
  int str2_length = str2->length();

  // Decide trivial cases without flattening.
  if (str1_length == 0) {
    if (str2_length == 0) return Smi::FromInt(0);  // Equal.
    return Smi::FromInt(-str2_length);
  } else {
    if (str2_length == 0) return Smi::FromInt(str1_length);
  }

  int end = str1_length < str2_length ? str1_length : str2_length;

  // No need to flatten if we are going to find the answer on the first
  // character.  At this point we know there is at least one character
  // in each string, due to the trivial case handling above.
  int d = str1->Get(0) - str2->Get(0);
  if (d != 0) return Smi::FromInt(d);

  str1->TryFlattenIfNotFlat();
  str2->TryFlattenIfNotFlat();

  static StringInputBuffer buf1;
  static StringInputBuffer buf2;

  buf1.Reset(str1);
  buf2.Reset(str2);

  for (int i = 0; i < end; i++) {
    uint16_t char1 = buf1.GetNext();
    uint16_t char2 = buf2.GetNext();
    if (char1 != char2) return Smi::FromInt(char1 - char2);
  }

  return Smi::FromInt(str1_length - str2_length);
}


static Object* Runtime_SubString(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 3);

  CONVERT_CHECKED(String, value, args[0]);
  Object* from = args[1];
  Object* to = args[2];
  int start, end;
  // We have a fast integer-only case here to avoid a conversion to double in
  // the common case where from and to are Smis.
  if (from->IsSmi() && to->IsSmi()) {
    start = Smi::cast(from)->value();
    end = Smi::cast(to)->value();
  } else {
    CONVERT_DOUBLE_CHECKED(from_number, from);
    CONVERT_DOUBLE_CHECKED(to_number, to);
    start = FastD2I(from_number);
    end = FastD2I(to_number);
  }
  RUNTIME_ASSERT(end >= start);
  RUNTIME_ASSERT(start >= 0);
  RUNTIME_ASSERT(end <= value->length());
  return value->SubString(start, end);
}


static Object* Runtime_StringMatch(Arguments args) {
  ASSERT_EQ(3, args.length());

  CONVERT_ARG_CHECKED(String, subject, 0);
  CONVERT_ARG_CHECKED(JSRegExp, regexp, 1);
  CONVERT_ARG_CHECKED(JSArray, regexp_info, 2);
  HandleScope handles;

  Handle<Object> match = RegExpImpl::Exec(regexp, subject, 0, regexp_info);

  if (match.is_null()) {
    return Failure::Exception();
  }
  if (match->IsNull()) {
    return Heap::null_value();
  }
  int length = subject->length();

  CompilationZoneScope zone_space(DELETE_ON_EXIT);
  ZoneList<int> offsets(8);
  do {
    int start;
    int end;
    {
      AssertNoAllocation no_alloc;
      FixedArray* elements = FixedArray::cast(regexp_info->elements());
      start = Smi::cast(elements->get(RegExpImpl::kFirstCapture))->value();
      end = Smi::cast(elements->get(RegExpImpl::kFirstCapture + 1))->value();
    }
    offsets.Add(start);
    offsets.Add(end);
    int index = start < end ? end : end + 1;
    if (index > length) break;
    match = RegExpImpl::Exec(regexp, subject, index, regexp_info);
    if (match.is_null()) {
      return Failure::Exception();
    }
  } while (!match->IsNull());
  int matches = offsets.length() / 2;
  Handle<FixedArray> elements = Factory::NewFixedArray(matches);
  for (int i = 0; i < matches ; i++) {
    int from = offsets.at(i * 2);
    int to = offsets.at(i * 2 + 1);
    elements->set(i, *Factory::NewSubString(subject, from, to));
  }
  Handle<JSArray> result = Factory::NewJSArrayWithElements(elements);
  result->set_length(Smi::FromInt(matches));
  return *result;
}


static Object* Runtime_NumberToRadixString(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  // Fast case where the result is a one character string.
  if (args[0]->IsSmi() && args[1]->IsSmi()) {
    int value = Smi::cast(args[0])->value();
    int radix = Smi::cast(args[1])->value();
    if (value >= 0 && value < radix) {
      RUNTIME_ASSERT(radix <= 36);
      // Character array used for conversion.
      static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
      return Heap::LookupSingleCharacterStringFromCode(kCharTable[value]);
    }
  }

  // Slow case.
  CONVERT_DOUBLE_CHECKED(value, args[0]);
  if (isnan(value)) {
    return Heap::AllocateStringFromAscii(CStrVector("NaN"));
  }
  if (isinf(value)) {
    if (value < 0) {
      return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
    }
    return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
  }
  CONVERT_DOUBLE_CHECKED(radix_number, args[1]);
  int radix = FastD2I(radix_number);
  RUNTIME_ASSERT(2 <= radix && radix <= 36);
  char* str = DoubleToRadixCString(value, radix);
  Object* result = Heap::AllocateStringFromAscii(CStrVector(str));
  DeleteArray(str);
  return result;
}


static Object* Runtime_NumberToFixed(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_DOUBLE_CHECKED(value, args[0]);
  if (isnan(value)) {
    return Heap::AllocateStringFromAscii(CStrVector("NaN"));
  }
  if (isinf(value)) {
    if (value < 0) {
      return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
    }
    return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
  }
  CONVERT_DOUBLE_CHECKED(f_number, args[1]);
  int f = FastD2I(f_number);
  RUNTIME_ASSERT(f >= 0);
  char* str = DoubleToFixedCString(value, f);
  Object* res = Heap::AllocateStringFromAscii(CStrVector(str));
  DeleteArray(str);
  return res;
}


static Object* Runtime_NumberToExponential(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_DOUBLE_CHECKED(value, args[0]);
  if (isnan(value)) {
    return Heap::AllocateStringFromAscii(CStrVector("NaN"));
  }
  if (isinf(value)) {
    if (value < 0) {
      return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
    }
    return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
  }
  CONVERT_DOUBLE_CHECKED(f_number, args[1]);
  int f = FastD2I(f_number);
  RUNTIME_ASSERT(f >= -1 && f <= 20);
  char* str = DoubleToExponentialCString(value, f);
  Object* res = Heap::AllocateStringFromAscii(CStrVector(str));
  DeleteArray(str);
  return res;
}


static Object* Runtime_NumberToPrecision(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_DOUBLE_CHECKED(value, args[0]);
  if (isnan(value)) {
    return Heap::AllocateStringFromAscii(CStrVector("NaN"));
  }
  if (isinf(value)) {
    if (value < 0) {
      return Heap::AllocateStringFromAscii(CStrVector("-Infinity"));
    }
    return Heap::AllocateStringFromAscii(CStrVector("Infinity"));
  }
  CONVERT_DOUBLE_CHECKED(f_number, args[1]);
  int f = FastD2I(f_number);
  RUNTIME_ASSERT(f >= 1 && f <= 21);
  char* str = DoubleToPrecisionCString(value, f);
  Object* res = Heap::AllocateStringFromAscii(CStrVector(str));
  DeleteArray(str);
  return res;
}


// Returns a single character string where first character equals
// string->Get(index).
static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) {
  if (index < static_cast<uint32_t>(string->length())) {
    string->TryFlattenIfNotFlat();
    return LookupSingleCharacterStringFromCode(
        string->Get(index));
  }
  return Execution::CharAt(string, index);
}


Object* Runtime::GetElementOrCharAt(Handle<Object> object, uint32_t index) {
  // Handle [] indexing on Strings
  if (object->IsString()) {
    Handle<Object> result = GetCharAt(Handle<String>::cast(object), index);
    if (!result->IsUndefined()) return *result;
  }

  // Handle [] indexing on String objects
  if (object->IsStringObjectWithCharacterAt(index)) {
    Handle<JSValue> js_value = Handle<JSValue>::cast(object);
    Handle<Object> result =
        GetCharAt(Handle<String>(String::cast(js_value->value())), index);
    if (!result->IsUndefined()) return *result;
  }

  if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
    Handle<Object> prototype = GetPrototype(object);
    return prototype->GetElement(index);
  }

  return object->GetElement(index);
}


Object* Runtime::GetObjectProperty(Handle<Object> object, Handle<Object> key) {
  HandleScope scope;

  if (object->IsUndefined() || object->IsNull()) {
    Handle<Object> args[2] = { key, object };
    Handle<Object> error =
        Factory::NewTypeError("non_object_property_load",
                              HandleVector(args, 2));
    return Top::Throw(*error);
  }

  // Check if the given key is an array index.
  uint32_t index;
  if (Array::IndexFromObject(*key, &index)) {
    return GetElementOrCharAt(object, index);
  }

  // Convert the key to a string - possibly by calling back into JavaScript.
  Handle<String> name;
  if (key->IsString()) {
    name = Handle<String>::cast(key);
  } else {
    bool has_pending_exception = false;
    Handle<Object> converted =
        Execution::ToString(key, &has_pending_exception);
    if (has_pending_exception) return Failure::Exception();
    name = Handle<String>::cast(converted);
  }

  // Check if the name is trivially convertible to an index and get
  // the element if so.
  if (name->AsArrayIndex(&index)) {
    return GetElementOrCharAt(object, index);
  } else {
    PropertyAttributes attr;
    return object->GetProperty(*name, &attr);
  }
}


static Object* Runtime_GetProperty(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  Handle<Object> object = args.at<Object>(0);
  Handle<Object> key = args.at<Object>(1);

  return Runtime::GetObjectProperty(object, key);
}



// KeyedStringGetProperty is called from KeyedLoadIC::GenerateGeneric.
static Object* Runtime_KeyedGetProperty(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  // Fast cases for getting named properties of the receiver JSObject
  // itself.
  //
  // The global proxy objects has to be excluded since LocalLookup on
  // the global proxy object can return a valid result even though the
  // global proxy object never has properties.  This is the case
  // because the global proxy object forwards everything to its hidden
  // prototype including local lookups.
  //
  // Additionally, we need to make sure that we do not cache results
  // for objects that require access checks.
  if (args[0]->IsJSObject() &&
      !args[0]->IsJSGlobalProxy() &&
      !args[0]->IsAccessCheckNeeded() &&
      args[1]->IsString()) {
    JSObject* receiver = JSObject::cast(args[0]);
    String* key = String::cast(args[1]);
    if (receiver->HasFastProperties()) {
      // Attempt to use lookup cache.
      Map* receiver_map = receiver->map();
      int offset = KeyedLookupCache::Lookup(receiver_map, key);
      if (offset != -1) {
        Object* value = receiver->FastPropertyAt(offset);
        return value->IsTheHole() ? Heap::undefined_value() : value;
      }
      // Lookup cache miss.  Perform lookup and update the cache if appropriate.
      LookupResult result;
      receiver->LocalLookup(key, &result);
      if (result.IsProperty() && result.IsLoaded() && result.type() == FIELD) {
        int offset = result.GetFieldIndex();
        KeyedLookupCache::Update(receiver_map, key, offset);
        return receiver->FastPropertyAt(offset);
      }
    } else {
      // Attempt dictionary lookup.
      StringDictionary* dictionary = receiver->property_dictionary();
      int entry = dictionary->FindEntry(key);
      if ((entry != StringDictionary::kNotFound) &&
          (dictionary->DetailsAt(entry).type() == NORMAL)) {
        Object* value = dictionary->ValueAt(entry);
        if (!receiver->IsGlobalObject()) return value;
        value = JSGlobalPropertyCell::cast(value)->value();
        if (!value->IsTheHole()) return value;
        // If value is the hole do the general lookup.
      }
    }
  }

  // Fall back to GetObjectProperty.
  return Runtime::GetObjectProperty(args.at<Object>(0),
                                    args.at<Object>(1));
}


Object* Runtime::SetObjectProperty(Handle<Object> object,
                                   Handle<Object> key,
                                   Handle<Object> value,
                                   PropertyAttributes attr) {
  HandleScope scope;

  if (object->IsUndefined() || object->IsNull()) {
    Handle<Object> args[2] = { key, object };
    Handle<Object> error =
        Factory::NewTypeError("non_object_property_store",
                              HandleVector(args, 2));
    return Top::Throw(*error);
  }

  // If the object isn't a JavaScript object, we ignore the store.
  if (!object->IsJSObject()) return *value;

  Handle<JSObject> js_object = Handle<JSObject>::cast(object);

  // Check if the given key is an array index.
  uint32_t index;
  if (Array::IndexFromObject(*key, &index)) {
    ASSERT(attr == NONE);

    // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
    // of a string using [] notation.  We need to support this too in
    // JavaScript.
    // In the case of a String object we just need to redirect the assignment to
    // the underlying string if the index is in range.  Since the underlying
    // string does nothing with the assignment then we can ignore such
    // assignments.
    if (js_object->IsStringObjectWithCharacterAt(index)) {
      return *value;
    }

    Handle<Object> result = SetElement(js_object, index, value);
    if (result.is_null()) return Failure::Exception();
    return *value;
  }

  if (key->IsString()) {
    Handle<Object> result;
    if (Handle<String>::cast(key)->AsArrayIndex(&index)) {
      ASSERT(attr == NONE);
      result = SetElement(js_object, index, value);
    } else {
      Handle<String> key_string = Handle<String>::cast(key);
      key_string->TryFlattenIfNotFlat();
      result = SetProperty(js_object, key_string, value, attr);
    }
    if (result.is_null()) return Failure::Exception();
    return *value;
  }

  // Call-back into JavaScript to convert the key to a string.
  bool has_pending_exception = false;
  Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
  if (has_pending_exception) return Failure::Exception();
  Handle<String> name = Handle<String>::cast(converted);

  if (name->AsArrayIndex(&index)) {
    ASSERT(attr == NONE);
    return js_object->SetElement(index, *value);
  } else {
    return js_object->SetProperty(*name, *value, attr);
  }
}


Object* Runtime::ForceSetObjectProperty(Handle<JSObject> js_object,
                                        Handle<Object> key,
                                        Handle<Object> value,
                                        PropertyAttributes attr) {
  HandleScope scope;

  // Check if the given key is an array index.
  uint32_t index;
  if (Array::IndexFromObject(*key, &index)) {
    ASSERT(attr == NONE);

    // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
    // of a string using [] notation.  We need to support this too in
    // JavaScript.
    // In the case of a String object we just need to redirect the assignment to
    // the underlying string if the index is in range.  Since the underlying
    // string does nothing with the assignment then we can ignore such
    // assignments.
    if (js_object->IsStringObjectWithCharacterAt(index)) {
      return *value;
    }

    return js_object->SetElement(index, *value);
  }

  if (key->IsString()) {
    if (Handle<String>::cast(key)->AsArrayIndex(&index)) {
      ASSERT(attr == NONE);
      return js_object->SetElement(index, *value);
    } else {
      Handle<String> key_string = Handle<String>::cast(key);
      key_string->TryFlattenIfNotFlat();
      return js_object->IgnoreAttributesAndSetLocalProperty(*key_string,
                                                            *value,
                                                            attr);
    }
  }

  // Call-back into JavaScript to convert the key to a string.
  bool has_pending_exception = false;
  Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
  if (has_pending_exception) return Failure::Exception();
  Handle<String> name = Handle<String>::cast(converted);

  if (name->AsArrayIndex(&index)) {
    ASSERT(attr == NONE);
    return js_object->SetElement(index, *value);
  } else {
    return js_object->IgnoreAttributesAndSetLocalProperty(*name, *value, attr);
  }
}


Object* Runtime::ForceDeleteObjectProperty(Handle<JSObject> js_object,
                                           Handle<Object> key) {
  HandleScope scope;

  // Check if the given key is an array index.
  uint32_t index;
  if (Array::IndexFromObject(*key, &index)) {
    // In Firefox/SpiderMonkey, Safari and Opera you can access the
    // characters of a string using [] notation.  In the case of a
    // String object we just need to redirect the deletion to the
    // underlying string if the index is in range.  Since the
    // underlying string does nothing with the deletion, we can ignore
    // such deletions.
    if (js_object->IsStringObjectWithCharacterAt(index)) {
      return Heap::true_value();
    }

    return js_object->DeleteElement(index, JSObject::FORCE_DELETION);
  }

  Handle<String> key_string;
  if (key->IsString()) {
    key_string = Handle<String>::cast(key);
  } else {
    // Call-back into JavaScript to convert the key to a string.
    bool has_pending_exception = false;
    Handle<Object> converted = Execution::ToString(key, &has_pending_exception);
    if (has_pending_exception) return Failure::Exception();
    key_string = Handle<String>::cast(converted);
  }

  key_string->TryFlattenIfNotFlat();
  return js_object->DeleteProperty(*key_string, JSObject::FORCE_DELETION);
}


static Object* Runtime_SetProperty(Arguments args) {
  NoHandleAllocation ha;
  RUNTIME_ASSERT(args.length() == 3 || args.length() == 4);

  Handle<Object> object = args.at<Object>(0);
  Handle<Object> key = args.at<Object>(1);
  Handle<Object> value = args.at<Object>(2);

  // Compute attributes.
  PropertyAttributes attributes = NONE;
  if (args.length() == 4) {
    CONVERT_CHECKED(Smi, value_obj, args[3]);
    int unchecked_value = value_obj->value();
    // Only attribute bits should be set.
    RUNTIME_ASSERT(
        (unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
    attributes = static_cast<PropertyAttributes>(unchecked_value);
  }
  return Runtime::SetObjectProperty(object, key, value, attributes);
}


// Set a local property, even if it is READ_ONLY.  If the property does not
// exist, it will be added with attributes NONE.
static Object* Runtime_IgnoreAttributesAndSetProperty(Arguments args) {
  NoHandleAllocation ha;
  RUNTIME_ASSERT(args.length() == 3 || args.length() == 4);
  CONVERT_CHECKED(JSObject, object, args[0]);
  CONVERT_CHECKED(String, name, args[1]);
  // Compute attributes.
  PropertyAttributes attributes = NONE;
  if (args.length() == 4) {
    CONVERT_CHECKED(Smi, value_obj, args[3]);
    int unchecked_value = value_obj->value();
    // Only attribute bits should be set.
    RUNTIME_ASSERT(
        (unchecked_value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
    attributes = static_cast<PropertyAttributes>(unchecked_value);
  }

  return object->
      IgnoreAttributesAndSetLocalProperty(name, args[2], attributes);
}


static Object* Runtime_DeleteProperty(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_CHECKED(JSObject, object, args[0]);
  CONVERT_CHECKED(String, key, args[1]);
  return object->DeleteProperty(key, JSObject::NORMAL_DELETION);
}


static Object* HasLocalPropertyImplementation(Handle<JSObject> object,
                                              Handle<String> key) {
  if (object->HasLocalProperty(*key)) return Heap::true_value();
  // Handle hidden prototypes.  If there's a hidden prototype above this thing
  // then we have to check it for properties, because they are supposed to
  // look like they are on this object.
  Handle<Object> proto(object->GetPrototype());
  if (proto->IsJSObject() &&
      Handle<JSObject>::cast(proto)->map()->is_hidden_prototype()) {
    return HasLocalPropertyImplementation(Handle<JSObject>::cast(proto), key);
  }
  return Heap::false_value();
}


static Object* Runtime_HasLocalProperty(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);
  CONVERT_CHECKED(String, key, args[1]);

  Object* obj = args[0];
  // Only JS objects can have properties.
  if (obj->IsJSObject()) {
    JSObject* object = JSObject::cast(obj);
    // Fast case - no interceptors.
    if (object->HasRealNamedProperty(key)) return Heap::true_value();
    // Slow case.  Either it's not there or we have an interceptor.  We should
    // have handles for this kind of deal.
    HandleScope scope;
    return HasLocalPropertyImplementation(Handle<JSObject>(object),
                                          Handle<String>(key));
  } else if (obj->IsString()) {
    // Well, there is one exception:  Handle [] on strings.
    uint32_t index;
    if (key->AsArrayIndex(&index)) {
      String* string = String::cast(obj);
      if (index < static_cast<uint32_t>(string->length()))
        return Heap::true_value();
    }
  }
  return Heap::false_value();
}


static Object* Runtime_HasProperty(Arguments args) {
  NoHandleAllocation na;
  ASSERT(args.length() == 2);

  // Only JS objects can have properties.
  if (args[0]->IsJSObject()) {
    JSObject* object = JSObject::cast(args[0]);
    CONVERT_CHECKED(String, key, args[1]);
    if (object->HasProperty(key)) return Heap::true_value();
  }
  return Heap::false_value();
}


static Object* Runtime_HasElement(Arguments args) {
  NoHandleAllocation na;
  ASSERT(args.length() == 2);

  // Only JS objects can have elements.
  if (args[0]->IsJSObject()) {
    JSObject* object = JSObject::cast(args[0]);
    CONVERT_CHECKED(Smi, index_obj, args[1]);
    uint32_t index = index_obj->value();
    if (object->HasElement(index)) return Heap::true_value();
  }
  return Heap::false_value();
}


static Object* Runtime_IsPropertyEnumerable(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_CHECKED(JSObject, object, args[0]);
  CONVERT_CHECKED(String, key, args[1]);

  uint32_t index;
  if (key->AsArrayIndex(&index)) {
    return Heap::ToBoolean(object->HasElement(index));
  }

  PropertyAttributes att = object->GetLocalPropertyAttribute(key);
  return Heap::ToBoolean(att != ABSENT && (att & DONT_ENUM) == 0);
}


static Object* Runtime_GetPropertyNames(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);
  CONVERT_ARG_CHECKED(JSObject, object, 0);
  return *GetKeysFor(object);
}


// Returns either a FixedArray as Runtime_GetPropertyNames,
// or, if the given object has an enum cache that contains
// all enumerable properties of the object and its prototypes
// have none, the map of the object. This is used to speed up
// the check for deletions during a for-in.
static Object* Runtime_GetPropertyNamesFast(Arguments args) {
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(JSObject, raw_object, args[0]);

  if (raw_object->IsSimpleEnum()) return raw_object->map();

  HandleScope scope;
  Handle<JSObject> object(raw_object);
  Handle<FixedArray> content = GetKeysInFixedArrayFor(object,
                                                      INCLUDE_PROTOS);

  // Test again, since cache may have been built by preceding call.
  if (object->IsSimpleEnum()) return object->map();

  return *content;
}


static Object* Runtime_LocalKeys(Arguments args) {
  ASSERT_EQ(args.length(), 1);
  CONVERT_CHECKED(JSObject, raw_object, args[0]);
  HandleScope scope;
  Handle<JSObject> object(raw_object);
  Handle<FixedArray> contents = GetKeysInFixedArrayFor(object,
                                                       LOCAL_ONLY);
  // Some fast paths through GetKeysInFixedArrayFor reuse a cached
  // property array and since the result is mutable we have to create
  // a fresh clone on each invocation.
  int length = contents->length();
  Handle<FixedArray> copy = Factory::NewFixedArray(length);
  for (int i = 0; i < length; i++) {
    Object* entry = contents->get(i);
    if (entry->IsString()) {
      copy->set(i, entry);
    } else {
      ASSERT(entry->IsNumber());
      HandleScope scope;
      Handle<Object> entry_handle(entry);
      Handle<Object> entry_str = Factory::NumberToString(entry_handle);
      copy->set(i, *entry_str);
    }
  }
  return *Factory::NewJSArrayWithElements(copy);
}


static Object* Runtime_GetArgumentsProperty(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  // Compute the frame holding the arguments.
  JavaScriptFrameIterator it;
  it.AdvanceToArgumentsFrame();
  JavaScriptFrame* frame = it.frame();

  // Get the actual number of provided arguments.
  const uint32_t n = frame->GetProvidedParametersCount();

  // Try to convert the key to an index. If successful and within
  // index return the the argument from the frame.
  uint32_t index;
  if (Array::IndexFromObject(args[0], &index) && index < n) {
    return frame->GetParameter(index);
  }

  // Convert the key to a string.
  HandleScope scope;
  bool exception = false;
  Handle<Object> converted =
      Execution::ToString(args.at<Object>(0), &exception);
  if (exception) return Failure::Exception();
  Handle<String> key = Handle<String>::cast(converted);

  // Try to convert the string key into an array index.
  if (key->AsArrayIndex(&index)) {
    if (index < n) {
      return frame->GetParameter(index);
    } else {
      return Top::initial_object_prototype()->GetElement(index);
    }
  }

  // Handle special arguments properties.
  if (key->Equals(Heap::length_symbol())) return Smi::FromInt(n);
  if (key->Equals(Heap::callee_symbol())) return frame->function();

  // Lookup in the initial Object.prototype object.
  return Top::initial_object_prototype()->GetProperty(*key);
}


static Object* Runtime_ToFastProperties(Arguments args) {
  ASSERT(args.length() == 1);
  Handle<Object> object = args.at<Object>(0);
  if (object->IsJSObject()) {
    Handle<JSObject> js_object = Handle<JSObject>::cast(object);
    js_object->TransformToFastProperties(0);
  }
  return *object;
}


static Object* Runtime_ToSlowProperties(Arguments args) {
  ASSERT(args.length() == 1);
  Handle<Object> object = args.at<Object>(0);
  if (object->IsJSObject()) {
    Handle<JSObject> js_object = Handle<JSObject>::cast(object);
    js_object->NormalizeProperties(CLEAR_INOBJECT_PROPERTIES, 0);
  }
  return *object;
}


static Object* Runtime_ToBool(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  return args[0]->ToBoolean();
}


// Returns the type string of a value; see ECMA-262, 11.4.3 (p 47).
// Possible optimizations: put the type string into the oddballs.
static Object* Runtime_Typeof(Arguments args) {
  NoHandleAllocation ha;

  Object* obj = args[0];
  if (obj->IsNumber()) return Heap::number_symbol();
  HeapObject* heap_obj = HeapObject::cast(obj);

  // typeof an undetectable object is 'undefined'
  if (heap_obj->map()->is_undetectable()) return Heap::undefined_symbol();

  InstanceType instance_type = heap_obj->map()->instance_type();
  if (instance_type < FIRST_NONSTRING_TYPE) {
    return Heap::string_symbol();
  }

  switch (instance_type) {
    case ODDBALL_TYPE:
      if (heap_obj->IsTrue() || heap_obj->IsFalse()) {
        return Heap::boolean_symbol();
      }
      if (heap_obj->IsNull()) {
        return Heap::object_symbol();
      }
      ASSERT(heap_obj->IsUndefined());
      return Heap::undefined_symbol();
    case JS_FUNCTION_TYPE: case JS_REGEXP_TYPE:
      return Heap::function_symbol();
    default:
      // For any kind of object not handled above, the spec rule for
      // host objects gives that it is okay to return "object"
      return Heap::object_symbol();
  }
}


static Object* Runtime_StringToNumber(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);
  CONVERT_CHECKED(String, subject, args[0]);
  subject->TryFlattenIfNotFlat();
  return Heap::NumberFromDouble(StringToDouble(subject, ALLOW_HEX));
}


static Object* Runtime_StringFromCharCodeArray(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(JSArray, codes, args[0]);
  int length = Smi::cast(codes->length())->value();

  // Check if the string can be ASCII.
  int i;
  for (i = 0; i < length; i++) {
    Object* element = codes->GetElement(i);
    CONVERT_NUMBER_CHECKED(int, chr, Int32, element);
    if ((chr & 0xffff) > String::kMaxAsciiCharCode)
      break;
  }

  Object* object = NULL;
  if (i == length) {  // The string is ASCII.
    object = Heap::AllocateRawAsciiString(length);
  } else {  // The string is not ASCII.
    object = Heap::AllocateRawTwoByteString(length);
  }

  if (object->IsFailure()) return object;
  String* result = String::cast(object);
  for (int i = 0; i < length; i++) {
    Object* element = codes->GetElement(i);
    CONVERT_NUMBER_CHECKED(int, chr, Int32, element);
    result->Set(i, chr & 0xffff);
  }
  return result;
}


// kNotEscaped is generated by the following:
//
// #!/bin/perl
// for (my $i = 0; $i < 256; $i++) {
//   print "\n" if $i % 16 == 0;
//   my $c = chr($i);
//   my $escaped = 1;
//   $escaped = 0 if $c =~ m#[A-Za-z0-9@*_+./-]#;
//   print $escaped ? "0, " : "1, ";
// }


static bool IsNotEscaped(uint16_t character) {
  // Only for 8 bit characters, the rest are always escaped (in a different way)
  ASSERT(character < 256);
  static const char kNotEscaped[256] = {
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,
    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  };
  return kNotEscaped[character] != 0;
}


static Object* Runtime_URIEscape(Arguments args) {
  const char hex_chars[] = "0123456789ABCDEF";
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);
  CONVERT_CHECKED(String, source, args[0]);

  source->TryFlattenIfNotFlat();

  int escaped_length = 0;
  int length = source->length();
  {
    Access<StringInputBuffer> buffer(&runtime_string_input_buffer);
    buffer->Reset(source);
    while (buffer->has_more()) {
      uint16_t character = buffer->GetNext();
      if (character >= 256) {
        escaped_length += 6;
      } else if (IsNotEscaped(character)) {
        escaped_length++;
      } else {
        escaped_length += 3;
      }
      // We don't allow strings that are longer than a maximal length.
      if (escaped_length > String::kMaxLength) {
        Top::context()->mark_out_of_memory();
        return Failure::OutOfMemoryException();
      }
    }
  }
  // No length change implies no change.  Return original string if no change.
  if (escaped_length == length) {
    return source;
  }
  Object* o = Heap::AllocateRawAsciiString(escaped_length);
  if (o->IsFailure()) return o;
  String* destination = String::cast(o);
  int dest_position = 0;

  Access<StringInputBuffer> buffer(&runtime_string_input_buffer);
  buffer->Rewind();
  while (buffer->has_more()) {
    uint16_t chr = buffer->GetNext();
    if (chr >= 256) {
      destination->Set(dest_position, '%');
      destination->Set(dest_position+1, 'u');
      destination->Set(dest_position+2, hex_chars[chr >> 12]);
      destination->Set(dest_position+3, hex_chars[(chr >> 8) & 0xf]);
      destination->Set(dest_position+4, hex_chars[(chr >> 4) & 0xf]);
      destination->Set(dest_position+5, hex_chars[chr & 0xf]);
      dest_position += 6;
    } else if (IsNotEscaped(chr)) {
      destination->Set(dest_position, chr);
      dest_position++;
    } else {
      destination->Set(dest_position, '%');
      destination->Set(dest_position+1, hex_chars[chr >> 4]);
      destination->Set(dest_position+2, hex_chars[chr & 0xf]);
      dest_position += 3;
    }
  }
  return destination;
}


static inline int TwoDigitHex(uint16_t character1, uint16_t character2) {
  static const signed char kHexValue['g'] = {
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    0,  1,  2,   3,  4,  5,  6,  7,  8,  9, -1, -1, -1, -1, -1, -1,
    -1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
    -1, 10, 11, 12, 13, 14, 15 };

  if (character1 > 'f') return -1;
  int hi = kHexValue[character1];
  if (hi == -1) return -1;
  if (character2 > 'f') return -1;
  int lo = kHexValue[character2];
  if (lo == -1) return -1;
  return (hi << 4) + lo;
}


static inline int Unescape(String* source,
                           int i,
                           int length,
                           int* step) {
  uint16_t character = source->Get(i);
  int32_t hi = 0;
  int32_t lo = 0;
  if (character == '%' &&
      i <= length - 6 &&
      source->Get(i + 1) == 'u' &&
      (hi = TwoDigitHex(source->Get(i + 2),
                        source->Get(i + 3))) != -1 &&
      (lo = TwoDigitHex(source->Get(i + 4),
                        source->Get(i + 5))) != -1) {
    *step = 6;
    return (hi << 8) + lo;
  } else if (character == '%' &&
      i <= length - 3 &&
      (lo = TwoDigitHex(source->Get(i + 1),
                        source->Get(i + 2))) != -1) {
    *step = 3;
    return lo;
  } else {
    *step = 1;
    return character;
  }
}


static Object* Runtime_URIUnescape(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);
  CONVERT_CHECKED(String, source, args[0]);

  source->TryFlattenIfNotFlat();

  bool ascii = true;
  int length = source->length();

  int unescaped_length = 0;
  for (int i = 0; i < length; unescaped_length++) {
    int step;
    if (Unescape(source, i, length, &step) > String::kMaxAsciiCharCode) {
      ascii = false;
    }
    i += step;
  }

  // No length change implies no change.  Return original string if no change.
  if (unescaped_length == length)
    return source;

  Object* o = ascii ?
              Heap::AllocateRawAsciiString(unescaped_length) :
              Heap::AllocateRawTwoByteString(unescaped_length);
  if (o->IsFailure()) return o;
  String* destination = String::cast(o);

  int dest_position = 0;
  for (int i = 0; i < length; dest_position++) {
    int step;
    destination->Set(dest_position, Unescape(source, i, length, &step));
    i += step;
  }
  return destination;
}


static Object* Runtime_StringParseInt(Arguments args) {
  NoHandleAllocation ha;

  CONVERT_CHECKED(String, s, args[0]);
  CONVERT_SMI_CHECKED(radix, args[1]);

  s->TryFlattenIfNotFlat();

  int len = s->length();
  int i;

  // Skip leading white space.
  for (i = 0; i < len && Scanner::kIsWhiteSpace.get(s->Get(i)); i++) ;
  if (i == len) return Heap::nan_value();

  // Compute the sign (default to +).
  int sign = 1;
  if (s->Get(i) == '-') {
    sign = -1;
    i++;
  } else if (s->Get(i) == '+') {
    i++;
  }

  // Compute the radix if 0.
  if (radix == 0) {
    radix = 10;
    if (i < len && s->Get(i) == '0') {
      radix = 8;
      if (i + 1 < len) {
        int c = s->Get(i + 1);
        if (c == 'x' || c == 'X') {
          radix = 16;
          i += 2;
        }
      }
    }
  } else if (radix == 16) {
    // Allow 0x or 0X prefix if radix is 16.
    if (i + 1 < len && s->Get(i) == '0') {
      int c = s->Get(i + 1);
      if (c == 'x' || c == 'X') i += 2;
    }
  }

  RUNTIME_ASSERT(2 <= radix && radix <= 36);
  double value;
  int end_index = StringToInt(s, i, radix, &value);
  if (end_index != i) {
    return Heap::NumberFromDouble(sign * value);
  }
  return Heap::nan_value();
}


static Object* Runtime_StringParseFloat(Arguments args) {
  NoHandleAllocation ha;
  CONVERT_CHECKED(String, str, args[0]);

  // ECMA-262 section 15.1.2.3, empty string is NaN
  double value = StringToDouble(str, ALLOW_TRAILING_JUNK, OS::nan_value());

  // Create a number object from the value.
  return Heap::NumberFromDouble(value);
}


static unibrow::Mapping<unibrow::ToUppercase, 128> to_upper_mapping;
static unibrow::Mapping<unibrow::ToLowercase, 128> to_lower_mapping;


template <class Converter>
static Object* ConvertCaseHelper(String* s,
                                 int length,
                                 int input_string_length,
                                 unibrow::Mapping<Converter, 128>* mapping) {
  // We try this twice, once with the assumption that the result is no longer
  // than the input and, if that assumption breaks, again with the exact
  // length.  This may not be pretty, but it is nicer than what was here before
  // and I hereby claim my vaffel-is.
  //
  // Allocate the resulting string.
  //
  // NOTE: This assumes that the upper/lower case of an ascii
  // character is also ascii.  This is currently the case, but it
  // might break in the future if we implement more context and locale
  // dependent upper/lower conversions.
  Object* o = s->IsAsciiRepresentation()
      ? Heap::AllocateRawAsciiString(length)
      : Heap::AllocateRawTwoByteString(length);
  if (o->IsFailure()) return o;
  String* result = String::cast(o);
  bool has_changed_character = false;

  // Convert all characters to upper case, assuming that they will fit
  // in the buffer
  Access<StringInputBuffer> buffer(&runtime_string_input_buffer);
  buffer->Reset(s);
  unibrow::uchar chars[Converter::kMaxWidth];
  // We can assume that the string is not empty
  uc32 current = buffer->GetNext();
  for (int i = 0; i < length;) {
    bool has_next = buffer->has_more();
    uc32 next = has_next ? buffer->GetNext() : 0;
    int char_length = mapping->get(current, next, chars);
    if (char_length == 0) {
      // The case conversion of this character is the character itself.
      result->Set(i, current);
      i++;
    } else if (char_length == 1) {
      // Common case: converting the letter resulted in one character.
      ASSERT(static_cast<uc32>(chars[0]) != current);
      result->Set(i, chars[0]);
      has_changed_character = true;
      i++;
    } else if (length == input_string_length) {
      // We've assumed that the result would be as long as the
      // input but here is a character that converts to several
      // characters.  No matter, we calculate the exact length
      // of the result and try the whole thing again.
      //
      // Note that this leaves room for optimization.  We could just
      // memcpy what we already have to the result string.  Also,
      // the result string is the last object allocated we could
      // "realloc" it and probably, in the vast majority of cases,
      // extend the existing string to be able to hold the full
      // result.
      int next_length = 0;
      if (has_next) {
        next_length = mapping->get(next, 0, chars);
        if (next_length == 0) next_length = 1;
      }
      int current_length = i + char_length + next_length;
      while (buffer->has_more()) {
        current = buffer->GetNext();
        // NOTE: we use 0 as the next character here because, while
        // the next character may affect what a character converts to,
        // it does not in any case affect the length of what it convert
        // to.
        int char_length = mapping->get(current, 0, chars);
        if (char_length == 0) char_length = 1;
        current_length += char_length;
        if (current_length > Smi::kMaxValue) {
          Top::context()->mark_out_of_memory();
          return Failure::OutOfMemoryException();
        }
      }
      // Try again with the real length.
      return Smi::FromInt(current_length);
    } else {
      for (int j = 0; j < char_length; j++) {
        result->Set(i, chars[j]);
        i++;
      }
      has_changed_character = true;
    }
    current = next;
  }
  if (has_changed_character) {
    return result;
  } else {
    // If we didn't actually change anything in doing the conversion
    // we simple return the result and let the converted string
    // become garbage; there is no reason to keep two identical strings
    // alive.
    return s;
  }
}


template <class Converter>
static Object* ConvertCase(Arguments args,
                           unibrow::Mapping<Converter, 128>* mapping) {
  NoHandleAllocation ha;

  CONVERT_CHECKED(String, s, args[0]);
  s->TryFlattenIfNotFlat();

  int input_string_length = s->length();
  // Assume that the string is not empty; we need this assumption later
  if (input_string_length == 0) return s;
  int length = input_string_length;

  Object* answer = ConvertCaseHelper(s, length, length, mapping);
  if (answer->IsSmi()) {
    // Retry with correct length.
    answer = ConvertCaseHelper(s, Smi::cast(answer)->value(), length, mapping);
  }
  return answer;  // This may be a failure.
}


static Object* Runtime_StringToLowerCase(Arguments args) {
  return ConvertCase<unibrow::ToLowercase>(args, &to_lower_mapping);
}


static Object* Runtime_StringToUpperCase(Arguments args) {
  return ConvertCase<unibrow::ToUppercase>(args, &to_upper_mapping);
}

static inline bool IsTrimWhiteSpace(unibrow::uchar c) {
  return unibrow::WhiteSpace::Is(c) || c == 0x200b;
}

static Object* Runtime_StringTrim(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 3);

  CONVERT_CHECKED(String, s, args[0]);
  CONVERT_BOOLEAN_CHECKED(trimLeft, args[1]);
  CONVERT_BOOLEAN_CHECKED(trimRight, args[2]);

  s->TryFlattenIfNotFlat();
  int length = s->length();

  int left = 0;
  if (trimLeft) {
    while (left < length && IsTrimWhiteSpace(s->Get(left))) {
      left++;
    }
  }

  int right = length;
  if (trimRight) {
    while (right > left && IsTrimWhiteSpace(s->Get(right - 1))) {
      right--;
    }
  }
  return s->SubString(left, right);
}

bool Runtime::IsUpperCaseChar(uint16_t ch) {
  unibrow::uchar chars[unibrow::ToUppercase::kMaxWidth];
  int char_length = to_upper_mapping.get(ch, 0, chars);
  return char_length == 0;
}


static Object* Runtime_NumberToString(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  Object* number = args[0];
  RUNTIME_ASSERT(number->IsNumber());

  return Heap::NumberToString(number);
}


static Object* Runtime_NumberToInteger(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  Object* obj = args[0];
  if (obj->IsSmi()) return obj;
  CONVERT_DOUBLE_CHECKED(number, obj);
  return Heap::NumberFromDouble(DoubleToInteger(number));
}


static Object* Runtime_NumberToJSUint32(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  Object* obj = args[0];
  if (obj->IsSmi() && Smi::cast(obj)->value() >= 0) return obj;
  CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, obj);
  return Heap::NumberFromUint32(number);
}


static Object* Runtime_NumberToJSInt32(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  Object* obj = args[0];
  if (obj->IsSmi()) return obj;
  CONVERT_DOUBLE_CHECKED(number, obj);
  return Heap::NumberFromInt32(DoubleToInt32(number));
}


// Converts a Number to a Smi, if possible. Returns NaN if the number is not
// a small integer.
static Object* Runtime_NumberToSmi(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  Object* obj = args[0];
  if (obj->IsSmi()) {
    return obj;
  }
  if (obj->IsHeapNumber()) {
    double value = HeapNumber::cast(obj)->value();
    int int_value = FastD2I(value);
    if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
      return Smi::FromInt(int_value);
    }
  }
  return Heap::nan_value();
}


static Object* Runtime_NumberAdd(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  CONVERT_DOUBLE_CHECKED(y, args[1]);
  return Heap::AllocateHeapNumber(x + y);
}


static Object* Runtime_NumberSub(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  CONVERT_DOUBLE_CHECKED(y, args[1]);
  return Heap::AllocateHeapNumber(x - y);
}


static Object* Runtime_NumberMul(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  CONVERT_DOUBLE_CHECKED(y, args[1]);
  return Heap::AllocateHeapNumber(x * y);
}


static Object* Runtime_NumberUnaryMinus(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return Heap::AllocateHeapNumber(-x);
}


static Object* Runtime_NumberDiv(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  CONVERT_DOUBLE_CHECKED(y, args[1]);
  return Heap::NewNumberFromDouble(x / y);
}


static Object* Runtime_NumberMod(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  CONVERT_DOUBLE_CHECKED(y, args[1]);

  x = modulo(x, y);
  // NewNumberFromDouble may return a Smi instead of a Number object
  return Heap::NewNumberFromDouble(x);
}


static Object* Runtime_StringAdd(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);
  CONVERT_CHECKED(String, str1, args[0]);
  CONVERT_CHECKED(String, str2, args[1]);
  Counters::string_add_runtime.Increment();
  return Heap::AllocateConsString(str1, str2);
}


template<typename sinkchar>
static inline void StringBuilderConcatHelper(String* special,
                                             sinkchar* sink,
                                             FixedArray* fixed_array,
                                             int array_length) {
  int position = 0;
  for (int i = 0; i < array_length; i++) {
    Object* element = fixed_array->get(i);
    if (element->IsSmi()) {
      // Smi encoding of position and length.
      int encoded_slice = Smi::cast(element)->value();
      int pos;
      int len;
      if (encoded_slice > 0) {
        // Position and length encoded in one smi.
        pos = StringBuilderSubstringPosition::decode(encoded_slice);
        len = StringBuilderSubstringLength::decode(encoded_slice);
      } else {
        // Position and length encoded in two smis.
        Object* obj = fixed_array->get(++i);
        ASSERT(obj->IsSmi());
        pos = Smi::cast(obj)->value();
        len = -encoded_slice;
      }
      String::WriteToFlat(special,
                          sink + position,
                          pos,
                          pos + len);
      position += len;
    } else {
      String* string = String::cast(element);
      int element_length = string->length();
      String::WriteToFlat(string, sink + position, 0, element_length);
      position += element_length;
    }
  }
}


static Object* Runtime_StringBuilderConcat(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);
  CONVERT_CHECKED(JSArray, array, args[0]);
  CONVERT_CHECKED(String, special, args[1]);

  // This assumption is used by the slice encoding in one or two smis.
  ASSERT(Smi::kMaxValue >= String::kMaxLength);

  int special_length = special->length();
  Object* smi_array_length = array->length();
  if (!smi_array_length->IsSmi()) {
    Top::context()->mark_out_of_memory();
    return Failure::OutOfMemoryException();
  }
  int array_length = Smi::cast(smi_array_length)->value();
  if (!array->HasFastElements()) {
    return Top::Throw(Heap::illegal_argument_symbol());
  }
  FixedArray* fixed_array = FixedArray::cast(array->elements());
  if (fixed_array->length() < array_length) {
    array_length = fixed_array->length();
  }

  if (array_length == 0) {
    return Heap::empty_string();
  } else if (array_length == 1) {
    Object* first = fixed_array->get(0);
    if (first->IsString()) return first;
  }

  bool ascii = special->IsAsciiRepresentation();
  int position = 0;
  for (int i = 0; i < array_length; i++) {
    Object* elt = fixed_array->get(i);
    if (elt->IsSmi()) {
      // Smi encoding of position and length.
      int len = Smi::cast(elt)->value();
      if (len > 0) {
        // Position and length encoded in one smi.
        int pos = len >> 11;
        len &= 0x7ff;
        if (pos + len > special_length) {
          return Top::Throw(Heap::illegal_argument_symbol());
        }
        position += len;
      } else {
        // Position and length encoded in two smis.
        position += (-len);
        // Get the position and check that it is also a smi.
        i++;
        if (i >= array_length) {
          return Top::Throw(Heap::illegal_argument_symbol());
        }
        Object* pos = fixed_array->get(i);
        if (!pos->IsSmi()) {
          return Top::Throw(Heap::illegal_argument_symbol());
        }
      }
    } else if (elt->IsString()) {
      String* element = String::cast(elt);
      int element_length = element->length();
      position += element_length;
      if (ascii && !element->IsAsciiRepresentation()) {
        ascii = false;
      }
    } else {
      return Top::Throw(Heap::illegal_argument_symbol());
    }
    if (position > String::kMaxLength) {
      Top::context()->mark_out_of_memory();
      return Failure::OutOfMemoryException();
    }
  }

  int length = position;
  Object* object;

  if (ascii) {
    object = Heap::AllocateRawAsciiString(length);
    if (object->IsFailure()) return object;
    SeqAsciiString* answer = SeqAsciiString::cast(object);
    StringBuilderConcatHelper(special,
                              answer->GetChars(),
                              fixed_array,
                              array_length);
    return answer;
  } else {
    object = Heap::AllocateRawTwoByteString(length);
    if (object->IsFailure()) return object;
    SeqTwoByteString* answer = SeqTwoByteString::cast(object);
    StringBuilderConcatHelper(special,
                              answer->GetChars(),
                              fixed_array,
                              array_length);
    return answer;
  }
}


static Object* Runtime_NumberOr(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
  return Heap::NumberFromInt32(x | y);
}


static Object* Runtime_NumberAnd(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
  return Heap::NumberFromInt32(x & y);
}


static Object* Runtime_NumberXor(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
  return Heap::NumberFromInt32(x ^ y);
}


static Object* Runtime_NumberNot(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
  return Heap::NumberFromInt32(~x);
}


static Object* Runtime_NumberShl(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
  return Heap::NumberFromInt32(x << (y & 0x1f));
}


static Object* Runtime_NumberShr(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
  return Heap::NumberFromUint32(x >> (y & 0x1f));
}


static Object* Runtime_NumberSar(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
  return Heap::NumberFromInt32(ArithmeticShiftRight(x, y & 0x1f));
}


static Object* Runtime_NumberEquals(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  CONVERT_DOUBLE_CHECKED(y, args[1]);
  if (isnan(x)) return Smi::FromInt(NOT_EQUAL);
  if (isnan(y)) return Smi::FromInt(NOT_EQUAL);
  if (x == y) return Smi::FromInt(EQUAL);
  Object* result;
  if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
    result = Smi::FromInt(EQUAL);
  } else {
    result = Smi::FromInt(NOT_EQUAL);
  }
  return result;
}


static Object* Runtime_StringEquals(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_CHECKED(String, x, args[0]);
  CONVERT_CHECKED(String, y, args[1]);

  bool not_equal = !x->Equals(y);
  // This is slightly convoluted because the value that signifies
  // equality is 0 and inequality is 1 so we have to negate the result
  // from String::Equals.
  ASSERT(not_equal == 0 || not_equal == 1);
  STATIC_CHECK(EQUAL == 0);
  STATIC_CHECK(NOT_EQUAL == 1);
  return Smi::FromInt(not_equal);
}


static Object* Runtime_NumberCompare(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 3);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  CONVERT_DOUBLE_CHECKED(y, args[1]);
  if (isnan(x) || isnan(y)) return args[2];
  if (x == y) return Smi::FromInt(EQUAL);
  if (isless(x, y)) return Smi::FromInt(LESS);
  return Smi::FromInt(GREATER);
}


// Compare two Smis as if they were converted to strings and then
// compared lexicographically.
static Object* Runtime_SmiLexicographicCompare(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  // Arrays for the individual characters of the two Smis.  Smis are
  // 31 bit integers and 10 decimal digits are therefore enough.
  static int x_elms[10];
  static int y_elms[10];

  // Extract the integer values from the Smis.
  CONVERT_CHECKED(Smi, x, args[0]);
  CONVERT_CHECKED(Smi, y, args[1]);
  int x_value = x->value();
  int y_value = y->value();

  // If the integers are equal so are the string representations.
  if (x_value == y_value) return Smi::FromInt(EQUAL);

  // If one of the integers are zero the normal integer order is the
  // same as the lexicographic order of the string representations.
  if (x_value == 0 || y_value == 0) return Smi::FromInt(x_value - y_value);

  // If only one of the integers is negative the negative number is
  // smallest because the char code of '-' is less than the char code
  // of any digit.  Otherwise, we make both values positive.
  if (x_value < 0 || y_value < 0) {
    if (y_value >= 0) return Smi::FromInt(LESS);
    if (x_value >= 0) return Smi::FromInt(GREATER);
    x_value = -x_value;
    y_value = -y_value;
  }

  // Convert the integers to arrays of their decimal digits.
  int x_index = 0;
  int y_index = 0;
  while (x_value > 0) {
    x_elms[x_index++] = x_value % 10;
    x_value /= 10;
  }
  while (y_value > 0) {
    y_elms[y_index++] = y_value % 10;
    y_value /= 10;
  }

  // Loop through the arrays of decimal digits finding the first place
  // where they differ.
  while (--x_index >= 0 && --y_index >= 0) {
    int diff = x_elms[x_index] - y_elms[y_index];
    if (diff != 0) return Smi::FromInt(diff);
  }

  // If one array is a suffix of the other array, the longest array is
  // the representation of the largest of the Smis in the
  // lexicographic ordering.
  return Smi::FromInt(x_index - y_index);
}


static Object* Runtime_StringCompare(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_CHECKED(String, x, args[0]);
  CONVERT_CHECKED(String, y, args[1]);

  // A few fast case tests before we flatten.
  if (x == y) return Smi::FromInt(EQUAL);
  if (y->length() == 0) {
    if (x->length() == 0) return Smi::FromInt(EQUAL);
    return Smi::FromInt(GREATER);
  } else if (x->length() == 0) {
    return Smi::FromInt(LESS);
  }

  int d = x->Get(0) - y->Get(0);
  if (d < 0) return Smi::FromInt(LESS);
  else if (d > 0) return Smi::FromInt(GREATER);

  x->TryFlattenIfNotFlat();
  y->TryFlattenIfNotFlat();

  static StringInputBuffer bufx;
  static StringInputBuffer bufy;
  bufx.Reset(x);
  bufy.Reset(y);
  while (bufx.has_more() && bufy.has_more()) {
    int d = bufx.GetNext() - bufy.GetNext();
    if (d < 0) return Smi::FromInt(LESS);
    else if (d > 0) return Smi::FromInt(GREATER);
  }

  // x is (non-trivial) prefix of y:
  if (bufy.has_more()) return Smi::FromInt(LESS);
  // y is prefix of x:
  return Smi::FromInt(bufx.has_more() ? GREATER : EQUAL);
}


static Object* Runtime_Math_abs(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return Heap::AllocateHeapNumber(fabs(x));
}


static Object* Runtime_Math_acos(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return TranscendentalCache::Get(TranscendentalCache::ACOS, x);
}


static Object* Runtime_Math_asin(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return TranscendentalCache::Get(TranscendentalCache::ASIN, x);
}


static Object* Runtime_Math_atan(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return TranscendentalCache::Get(TranscendentalCache::ATAN, x);
}


static Object* Runtime_Math_atan2(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  CONVERT_DOUBLE_CHECKED(y, args[1]);
  double result;
  if (isinf(x) && isinf(y)) {
    // Make sure that the result in case of two infinite arguments
    // is a multiple of Pi / 4. The sign of the result is determined
    // by the first argument (x) and the sign of the second argument
    // determines the multiplier: one or three.
    static double kPiDividedBy4 = 0.78539816339744830962;
    int multiplier = (x < 0) ? -1 : 1;
    if (y < 0) multiplier *= 3;
    result = multiplier * kPiDividedBy4;
  } else {
    result = atan2(x, y);
  }
  return Heap::AllocateHeapNumber(result);
}


static Object* Runtime_Math_ceil(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return Heap::NumberFromDouble(ceiling(x));
}


static Object* Runtime_Math_cos(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return TranscendentalCache::Get(TranscendentalCache::COS, x);
}


static Object* Runtime_Math_exp(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return TranscendentalCache::Get(TranscendentalCache::EXP, x);
}


static Object* Runtime_Math_floor(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return Heap::NumberFromDouble(floor(x));
}


static Object* Runtime_Math_log(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return TranscendentalCache::Get(TranscendentalCache::LOG, x);
}


// Helper function to compute x^y, where y is known to be an
// integer. Uses binary decomposition to limit the number of
// multiplications; see the discussion in "Hacker's Delight" by Henry
// S. Warren, Jr., figure 11-6, page 213.
static double powi(double x, int y) {
  ASSERT(y != kMinInt);
  unsigned n = (y < 0) ? -y : y;
  double m = x;
  double p = 1;
  while (true) {
    if ((n & 1) != 0) p *= m;
    n >>= 1;
    if (n == 0) {
      if (y < 0) {
        // Unfortunately, we have to be careful when p has reached
        // infinity in the computation, because sometimes the higher
        // internal precision in the pow() implementation would have
        // given us a finite p. This happens very rarely.
        double result = 1.0 / p;
        return (result == 0 && isinf(p))
            ? pow(x, static_cast<double>(y))  // Avoid pow(double, int).
            : result;
      } else {
        return p;
      }
    }
    m *= m;
  }
}


static Object* Runtime_Math_pow(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 2);

  CONVERT_DOUBLE_CHECKED(x, args[0]);

  // If the second argument is a smi, it is much faster to call the
  // custom powi() function than the generic pow().
  if (args[1]->IsSmi()) {
    int y = Smi::cast(args[1])->value();
    return Heap::AllocateHeapNumber(powi(x, y));
  }

  CONVERT_DOUBLE_CHECKED(y, args[1]);

  if (!isinf(x)) {
    if (y == 0.5) {
      // It's not uncommon to use Math.pow(x, 0.5) to compute the
      // square root of a number. To speed up such computations, we
      // explictly check for this case and use the sqrt() function
      // which is faster than pow().
      return Heap::AllocateHeapNumber(sqrt(x));
    } else if (y == -0.5) {
      // Optimized using Math.pow(x, -0.5) == 1 / Math.pow(x, 0.5).
      return Heap::AllocateHeapNumber(1.0 / sqrt(x));
    }
  }

  if (y == 0) {
    return Smi::FromInt(1);
  } else if (isnan(y) || ((x == 1 || x == -1) && isinf(y))) {
    return Heap::nan_value();
  } else {
    return Heap::AllocateHeapNumber(pow(x, y));
  }
}


static Object* Runtime_Math_round(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  if (signbit(x) && x >= -0.5) return Heap::minus_zero_value();
  return Heap::NumberFromDouble(floor(x + 0.5));
}


static Object* Runtime_Math_sin(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return TranscendentalCache::Get(TranscendentalCache::SIN, x);
}


static Object* Runtime_Math_sqrt(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return Heap::AllocateHeapNumber(sqrt(x));
}


static Object* Runtime_Math_tan(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return TranscendentalCache::Get(TranscendentalCache::TAN, x);
}


// The NewArguments function is only used when constructing the
// arguments array when calling non-functions from JavaScript in
// runtime.js:CALL_NON_FUNCTION.
static Object* Runtime_NewArguments(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  // ECMA-262, 3rd., 10.1.8, p.39
  CONVERT_CHECKED(JSFunction, callee, args[0]);

  // Compute the frame holding the arguments.
  JavaScriptFrameIterator it;
  it.AdvanceToArgumentsFrame();
  JavaScriptFrame* frame = it.frame();

  const int length = frame->GetProvidedParametersCount();
  Object* result = Heap::AllocateArgumentsObject(callee, length);
  if (result->IsFailure()) return result;
  if (length > 0) {
    Object* obj =  Heap::AllocateFixedArray(length);
    if (obj->IsFailure()) return obj;
    FixedArray* array = FixedArray::cast(obj);
    ASSERT(array->length() == length);
    WriteBarrierMode mode = array->GetWriteBarrierMode();
    for (int i = 0; i < length; i++) {
      array->set(i, frame->GetParameter(i), mode);
    }
    JSObject::cast(result)->set_elements(array);
  }
  return result;
}


static Object* Runtime_NewArgumentsFast(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 3);

  JSFunction* callee = JSFunction::cast(args[0]);
  Object** parameters = reinterpret_cast<Object**>(args[1]);
  const int length = Smi::cast(args[2])->value();

  Object* result = Heap::AllocateArgumentsObject(callee, length);
  if (result->IsFailure()) return result;
  // Allocate the elements if needed.
  if (length > 0) {
    // Allocate the fixed array.
    Object* obj = Heap::AllocateRawFixedArray(length);
    if (obj->IsFailure()) return obj;
    reinterpret_cast<Array*>(obj)->set_map(Heap::fixed_array_map());
    FixedArray* array = FixedArray::cast(obj);
    array->set_length(length);
    WriteBarrierMode mode = array->GetWriteBarrierMode();
    for (int i = 0; i < length; i++) {
      array->set(i, *--parameters, mode);
    }
    JSObject::cast(result)->set_elements(FixedArray::cast(obj));
  }
  return result;
}


static Object* Runtime_NewClosure(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 2);
  CONVERT_ARG_CHECKED(Context, context, 0);
  CONVERT_ARG_CHECKED(JSFunction, boilerplate, 1);

  PretenureFlag pretenure = (context->global_context() == *context)
      ? TENURED       // Allocate global closures in old space.
      : NOT_TENURED;  // Allocate local closures in new space.
  Handle<JSFunction> result =
      Factory::NewFunctionFromBoilerplate(boilerplate, context, pretenure);
  return *result;
}


static Code* ComputeConstructStub(Handle<SharedFunctionInfo> shared) {
  // TODO(385): Change this to create a construct stub specialized for
  // the given map to make allocation of simple objects - and maybe
  // arrays - much faster.
  if (FLAG_inline_new
      && shared->has_only_simple_this_property_assignments()) {
    ConstructStubCompiler compiler;
    Object* code = compiler.CompileConstructStub(*shared);
    if (code->IsFailure()) {
      return Builtins::builtin(Builtins::JSConstructStubGeneric);
    }
    return Code::cast(code);
  }

  return Builtins::builtin(Builtins::JSConstructStubGeneric);
}


static Object* Runtime_NewObject(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);

  Handle<Object> constructor = args.at<Object>(0);

  // If the constructor isn't a proper function we throw a type error.
  if (!constructor->IsJSFunction()) {
    Vector< Handle<Object> > arguments = HandleVector(&constructor, 1);
    Handle<Object> type_error =
        Factory::NewTypeError("not_constructor", arguments);
    return Top::Throw(*type_error);
  }

  Handle<JSFunction> function = Handle<JSFunction>::cast(constructor);
#ifdef ENABLE_DEBUGGER_SUPPORT
  // Handle stepping into constructors if step into is active.
  if (Debug::StepInActive()) {
    Debug::HandleStepIn(function, Handle<Object>::null(), 0, true);
  }
#endif

  if (function->has_initial_map()) {
    if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) {
      // The 'Function' function ignores the receiver object when
      // called using 'new' and creates a new JSFunction object that
      // is returned.  The receiver object is only used for error
      // reporting if an error occurs when constructing the new
      // JSFunction. Factory::NewJSObject() should not be used to
      // allocate JSFunctions since it does not properly initialize
      // the shared part of the function. Since the receiver is
      // ignored anyway, we use the global object as the receiver
      // instead of a new JSFunction object. This way, errors are
      // reported the same way whether or not 'Function' is called
      // using 'new'.
      return Top::context()->global();
    }
  }

  // The function should be compiled for the optimization hints to be available.
  if (!function->shared()->is_compiled()) {
    CompileLazyShared(Handle<SharedFunctionInfo>(function->shared()),
                                                 CLEAR_EXCEPTION,
                                                 0);
  }

  bool first_allocation = !function->has_initial_map();
  Handle<JSObject> result = Factory::NewJSObject(function);
  if (first_allocation) {
    Handle<Map> map = Handle<Map>(function->initial_map());
    Handle<Code> stub = Handle<Code>(
        ComputeConstructStub(Handle<SharedFunctionInfo>(function->shared())));
    function->shared()->set_construct_stub(*stub);
  }

  Counters::constructed_objects.Increment();
  Counters::constructed_objects_runtime.Increment();

  return *result;
}


static Object* Runtime_LazyCompile(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);

  Handle<JSFunction> function = args.at<JSFunction>(0);
#ifdef DEBUG
  if (FLAG_trace_lazy) {
    PrintF("[lazy: ");
    function->shared()->name()->Print();
    PrintF("]\n");
  }
#endif

  // Compile the target function.  Here we compile using CompileLazyInLoop in
  // order to get the optimized version.  This helps code like delta-blue
  // that calls performance-critical routines through constructors.  A
  // constructor call doesn't use a CallIC, it uses a LoadIC followed by a
  // direct call.  Since the in-loop tracking takes place through CallICs
  // this means that things called through constructors are never known to
  // be in loops.  We compile them as if they are in loops here just in case.
  ASSERT(!function->is_compiled());
  if (!CompileLazyInLoop(function, KEEP_EXCEPTION)) {
    return Failure::Exception();
  }

  return function->code();
}


static Object* Runtime_GetCalledFunction(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 0);
  StackFrameIterator it;
  // Get past the JS-to-C exit frame.
  ASSERT(it.frame()->is_exit());
  it.Advance();
  // Get past the CALL_NON_FUNCTION activation frame.
  ASSERT(it.frame()->is_java_script());
  it.Advance();
  // Argument adaptor frames do not copy the function; we have to skip
  // past them to get to the real calling frame.
  if (it.frame()->is_arguments_adaptor()) it.Advance();
  // Get the function from the top of the expression stack of the
  // calling frame.
  StandardFrame* frame = StandardFrame::cast(it.frame());
  int index = frame->ComputeExpressionsCount() - 1;
  Object* result = frame->GetExpression(index);
  return result;
}


static Object* Runtime_GetFunctionDelegate(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);
  RUNTIME_ASSERT(!args[0]->IsJSFunction());
  return *Execution::GetFunctionDelegate(args.at<Object>(0));
}


static Object* Runtime_GetConstructorDelegate(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);
  RUNTIME_ASSERT(!args[0]->IsJSFunction());
  return *Execution::GetConstructorDelegate(args.at<Object>(0));
}


static Object* Runtime_NewContext(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(JSFunction, function, args[0]);
  int length = ScopeInfo<>::NumberOfContextSlots(function->code());
  Object* result = Heap::AllocateFunctionContext(length, function);
  if (result->IsFailure()) return result;

  Top::set_context(Context::cast(result));

  return result;  // non-failure
}

static Object* PushContextHelper(Object* object, bool is_catch_context) {
  // Convert the object to a proper JavaScript object.
  Object* js_object = object;
  if (!js_object->IsJSObject()) {
    js_object = js_object->ToObject();
    if (js_object->IsFailure()) {
      if (!Failure::cast(js_object)->IsInternalError()) return js_object;
      HandleScope scope;
      Handle<Object> handle(object);
      Handle<Object> result =
          Factory::NewTypeError("with_expression", HandleVector(&handle, 1));
      return Top::Throw(*result);
    }
  }

  Object* result =
      Heap::AllocateWithContext(Top::context(),
                                JSObject::cast(js_object),
                                is_catch_context);
  if (result->IsFailure()) return result;

  Context* context = Context::cast(result);
  Top::set_context(context);

  return result;
}


static Object* Runtime_PushContext(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);
  return PushContextHelper(args[0], false);
}


static Object* Runtime_PushCatchContext(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);
  return PushContextHelper(args[0], true);
}


static Object* Runtime_LookupContext(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 2);

  CONVERT_ARG_CHECKED(Context, context, 0);
  CONVERT_ARG_CHECKED(String, name, 1);

  int index;
  PropertyAttributes attributes;
  ContextLookupFlags flags = FOLLOW_CHAINS;
  Handle<Object> holder =
      context->Lookup(name, flags, &index, &attributes);

  if (index < 0 && !holder.is_null()) {
    ASSERT(holder->IsJSObject());
    return *holder;
  }

  // No intermediate context found. Use global object by default.
  return Top::context()->global();
}


// A mechanism to return a pair of Object pointers in registers (if possible).
// How this is achieved is calling convention-dependent.
// All currently supported x86 compiles uses calling conventions that are cdecl
// variants where a 64-bit value is returned in two 32-bit registers
// (edx:eax on ia32, r1:r0 on ARM).
// In AMD-64 calling convention a struct of two pointers is returned in rdx:rax.
// In Win64 calling convention, a struct of two pointers is returned in memory,
// allocated by the caller, and passed as a pointer in a hidden first parameter.
#ifdef V8_HOST_ARCH_64_BIT
struct ObjectPair {
  Object* x;
  Object* y;
};

static inline ObjectPair MakePair(Object* x, Object* y) {
  ObjectPair result = {x, y};
  // Pointers x and y returned in rax and rdx, in AMD-x64-abi.
  // In Win64 they are assigned to a hidden first argument.
  return result;
}
#else
typedef uint64_t ObjectPair;
static inline ObjectPair MakePair(Object* x, Object* y) {
  return reinterpret_cast<uint32_t>(x) |
      (reinterpret_cast<ObjectPair>(y) << 32);
}
#endif


static inline Object* Unhole(Object* x, PropertyAttributes attributes) {
  ASSERT(!x->IsTheHole() || (attributes & READ_ONLY) != 0);
  USE(attributes);
  return x->IsTheHole() ? Heap::undefined_value() : x;
}


static JSObject* ComputeReceiverForNonGlobal(JSObject* holder) {
  ASSERT(!holder->IsGlobalObject());
  Context* top = Top::context();
  // Get the context extension function.
  JSFunction* context_extension_function =
      top->global_context()->context_extension_function();
  // If the holder isn't a context extension object, we just return it
  // as the receiver. This allows arguments objects to be used as
  // receivers, but only if they are put in the context scope chain
  // explicitly via a with-statement.
  Object* constructor = holder->map()->constructor();
  if (constructor != context_extension_function) return holder;
  // Fall back to using the global object as the receiver if the
  // property turns out to be a local variable allocated in a context
  // extension object - introduced via eval.
  return top->global()->global_receiver();
}


static ObjectPair LoadContextSlotHelper(Arguments args, bool throw_error) {
  HandleScope scope;
  ASSERT_EQ(2, args.length());

  if (!args[0]->IsContext() || !args[1]->IsString()) {
    return MakePair(Top::ThrowIllegalOperation(), NULL);
  }
  Handle<Context> context = args.at<Context>(0);
  Handle<String> name = args.at<String>(1);

  int index;
  PropertyAttributes attributes;
  ContextLookupFlags flags = FOLLOW_CHAINS;
  Handle<Object> holder =
      context->Lookup(name, flags, &index, &attributes);

  // If the index is non-negative, the slot has been found in a local
  // variable or a parameter. Read it from the context object or the
  // arguments object.
  if (index >= 0) {
    // If the "property" we were looking for is a local variable or an
    // argument in a context, the receiver is the global object; see
    // ECMA-262, 3rd., 10.1.6 and 10.2.3.
    JSObject* receiver = Top::context()->global()->global_receiver();
    Object* value = (holder->IsContext())
        ? Context::cast(*holder)->get(index)
        : JSObject::cast(*holder)->GetElement(index);
    return MakePair(Unhole(value, attributes), receiver);
  }

  // If the holder is found, we read the property from it.
  if (!holder.is_null() && holder->IsJSObject()) {
    ASSERT(Handle<JSObject>::cast(holder)->HasProperty(*name));
    JSObject* object = JSObject::cast(*holder);
    JSObject* receiver;
    if (object->IsGlobalObject()) {
      receiver = GlobalObject::cast(object)->global_receiver();
    } else if (context->is_exception_holder(*holder)) {
      receiver = Top::context()->global()->global_receiver();
    } else {
      receiver = ComputeReceiverForNonGlobal(object);
    }
    // No need to unhole the value here. This is taken care of by the
    // GetProperty function.
    Object* value = object->GetProperty(*name);
    return MakePair(value, receiver);
  }

  if (throw_error) {
    // The property doesn't exist - throw exception.
    Handle<Object> reference_error =
        Factory::NewReferenceError("not_defined", HandleVector(&name, 1));
    return MakePair(Top::Throw(*reference_error), NULL);
  } else {
    // The property doesn't exist - return undefined
    return MakePair(Heap::undefined_value(), Heap::undefined_value());
  }
}


static ObjectPair Runtime_LoadContextSlot(Arguments args) {
  return LoadContextSlotHelper(args, true);
}


static ObjectPair Runtime_LoadContextSlotNoReferenceError(Arguments args) {
  return LoadContextSlotHelper(args, false);
}


static Object* Runtime_StoreContextSlot(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 3);

  Handle<Object> value(args[0]);
  CONVERT_ARG_CHECKED(Context, context, 1);
  CONVERT_ARG_CHECKED(String, name, 2);

  int index;
  PropertyAttributes attributes;
  ContextLookupFlags flags = FOLLOW_CHAINS;
  Handle<Object> holder =
      context->Lookup(name, flags, &index, &attributes);

  if (index >= 0) {
    if (holder->IsContext()) {
      // Ignore if read_only variable.
      if ((attributes & READ_ONLY) == 0) {
        Handle<Context>::cast(holder)->set(index, *value);
      }
    } else {
      ASSERT((attributes & READ_ONLY) == 0);
      Object* result =
          Handle<JSObject>::cast(holder)->SetElement(index, *value);
      USE(result);
      ASSERT(!result->IsFailure());
    }
    return *value;
  }

  // Slow case: The property is not in a FixedArray context.
  // It is either in an JSObject extension context or it was not found.
  Handle<JSObject> context_ext;

  if (!holder.is_null()) {
    // The property exists in the extension context.
    context_ext = Handle<JSObject>::cast(holder);
  } else {
    // The property was not found. It needs to be stored in the global context.
    ASSERT(attributes == ABSENT);
    attributes = NONE;
    context_ext = Handle<JSObject>(Top::context()->global());
  }

  // Set the property, but ignore if read_only variable on the context
  // extension object itself.
  if ((attributes & READ_ONLY) == 0 ||
      (context_ext->GetLocalPropertyAttribute(*name) == ABSENT)) {
    Handle<Object> set = SetProperty(context_ext, name, value, attributes);
    if (set.is_null()) {
      // Failure::Exception is converted to a null handle in the
      // handle-based methods such as SetProperty.  We therefore need
      // to convert null handles back to exceptions.
      ASSERT(Top::has_pending_exception());
      return Failure::Exception();
    }
  }
  return *value;
}


static Object* Runtime_Throw(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);

  return Top::Throw(args[0]);
}


static Object* Runtime_ReThrow(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);

  return Top::ReThrow(args[0]);
}


static Object* Runtime_PromoteScheduledException(Arguments args) {
  ASSERT_EQ(0, args.length());
  return Top::PromoteScheduledException();
}


static Object* Runtime_ThrowReferenceError(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);

  Handle<Object> name(args[0]);
  Handle<Object> reference_error =
    Factory::NewReferenceError("not_defined", HandleVector(&name, 1));
  return Top::Throw(*reference_error);
}


static Object* Runtime_StackOverflow(Arguments args) {
  NoHandleAllocation na;
  return Top::StackOverflow();
}


static Object* Runtime_StackGuard(Arguments args) {
  ASSERT(args.length() == 1);

  // First check if this is a real stack overflow.
  if (StackGuard::IsStackOverflow()) {
    return Runtime_StackOverflow(args);
  }

  return Execution::HandleStackGuardInterrupt();
}


// NOTE: These PrintXXX functions are defined for all builds (not just
// DEBUG builds) because we may want to be able to trace function
// calls in all modes.
static void PrintString(String* str) {
  // not uncommon to have empty strings
  if (str->length() > 0) {
    SmartPointer<char> s =
        str->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
    PrintF("%s", *s);
  }
}


static void PrintObject(Object* obj) {
  if (obj->IsSmi()) {
    PrintF("%d", Smi::cast(obj)->value());
  } else if (obj->IsString() || obj->IsSymbol()) {
    PrintString(String::cast(obj));
  } else if (obj->IsNumber()) {
    PrintF("%g", obj->Number());
  } else if (obj->IsFailure()) {
    PrintF("<failure>");
  } else if (obj->IsUndefined()) {
    PrintF("<undefined>");
  } else if (obj->IsNull()) {
    PrintF("<null>");
  } else if (obj->IsTrue()) {
    PrintF("<true>");
  } else if (obj->IsFalse()) {
    PrintF("<false>");
  } else {
    PrintF("%p", obj);
  }
}


static int StackSize() {
  int n = 0;
  for (JavaScriptFrameIterator it; !it.done(); it.Advance()) n++;
  return n;
}


static void PrintTransition(Object* result) {
  // indentation
  { const int nmax = 80;
    int n = StackSize();
    if (n <= nmax)
      PrintF("%4d:%*s", n, n, "");
    else
      PrintF("%4d:%*s", n, nmax, "...");
  }

  if (result == NULL) {
    // constructor calls
    JavaScriptFrameIterator it;
    JavaScriptFrame* frame = it.frame();
    if (frame->IsConstructor()) PrintF("new ");
    // function name
    Object* fun = frame->function();
    if (fun->IsJSFunction()) {
      PrintObject(JSFunction::cast(fun)->shared()->name());
    } else {
      PrintObject(fun);
    }
    // function arguments
    // (we are intentionally only printing the actually
    // supplied parameters, not all parameters required)
    PrintF("(this=");
    PrintObject(frame->receiver());
    const int length = frame->GetProvidedParametersCount();
    for (int i = 0; i < length; i++) {
      PrintF(", ");
      PrintObject(frame->GetParameter(i));
    }
    PrintF(") {\n");

  } else {
    // function result
    PrintF("} -> ");
    PrintObject(result);
    PrintF("\n");
  }
}


static Object* Runtime_TraceEnter(Arguments args) {
  ASSERT(args.length() == 0);
  NoHandleAllocation ha;
  PrintTransition(NULL);
  return Heap::undefined_value();
}


static Object* Runtime_TraceExit(Arguments args) {
  NoHandleAllocation ha;
  PrintTransition(args[0]);
  return args[0];  // return TOS
}


static Object* Runtime_DebugPrint(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

#ifdef DEBUG
  if (args[0]->IsString()) {
    // If we have a string, assume it's a code "marker"
    // and print some interesting cpu debugging info.
    JavaScriptFrameIterator it;
    JavaScriptFrame* frame = it.frame();
    PrintF("fp = %p, sp = %p, caller_sp = %p: ",
           frame->fp(), frame->sp(), frame->caller_sp());
  } else {
    PrintF("DebugPrint: ");
  }
  args[0]->Print();
  if (args[0]->IsHeapObject()) {
    HeapObject::cast(args[0])->map()->Print();
  }
#else
  // ShortPrint is available in release mode. Print is not.
  args[0]->ShortPrint();
#endif
  PrintF("\n");
  Flush();

  return args[0];  // return TOS
}


static Object* Runtime_DebugTrace(Arguments args) {
  ASSERT(args.length() == 0);
  NoHandleAllocation ha;
  Top::PrintStack();
  return Heap::undefined_value();
}


static Object* Runtime_DateCurrentTime(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 0);

  // According to ECMA-262, section 15.9.1, page 117, the precision of
  // the number in a Date object representing a particular instant in
  // time is milliseconds. Therefore, we floor the result of getting
  // the OS time.
  double millis = floor(OS::TimeCurrentMillis());
  return Heap::NumberFromDouble(millis);
}


static Object* Runtime_DateParseString(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 2);

  CONVERT_ARG_CHECKED(String, str, 0);
  FlattenString(str);

  CONVERT_ARG_CHECKED(JSArray, output, 1);
  RUNTIME_ASSERT(output->HasFastElements());

  AssertNoAllocation no_allocation;

  FixedArray* output_array = FixedArray::cast(output->elements());
  RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE);
  bool result;
  if (str->IsAsciiRepresentation()) {
    result = DateParser::Parse(str->ToAsciiVector(), output_array);
  } else {
    ASSERT(str->IsTwoByteRepresentation());
    result = DateParser::Parse(str->ToUC16Vector(), output_array);
  }

  if (result) {
    return *output;
  } else {
    return Heap::null_value();
  }
}


static Object* Runtime_DateLocalTimezone(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  const char* zone = OS::LocalTimezone(x);
  return Heap::AllocateStringFromUtf8(CStrVector(zone));
}


static Object* Runtime_DateLocalTimeOffset(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 0);

  return Heap::NumberFromDouble(OS::LocalTimeOffset());
}


static Object* Runtime_DateDaylightSavingsOffset(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(x, args[0]);
  return Heap::NumberFromDouble(OS::DaylightSavingsOffset(x));
}


static Object* Runtime_NumberIsFinite(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_DOUBLE_CHECKED(value, args[0]);
  Object* result;
  if (isnan(value) || (fpclassify(value) == FP_INFINITE)) {
    result = Heap::false_value();
  } else {
    result = Heap::true_value();
  }
  return result;
}


static Object* Runtime_GlobalReceiver(Arguments args) {
  ASSERT(args.length() == 1);
  Object* global = args[0];
  if (!global->IsJSGlobalObject()) return Heap::null_value();
  return JSGlobalObject::cast(global)->global_receiver();
}


static Object* Runtime_CompileString(Arguments args) {
  HandleScope scope;
  ASSERT_EQ(2, args.length());
  CONVERT_ARG_CHECKED(String, source, 0);
  CONVERT_ARG_CHECKED(Oddball, is_json, 1)

  // Compile source string in the global context.
  Handle<Context> context(Top::context()->global_context());
  Compiler::ValidationState validate = (is_json->IsTrue())
    ? Compiler::VALIDATE_JSON : Compiler::DONT_VALIDATE_JSON;
  Handle<JSFunction> boilerplate = Compiler::CompileEval(source,
                                                         context,
                                                         true,
                                                         validate);
  if (boilerplate.is_null()) return Failure::Exception();
  Handle<JSFunction> fun =
      Factory::NewFunctionFromBoilerplate(boilerplate, context, NOT_TENURED);
  return *fun;
}


static Handle<JSFunction> GetBuiltinFunction(String* name) {
  LookupResult result;
  Top::global_context()->builtins()->LocalLookup(name, &result);
  return Handle<JSFunction>(JSFunction::cast(result.GetValue()));
}


static Object* CompileDirectEval(Handle<String> source) {
  // Compute the eval context.
  HandleScope scope;
  StackFrameLocator locator;
  JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
  Handle<Context> context(Context::cast(frame->context()));
  bool is_global = context->IsGlobalContext();

  // Compile source string in the current context.
  Handle<JSFunction> boilerplate = Compiler::CompileEval(
      source,
      context,
      is_global,
      Compiler::DONT_VALIDATE_JSON);
  if (boilerplate.is_null()) return Failure::Exception();
  Handle<JSFunction> fun =
      Factory::NewFunctionFromBoilerplate(boilerplate, context, NOT_TENURED);
  return *fun;
}


static Object* Runtime_ResolvePossiblyDirectEval(Arguments args) {
  ASSERT(args.length() == 2);

  HandleScope scope;

  CONVERT_ARG_CHECKED(JSFunction, callee, 0);

  Handle<Object> receiver;

  // Find where the 'eval' symbol is bound. It is unaliased only if
  // it is bound in the global context.
  StackFrameLocator locator;
  JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
  Handle<Context> context(Context::cast(frame->context()));
  int index;
  PropertyAttributes attributes;
  while (!context.is_null()) {
    receiver = context->Lookup(Factory::eval_symbol(), FOLLOW_PROTOTYPE_CHAIN,
                               &index, &attributes);
    // Stop search when eval is found or when the global context is
    // reached.
    if (attributes != ABSENT || context->IsGlobalContext()) break;
    if (context->is_function_context()) {
      context = Handle<Context>(Context::cast(context->closure()->context()));
    } else {
      context = Handle<Context>(context->previous());
    }
  }

  // If eval could not be resolved, it has been deleted and we need to
  // throw a reference error.
  if (attributes == ABSENT) {
    Handle<Object> name = Factory::eval_symbol();
    Handle<Object> reference_error =
        Factory::NewReferenceError("not_defined", HandleVector(&name, 1));
    return Top::Throw(*reference_error);
  }

  if (context->IsGlobalContext()) {
    // 'eval' is bound in the global context, but it may have been overwritten.
    // Compare it to the builtin 'GlobalEval' function to make sure.
    Handle<JSFunction> global_eval =
      GetBuiltinFunction(Heap::global_eval_symbol());
    if (global_eval.is_identical_to(callee)) {
      // A direct eval call.
      if (args[1]->IsString()) {
        CONVERT_ARG_CHECKED(String, source, 1);
        // A normal eval call on a string. Compile it and return the
        // compiled function bound in the local context.
        Object* compiled_source = CompileDirectEval(source);
        if (compiled_source->IsFailure()) return compiled_source;
        receiver = Handle<Object>(frame->receiver());
        callee = Handle<JSFunction>(JSFunction::cast(compiled_source));
      } else {
        // An eval call that is not called on a string. Global eval
        // deals better with this.
        receiver = Handle<Object>(Top::global_context()->global());
      }
    } else {
      // 'eval' is overwritten. Just call the function with the given arguments.
      receiver = Handle<Object>(Top::global_context()->global());
    }
  } else {
    // 'eval' is not bound in the global context. Just call the function
    // with the given arguments. This is not necessarily the global eval.
    if (receiver->IsContext()) {
      context = Handle<Context>::cast(receiver);
      receiver = Handle<Object>(context->get(index));
    }
  }

  Handle<FixedArray> call = Factory::NewFixedArray(2);
  call->set(0, *callee);
  call->set(1, *receiver);
  return *call;
}


static Object* Runtime_SetNewFunctionAttributes(Arguments args) {
  // This utility adjusts the property attributes for newly created Function
  // object ("new Function(...)") by changing the map.
  // All it does is changing the prototype property to enumerable
  // as specified in ECMA262, 15.3.5.2.
  HandleScope scope;
  ASSERT(args.length() == 1);
  CONVERT_ARG_CHECKED(JSFunction, func, 0);
  ASSERT(func->map()->instance_type() ==
         Top::function_instance_map()->instance_type());
  ASSERT(func->map()->instance_size() ==
         Top::function_instance_map()->instance_size());
  func->set_map(*Top::function_instance_map());
  return *func;
}


// Push an array unto an array of arrays if it is not already in the
// array.  Returns true if the element was pushed on the stack and
// false otherwise.
static Object* Runtime_PushIfAbsent(Arguments args) {
  ASSERT(args.length() == 2);
  CONVERT_CHECKED(JSArray, array, args[0]);
  CONVERT_CHECKED(JSArray, element, args[1]);
  RUNTIME_ASSERT(array->HasFastElements());
  int length = Smi::cast(array->length())->value();
  FixedArray* elements = FixedArray::cast(array->elements());
  for (int i = 0; i < length; i++) {
    if (elements->get(i) == element) return Heap::false_value();
  }
  Object* obj = array->SetFastElement(length, element);
  if (obj->IsFailure()) return obj;
  return Heap::true_value();
}


/**
 * A simple visitor visits every element of Array's.
 * The backend storage can be a fixed array for fast elements case,
 * or a dictionary for sparse array. Since Dictionary is a subtype
 * of FixedArray, the class can be used by both fast and slow cases.
 * The second parameter of the constructor, fast_elements, specifies
 * whether the storage is a FixedArray or Dictionary.
 *
 * An index limit is used to deal with the situation that a result array
 * length overflows 32-bit non-negative integer.
 */
class ArrayConcatVisitor {
 public:
  ArrayConcatVisitor(Handle<FixedArray> storage,
                     uint32_t index_limit,
                     bool fast_elements) :
      storage_(storage), index_limit_(index_limit),
      fast_elements_(fast_elements), index_offset_(0) { }

  void visit(uint32_t i, Handle<Object> elm) {
    uint32_t index = i + index_offset_;
    if (index >= index_limit_) return;

    if (fast_elements_) {
      ASSERT(index < static_cast<uint32_t>(storage_->length()));
      storage_->set(index, *elm);

    } else {
      Handle<NumberDictionary> dict = Handle<NumberDictionary>::cast(storage_);
      Handle<NumberDictionary> result =
          Factory::DictionaryAtNumberPut(dict, index, elm);
      if (!result.is_identical_to(dict))
        storage_ = result;
    }
  }

  void increase_index_offset(uint32_t delta) {
    index_offset_ += delta;
  }

 private:
  Handle<FixedArray> storage_;
  uint32_t index_limit_;
  bool fast_elements_;
  uint32_t index_offset_;
};


template<class ExternalArrayClass, class ElementType>
static uint32_t IterateExternalArrayElements(Handle<JSObject> receiver,
                                             bool elements_are_ints,
                                             bool elements_are_guaranteed_smis,
                                             uint32_t range,
                                             ArrayConcatVisitor* visitor) {
  Handle<ExternalArrayClass> array(
      ExternalArrayClass::cast(receiver->elements()));
  uint32_t len = Min(static_cast<uint32_t>(array->length()), range);

  if (visitor != NULL) {
    if (elements_are_ints) {
      if (elements_are_guaranteed_smis) {
        for (uint32_t j = 0; j < len; j++) {
          Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get(j))));
          visitor->visit(j, e);
        }
      } else {
        for (uint32_t j = 0; j < len; j++) {
          int64_t val = static_cast<int64_t>(array->get(j));
          if (Smi::IsValid(static_cast<intptr_t>(val))) {
            Handle<Smi> e(Smi::FromInt(static_cast<int>(val)));
            visitor->visit(j, e);
          } else {
            Handle<Object> e(
                Heap::AllocateHeapNumber(static_cast<ElementType>(val)));
            visitor->visit(j, e);
          }
        }
      }
    } else {
      for (uint32_t j = 0; j < len; j++) {
        Handle<Object> e(Heap::AllocateHeapNumber(array->get(j)));
        visitor->visit(j, e);
      }
    }
  }

  return len;
}

/**
 * A helper function that visits elements of a JSObject. Only elements
 * whose index between 0 and range (exclusive) are visited.
 *
 * If the third parameter, visitor, is not NULL, the visitor is called
 * with parameters, 'visitor_index_offset + element index' and the element.
 *
 * It returns the number of visisted elements.
 */
static uint32_t IterateElements(Handle<JSObject> receiver,
                                uint32_t range,
                                ArrayConcatVisitor* visitor) {
  uint32_t num_of_elements = 0;

  switch (receiver->GetElementsKind()) {
    case JSObject::FAST_ELEMENTS: {
      Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
      uint32_t len = elements->length();
      if (range < len) {
        len = range;
      }

      for (uint32_t j = 0; j < len; j++) {
        Handle<Object> e(elements->get(j));
        if (!e->IsTheHole()) {
          num_of_elements++;
          if (visitor) {
            visitor->visit(j, e);
          }
        }
      }
      break;
    }
    case JSObject::PIXEL_ELEMENTS: {
      Handle<PixelArray> pixels(PixelArray::cast(receiver->elements()));
      uint32_t len = pixels->length();
      if (range < len) {
        len = range;
      }

      for (uint32_t j = 0; j < len; j++) {
        num_of_elements++;
        if (visitor != NULL) {
          Handle<Smi> e(Smi::FromInt(pixels->get(j)));
          visitor->visit(j, e);
        }
      }
      break;
    }
    case JSObject::EXTERNAL_BYTE_ELEMENTS: {
      num_of_elements =
          IterateExternalArrayElements<ExternalByteArray, int8_t>(
              receiver, true, true, range, visitor);
      break;
    }
    case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS: {
      num_of_elements =
          IterateExternalArrayElements<ExternalUnsignedByteArray, uint8_t>(
              receiver, true, true, range, visitor);
      break;
    }
    case JSObject::EXTERNAL_SHORT_ELEMENTS: {
      num_of_elements =
          IterateExternalArrayElements<ExternalShortArray, int16_t>(
              receiver, true, true, range, visitor);
      break;
    }
    case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS: {
      num_of_elements =
          IterateExternalArrayElements<ExternalUnsignedShortArray, uint16_t>(
              receiver, true, true, range, visitor);
      break;
    }
    case JSObject::EXTERNAL_INT_ELEMENTS: {
      num_of_elements =
          IterateExternalArrayElements<ExternalIntArray, int32_t>(
              receiver, true, false, range, visitor);
      break;
    }
    case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS: {
      num_of_elements =
          IterateExternalArrayElements<ExternalUnsignedIntArray, uint32_t>(
              receiver, true, false, range, visitor);
      break;
    }
    case JSObject::EXTERNAL_FLOAT_ELEMENTS: {
      num_of_elements =
          IterateExternalArrayElements<ExternalFloatArray, float>(
              receiver, false, false, range, visitor);
      break;
    }
    case JSObject::DICTIONARY_ELEMENTS: {
      Handle<NumberDictionary> dict(receiver->element_dictionary());
      uint32_t capacity = dict->Capacity();
      for (uint32_t j = 0; j < capacity; j++) {
        Handle<Object> k(dict->KeyAt(j));
        if (dict->IsKey(*k)) {
          ASSERT(k->IsNumber());
          uint32_t index = static_cast<uint32_t>(k->Number());
          if (index < range) {
            num_of_elements++;
            if (visitor) {
              visitor->visit(index, Handle<Object>(dict->ValueAt(j)));
            }
          }
        }
      }
      break;
    }
    default:
      UNREACHABLE();
      break;
  }

  return num_of_elements;
}


/**
 * A helper function that visits elements of an Array object, and elements
 * on its prototypes.
 *
 * Elements on prototypes are visited first, and only elements whose indices
 * less than Array length are visited.
 *
 * If a ArrayConcatVisitor object is given, the visitor is called with
 * parameters, element's index + visitor_index_offset and the element.
 */
static uint32_t IterateArrayAndPrototypeElements(Handle<JSArray> array,
                                                 ArrayConcatVisitor* visitor) {
  uint32_t range = static_cast<uint32_t>(array->length()->Number());
  Handle<Object> obj = array;

  static const int kEstimatedPrototypes = 3;
  List< Handle<JSObject> > objects(kEstimatedPrototypes);

  // Visit prototype first. If an element on the prototype is shadowed by
  // the inheritor using the same index, the ArrayConcatVisitor visits
  // the prototype element before the shadowing element.
  // The visitor can simply overwrite the old value by new value using
  // the same index.  This follows Array::concat semantics.
  while (!obj->IsNull()) {
    objects.Add(Handle<JSObject>::cast(obj));
    obj = Handle<Object>(obj->GetPrototype());
  }

  uint32_t nof_elements = 0;
  for (int i = objects.length() - 1; i >= 0; i--) {
    Handle<JSObject> obj = objects[i];
    nof_elements +=
        IterateElements(Handle<JSObject>::cast(obj), range, visitor);
  }

  return nof_elements;
}


/**
 * A helper function of Runtime_ArrayConcat.
 *
 * The first argument is an Array of arrays and objects. It is the
 * same as the arguments array of Array::concat JS function.
 *
 * If an argument is an Array object, the function visits array
 * elements.  If an argument is not an Array object, the function
 * visits the object as if it is an one-element array.
 *
 * If the result array index overflows 32-bit integer, the rounded
 * non-negative number is used as new length. For example, if one
 * array length is 2^32 - 1, second array length is 1, the
 * concatenated array length is 0.
 */
static uint32_t IterateArguments(Handle<JSArray> arguments,
                                 ArrayConcatVisitor* visitor) {
  uint32_t visited_elements = 0;
  uint32_t num_of_args = static_cast<uint32_t>(arguments->length()->Number());

  for (uint32_t i = 0; i < num_of_args; i++) {
    Handle<Object> obj(arguments->GetElement(i));
    if (obj->IsJSArray()) {
      Handle<JSArray> array = Handle<JSArray>::cast(obj);
      uint32_t len = static_cast<uint32_t>(array->length()->Number());
      uint32_t nof_elements =
          IterateArrayAndPrototypeElements(array, visitor);
      // Total elements of array and its prototype chain can be more than
      // the array length, but ArrayConcat can only concatenate at most
      // the array length number of elements.
      visited_elements += (nof_elements > len) ? len : nof_elements;
      if (visitor) visitor->increase_index_offset(len);

    } else {
      if (visitor) {
        visitor->visit(0, obj);
        visitor->increase_index_offset(1);
      }
      visited_elements++;
    }
  }
  return visited_elements;
}


/**
 * Array::concat implementation.
 * See ECMAScript 262, 15.4.4.4.
 */
static Object* Runtime_ArrayConcat(Arguments args) {
  ASSERT(args.length() == 1);
  HandleScope handle_scope;

  CONVERT_CHECKED(JSArray, arg_arrays, args[0]);
  Handle<JSArray> arguments(arg_arrays);

  // Pass 1: estimate the number of elements of the result
  // (it could be more than real numbers if prototype has elements).
  uint32_t result_length = 0;
  uint32_t num_of_args = static_cast<uint32_t>(arguments->length()->Number());

  { AssertNoAllocation nogc;
    for (uint32_t i = 0; i < num_of_args; i++) {
      Object* obj = arguments->GetElement(i);
      if (obj->IsJSArray()) {
        result_length +=
            static_cast<uint32_t>(JSArray::cast(obj)->length()->Number());
      } else {
        result_length++;
      }
    }
  }

  // Allocate an empty array, will set length and content later.
  Handle<JSArray> result = Factory::NewJSArray(0);

  uint32_t estimate_nof_elements = IterateArguments(arguments, NULL);
  // If estimated number of elements is more than half of length, a
  // fixed array (fast case) is more time and space-efficient than a
  // dictionary.
  bool fast_case = (estimate_nof_elements * 2) >= result_length;

  Handle<FixedArray> storage;
  if (fast_case) {
    // The backing storage array must have non-existing elements to
    // preserve holes across concat operations.
    storage = Factory::NewFixedArrayWithHoles(result_length);

  } else {
    // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
    uint32_t at_least_space_for = estimate_nof_elements +
                                  (estimate_nof_elements >> 2);
    storage = Handle<FixedArray>::cast(
                  Factory::NewNumberDictionary(at_least_space_for));
  }

  Handle<Object> len = Factory::NewNumber(static_cast<double>(result_length));

  ArrayConcatVisitor visitor(storage, result_length, fast_case);

  IterateArguments(arguments, &visitor);

  result->set_length(*len);
  result->set_elements(*storage);

  return *result;
}


// This will not allocate (flatten the string), but it may run
// very slowly for very deeply nested ConsStrings.  For debugging use only.
static Object* Runtime_GlobalPrint(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(String, string, args[0]);
  StringInputBuffer buffer(string);
  while (buffer.has_more()) {
    uint16_t character = buffer.GetNext();
    PrintF("%c", character);
  }
  return string;
}

// Moves all own elements of an object, that are below a limit, to positions
// starting at zero. All undefined values are placed after non-undefined values,
// and are followed by non-existing element. Does not change the length
// property.
// Returns the number of non-undefined elements collected.
static Object* Runtime_RemoveArrayHoles(Arguments args) {
  ASSERT(args.length() == 2);
  CONVERT_CHECKED(JSObject, object, args[0]);
  CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
  return object->PrepareElementsForSort(limit);
}


// Move contents of argument 0 (an array) to argument 1 (an array)
static Object* Runtime_MoveArrayContents(Arguments args) {
  ASSERT(args.length() == 2);
  CONVERT_CHECKED(JSArray, from, args[0]);
  CONVERT_CHECKED(JSArray, to, args[1]);
  to->SetContent(FixedArray::cast(from->elements()));
  to->set_length(from->length());
  from->SetContent(Heap::empty_fixed_array());
  from->set_length(0);
  return to;
}


// How many elements does this array have?
static Object* Runtime_EstimateNumberOfElements(Arguments args) {
  ASSERT(args.length() == 1);
  CONVERT_CHECKED(JSArray, array, args[0]);
  HeapObject* elements = array->elements();
  if (elements->IsDictionary()) {
    return Smi::FromInt(NumberDictionary::cast(elements)->NumberOfElements());
  } else {
    return array->length();
  }
}


// Returns an array that tells you where in the [0, length) interval an array
// might have elements.  Can either return keys or intervals.  Keys can have
// gaps in (undefined).  Intervals can also span over some undefined keys.
static Object* Runtime_GetArrayKeys(Arguments args) {
  ASSERT(args.length() == 2);
  HandleScope scope;
  CONVERT_ARG_CHECKED(JSObject, array, 0);
  CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);
  if (array->elements()->IsDictionary()) {
    // Create an array and get all the keys into it, then remove all the
    // keys that are not integers in the range 0 to length-1.
    Handle<FixedArray> keys = GetKeysInFixedArrayFor(array, INCLUDE_PROTOS);
    int keys_length = keys->length();
    for (int i = 0; i < keys_length; i++) {
      Object* key = keys->get(i);
      uint32_t index;
      if (!Array::IndexFromObject(key, &index) || index >= length) {
        // Zap invalid keys.
        keys->set_undefined(i);
      }
    }
    return *Factory::NewJSArrayWithElements(keys);
  } else {
    Handle<FixedArray> single_interval = Factory::NewFixedArray(2);
    // -1 means start of array.
    single_interval->set(0,
                         Smi::FromInt(-1),
                         SKIP_WRITE_BARRIER);
    uint32_t actual_length = static_cast<uint32_t>(array->elements()->length());
    uint32_t min_length = actual_length < length ? actual_length : length;
    Handle<Object> length_object =
        Factory::NewNumber(static_cast<double>(min_length));
    single_interval->set(1, *length_object);
    return *Factory::NewJSArrayWithElements(single_interval);
  }
}


// DefineAccessor takes an optional final argument which is the
// property attributes (eg, DONT_ENUM, DONT_DELETE).  IMPORTANT: due
// to the way accessors are implemented, it is set for both the getter
// and setter on the first call to DefineAccessor and ignored on
// subsequent calls.
static Object* Runtime_DefineAccessor(Arguments args) {
  RUNTIME_ASSERT(args.length() == 4 || args.length() == 5);
  // Compute attributes.
  PropertyAttributes attributes = NONE;
  if (args.length() == 5) {
    CONVERT_CHECKED(Smi, attrs, args[4]);
    int value = attrs->value();
    // Only attribute bits should be set.
    ASSERT((value & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
    attributes = static_cast<PropertyAttributes>(value);
  }

  CONVERT_CHECKED(JSObject, obj, args[0]);
  CONVERT_CHECKED(String, name, args[1]);
  CONVERT_CHECKED(Smi, flag, args[2]);
  CONVERT_CHECKED(JSFunction, fun, args[3]);
  return obj->DefineAccessor(name, flag->value() == 0, fun, attributes);
}


static Object* Runtime_LookupAccessor(Arguments args) {
  ASSERT(args.length() == 3);
  CONVERT_CHECKED(JSObject, obj, args[0]);
  CONVERT_CHECKED(String, name, args[1]);
  CONVERT_CHECKED(Smi, flag, args[2]);
  return obj->LookupAccessor(name, flag->value() == 0);
}


#ifdef ENABLE_DEBUGGER_SUPPORT
static Object* Runtime_DebugBreak(Arguments args) {
  ASSERT(args.length() == 0);
  return Execution::DebugBreakHelper();
}


// Helper functions for wrapping and unwrapping stack frame ids.
static Smi* WrapFrameId(StackFrame::Id id) {
  ASSERT(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4)));
  return Smi::FromInt(id >> 2);
}


static StackFrame::Id UnwrapFrameId(Smi* wrapped) {
  return static_cast<StackFrame::Id>(wrapped->value() << 2);
}


// Adds a JavaScript function as a debug event listener.
// args[0]: debug event listener function to set or null or undefined for
//          clearing the event listener function
// args[1]: object supplied during callback
static Object* Runtime_SetDebugEventListener(Arguments args) {
  ASSERT(args.length() == 2);
  RUNTIME_ASSERT(args[0]->IsJSFunction() ||
                 args[0]->IsUndefined() ||
                 args[0]->IsNull());
  Handle<Object> callback = args.at<Object>(0);
  Handle<Object> data = args.at<Object>(1);
  Debugger::SetEventListener(callback, data);

  return Heap::undefined_value();
}


static Object* Runtime_Break(Arguments args) {
  ASSERT(args.length() == 0);
  StackGuard::DebugBreak();
  return Heap::undefined_value();
}


// Find the length of the prototype chain that is to to handled as one. If a
// prototype object is hidden it is to be viewed as part of the the object it
// is prototype for.
static int LocalPrototypeChainLength(JSObject* obj) {
  int count = 1;
  Object* proto = obj->GetPrototype();
  while (proto->IsJSObject() &&
         JSObject::cast(proto)->map()->is_hidden_prototype()) {
    count++;
    proto = JSObject::cast(proto)->GetPrototype();
  }
  return count;
}


static Object* DebugLookupResultValue(Object* receiver, String* name,
                                      LookupResult* result,
                                      bool* caught_exception) {
  Object* value;
  switch (result->type()) {
    case NORMAL:
      value = result->holder()->GetNormalizedProperty(result);
      if (value->IsTheHole()) {
        return Heap::undefined_value();
      }
      return value;
    case FIELD:
      value =
          JSObject::cast(
              result->holder())->FastPropertyAt(result->GetFieldIndex());
      if (value->IsTheHole()) {
        return Heap::undefined_value();
      }
      return value;
    case CONSTANT_FUNCTION:
      return result->GetConstantFunction();
    case CALLBACKS: {
      Object* structure = result->GetCallbackObject();
      if (structure->IsProxy() || structure->IsAccessorInfo()) {
        value = receiver->GetPropertyWithCallback(
            receiver, structure, name, result->holder());
        if (value->IsException()) {
          value = Top::pending_exception();
          Top::clear_pending_exception();
          if (caught_exception != NULL) {
            *caught_exception = true;
          }
        }
        return value;
      } else {
        return Heap::undefined_value();
      }
    }
    case INTERCEPTOR:
    case MAP_TRANSITION:
    case CONSTANT_TRANSITION:
    case NULL_DESCRIPTOR:
      return Heap::undefined_value();
    default:
      UNREACHABLE();
  }
  UNREACHABLE();
  return Heap::undefined_value();
}


// Get debugger related details for an object property.
// args[0]: object holding property
// args[1]: name of the property
//
// The array returned contains the following information:
// 0: Property value
// 1: Property details
// 2: Property value is exception
// 3: Getter function if defined
// 4: Setter function if defined
// Items 2-4 are only filled if the property has either a getter or a setter
// defined through __defineGetter__ and/or __defineSetter__.
static Object* Runtime_DebugGetPropertyDetails(Arguments args) {
  HandleScope scope;

  ASSERT(args.length() == 2);

  CONVERT_ARG_CHECKED(JSObject, obj, 0);
  CONVERT_ARG_CHECKED(String, name, 1);

  // Make sure to set the current context to the context before the debugger was
  // entered (if the debugger is entered). The reason for switching context here
  // is that for some property lookups (accessors and interceptors) callbacks
  // into the embedding application can occour, and the embedding application
  // could have the assumption that its own global context is the current
  // context and not some internal debugger context.
  SaveContext save;
  if (Debug::InDebugger()) {
    Top::set_context(*Debug::debugger_entry()->GetContext());
  }

  // Skip the global proxy as it has no properties and always delegates to the
  // real global object.
  if (obj->IsJSGlobalProxy()) {
    obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype()));
  }


  // Check if the name is trivially convertible to an index and get the element
  // if so.
  uint32_t index;
  if (name->AsArrayIndex(&index)) {
    Handle<FixedArray> details = Factory::NewFixedArray(2);
    details->set(0, Runtime::GetElementOrCharAt(obj, index));
    details->set(1, PropertyDetails(NONE, NORMAL).AsSmi());
    return *Factory::NewJSArrayWithElements(details);
  }

  // Find the number of objects making up this.
  int length = LocalPrototypeChainLength(*obj);

  // Try local lookup on each of the objects.
  Handle<JSObject> jsproto = obj;
  for (int i = 0; i < length; i++) {
    LookupResult result;
    jsproto->LocalLookup(*name, &result);
    if (result.IsProperty()) {
      // LookupResult is not GC safe as it holds raw object pointers.
      // GC can happen later in this code so put the required fields into
      // local variables using handles when required for later use.
      PropertyType result_type = result.type();
      Handle<Object> result_callback_obj;
      if (result_type == CALLBACKS) {
        result_callback_obj = Handle<Object>(result.GetCallbackObject());
      }
      Smi* property_details = result.GetPropertyDetails().AsSmi();
      // DebugLookupResultValue can cause GC so details from LookupResult needs
      // to be copied to handles before this.
      bool caught_exception = false;
      Object* raw_value = DebugLookupResultValue(*obj, *name, &result,
                                                 &caught_exception);
      if (raw_value->IsFailure()) return raw_value;
      Handle<Object> value(raw_value);

      // If the callback object is a fixed array then it contains JavaScript
      // getter and/or setter.
      bool hasJavaScriptAccessors = result_type == CALLBACKS &&
                                    result_callback_obj->IsFixedArray();
      Handle<FixedArray> details =
          Factory::NewFixedArray(hasJavaScriptAccessors ? 5 : 2);
      details->set(0, *value);
      details->set(1, property_details);
      if (hasJavaScriptAccessors) {
        details->set(2,
                     caught_exception ? Heap::true_value()
                                      : Heap::false_value());
        details->set(3, FixedArray::cast(*result_callback_obj)->get(0));
        details->set(4, FixedArray::cast(*result_callback_obj)->get(1));
      }

      return *Factory::NewJSArrayWithElements(details);
    }
    if (i < length - 1) {
      jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
    }
  }

  return Heap::undefined_value();
}


static Object* Runtime_DebugGetProperty(Arguments args) {
  HandleScope scope;

  ASSERT(args.length() == 2);

  CONVERT_ARG_CHECKED(JSObject, obj, 0);
  CONVERT_ARG_CHECKED(String, name, 1);

  LookupResult result;
  obj->Lookup(*name, &result);
  if (result.IsProperty()) {
    return DebugLookupResultValue(*obj, *name, &result, NULL);
  }
  return Heap::undefined_value();
}


// Return the names of the local named properties.
// args[0]: object
static Object* Runtime_DebugLocalPropertyNames(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);
  if (!args[0]->IsJSObject()) {
    return Heap::undefined_value();
  }
  CONVERT_ARG_CHECKED(JSObject, obj, 0);

  // Skip the global proxy as it has no properties and always delegates to the
  // real global object.
  if (obj->IsJSGlobalProxy()) {
    obj = Handle<JSObject>(JSObject::cast(obj->GetPrototype()));
  }

  // Find the number of objects making up this.
  int length = LocalPrototypeChainLength(*obj);

  // Find the number of local properties for each of the objects.
  int* local_property_count = NewArray<int>(length);
  int total_property_count = 0;
  Handle<JSObject> jsproto = obj;
  for (int i = 0; i < length; i++) {
    int n;
    n = jsproto->NumberOfLocalProperties(static_cast<PropertyAttributes>(NONE));
    local_property_count[i] = n;
    total_property_count += n;
    if (i < length - 1) {
      jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
    }
  }

  // Allocate an array with storage for all the property names.
  Handle<FixedArray> names = Factory::NewFixedArray(total_property_count);

  // Get the property names.
  jsproto = obj;
  int proto_with_hidden_properties = 0;
  for (int i = 0; i < length; i++) {
    jsproto->GetLocalPropertyNames(*names,
                                   i == 0 ? 0 : local_property_count[i - 1]);
    if (!GetHiddenProperties(jsproto, false)->IsUndefined()) {
      proto_with_hidden_properties++;
    }
    if (i < length - 1) {
      jsproto = Handle<JSObject>(JSObject::cast(jsproto->GetPrototype()));
    }
  }

  // Filter out name of hidden propeties object.
  if (proto_with_hidden_properties > 0) {
    Handle<FixedArray> old_names = names;
    names = Factory::NewFixedArray(
        names->length() - proto_with_hidden_properties);
    int dest_pos = 0;
    for (int i = 0; i < total_property_count; i++) {
      Object* name = old_names->get(i);
      if (name == Heap::hidden_symbol()) {
        continue;
      }
      names->set(dest_pos++, name);
    }
  }

  DeleteArray(local_property_count);
  return *Factory::NewJSArrayWithElements(names);
}


// Return the names of the local indexed properties.
// args[0]: object
static Object* Runtime_DebugLocalElementNames(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);
  if (!args[0]->IsJSObject()) {
    return Heap::undefined_value();
  }
  CONVERT_ARG_CHECKED(JSObject, obj, 0);

  int n = obj->NumberOfLocalElements(static_cast<PropertyAttributes>(NONE));
  Handle<FixedArray> names = Factory::NewFixedArray(n);
  obj->GetLocalElementKeys(*names, static_cast<PropertyAttributes>(NONE));
  return *Factory::NewJSArrayWithElements(names);
}


// Return the property type calculated from the property details.
// args[0]: smi with property details.
static Object* Runtime_DebugPropertyTypeFromDetails(Arguments args) {
  ASSERT(args.length() == 1);
  CONVERT_CHECKED(Smi, details, args[0]);
  PropertyType type = PropertyDetails(details).type();
  return Smi::FromInt(static_cast<int>(type));
}


// Return the property attribute calculated from the property details.
// args[0]: smi with property details.
static Object* Runtime_DebugPropertyAttributesFromDetails(Arguments args) {
  ASSERT(args.length() == 1);
  CONVERT_CHECKED(Smi, details, args[0]);
  PropertyAttributes attributes = PropertyDetails(details).attributes();
  return Smi::FromInt(static_cast<int>(attributes));
}


// Return the property insertion index calculated from the property details.
// args[0]: smi with property details.
static Object* Runtime_DebugPropertyIndexFromDetails(Arguments args) {
  ASSERT(args.length() == 1);
  CONVERT_CHECKED(Smi, details, args[0]);
  int index = PropertyDetails(details).index();
  return Smi::FromInt(index);
}


// Return information on whether an object has a named or indexed interceptor.
// args[0]: object
static Object* Runtime_DebugInterceptorInfo(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);
  if (!args[0]->IsJSObject()) {
    return Smi::FromInt(0);
  }
  CONVERT_ARG_CHECKED(JSObject, obj, 0);

  int result = 0;
  if (obj->HasNamedInterceptor()) result |= 2;
  if (obj->HasIndexedInterceptor()) result |= 1;

  return Smi::FromInt(result);
}


// Return property names from named interceptor.
// args[0]: object
static Object* Runtime_DebugNamedInterceptorPropertyNames(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);
  CONVERT_ARG_CHECKED(JSObject, obj, 0);

  if (obj->HasNamedInterceptor()) {
    v8::Handle<v8::Array> result = GetKeysForNamedInterceptor(obj, obj);
    if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
  }
  return Heap::undefined_value();
}


// Return element names from indexed interceptor.
// args[0]: object
static Object* Runtime_DebugIndexedInterceptorElementNames(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);
  CONVERT_ARG_CHECKED(JSObject, obj, 0);

  if (obj->HasIndexedInterceptor()) {
    v8::Handle<v8::Array> result = GetKeysForIndexedInterceptor(obj, obj);
    if (!result.IsEmpty()) return *v8::Utils::OpenHandle(*result);
  }
  return Heap::undefined_value();
}


// Return property value from named interceptor.
// args[0]: object
// args[1]: property name
static Object* Runtime_DebugNamedInterceptorPropertyValue(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 2);
  CONVERT_ARG_CHECKED(JSObject, obj, 0);
  RUNTIME_ASSERT(obj->HasNamedInterceptor());
  CONVERT_ARG_CHECKED(String, name, 1);

  PropertyAttributes attributes;
  return obj->GetPropertyWithInterceptor(*obj, *name, &attributes);
}


// Return element value from indexed interceptor.
// args[0]: object
// args[1]: index
static Object* Runtime_DebugIndexedInterceptorElementValue(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 2);
  CONVERT_ARG_CHECKED(JSObject, obj, 0);
  RUNTIME_ASSERT(obj->HasIndexedInterceptor());
  CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]);

  return obj->GetElementWithInterceptor(*obj, index);
}


static Object* Runtime_CheckExecutionState(Arguments args) {
  ASSERT(args.length() >= 1);
  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
  // Check that the break id is valid.
  if (Debug::break_id() == 0 || break_id != Debug::break_id()) {
    return Top::Throw(Heap::illegal_execution_state_symbol());
  }

  return Heap::true_value();
}


static Object* Runtime_GetFrameCount(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);

  // Check arguments.
  Object* result = Runtime_CheckExecutionState(args);
  if (result->IsFailure()) return result;

  // Count all frames which are relevant to debugging stack trace.
  int n = 0;
  StackFrame::Id id = Debug::break_frame_id();
  if (id == StackFrame::NO_ID) {
    // If there is no JavaScript stack frame count is 0.
    return Smi::FromInt(0);
  }
  for (JavaScriptFrameIterator it(id); !it.done(); it.Advance()) n++;
  return Smi::FromInt(n);
}


static const int kFrameDetailsFrameIdIndex = 0;
static const int kFrameDetailsReceiverIndex = 1;
static const int kFrameDetailsFunctionIndex = 2;
static const int kFrameDetailsArgumentCountIndex = 3;
static const int kFrameDetailsLocalCountIndex = 4;
static const int kFrameDetailsSourcePositionIndex = 5;
static const int kFrameDetailsConstructCallIndex = 6;
static const int kFrameDetailsDebuggerFrameIndex = 7;
static const int kFrameDetailsFirstDynamicIndex = 8;

// Return an array with frame details
// args[0]: number: break id
// args[1]: number: frame index
//
// The array returned contains the following information:
// 0: Frame id
// 1: Receiver
// 2: Function
// 3: Argument count
// 4: Local count
// 5: Source position
// 6: Constructor call
// 7: Debugger frame
// Arguments name, value
// Locals name, value
static Object* Runtime_GetFrameDetails(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 2);

  // Check arguments.
  Object* check = Runtime_CheckExecutionState(args);
  if (check->IsFailure()) return check;
  CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);

  // Find the relevant frame with the requested index.
  StackFrame::Id id = Debug::break_frame_id();
  if (id == StackFrame::NO_ID) {
    // If there are no JavaScript stack frames return undefined.
    return Heap::undefined_value();
  }
  int count = 0;
  JavaScriptFrameIterator it(id);
  for (; !it.done(); it.Advance()) {
    if (count == index) break;
    count++;
  }
  if (it.done()) return Heap::undefined_value();

  // Traverse the saved contexts chain to find the active context for the
  // selected frame.
  SaveContext* save = Top::save_context();
  while (save != NULL && !save->below(it.frame())) {
    save = save->prev();
  }
  ASSERT(save != NULL);

  // Get the frame id.
  Handle<Object> frame_id(WrapFrameId(it.frame()->id()));

  // Find source position.
  int position = it.frame()->code()->SourcePosition(it.frame()->pc());

  // Check for constructor frame.
  bool constructor = it.frame()->IsConstructor();

  // Get code and read scope info from it for local variable information.
  Handle<Code> code(it.frame()->code());
  ScopeInfo<> info(*code);

  // Get the context.
  Handle<Context> context(Context::cast(it.frame()->context()));

  // Get the locals names and values into a temporary array.
  //
  // TODO(1240907): Hide compiler-introduced stack variables
  // (e.g. .result)?  For users of the debugger, they will probably be
  // confusing.
  Handle<FixedArray> locals = Factory::NewFixedArray(info.NumberOfLocals() * 2);
  for (int i = 0; i < info.NumberOfLocals(); i++) {
    // Name of the local.
    locals->set(i * 2, *info.LocalName(i));

    // Fetch the value of the local - either from the stack or from a
    // heap-allocated context.
    if (i < info.number_of_stack_slots()) {
      locals->set(i * 2 + 1, it.frame()->GetExpression(i));
    } else {
      Handle<String> name = info.LocalName(i);
      // Traverse the context chain to the function context as all local
      // variables stored in the context will be on the function context.
      while (!context->is_function_context()) {
        context = Handle<Context>(context->previous());
      }
      ASSERT(context->is_function_context());
      locals->set(i * 2 + 1,
                  context->get(ScopeInfo<>::ContextSlotIndex(*code, *name,
                                                             NULL)));
    }
  }

  // Now advance to the arguments adapter frame (if any). If contains all
  // the provided parameters and

  // Now advance to the arguments adapter frame (if any). It contains all
  // the provided parameters whereas the function frame always have the number
  // of arguments matching the functions parameters. The rest of the
  // information (except for what is collected above) is the same.
  it.AdvanceToArgumentsFrame();

  // Find the number of arguments to fill. At least fill the number of
  // parameters for the function and fill more if more parameters are provided.
  int argument_count = info.number_of_parameters();
  if (argument_count < it.frame()->GetProvidedParametersCount()) {
    argument_count = it.frame()->GetProvidedParametersCount();
  }

  // Calculate the size of the result.
  int details_size = kFrameDetailsFirstDynamicIndex +
                     2 * (argument_count + info.NumberOfLocals());
  Handle<FixedArray> details = Factory::NewFixedArray(details_size);

  // Add the frame id.
  details->set(kFrameDetailsFrameIdIndex, *frame_id);

  // Add the function (same as in function frame).
  details->set(kFrameDetailsFunctionIndex, it.frame()->function());

  // Add the arguments count.
  details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count));

  // Add the locals count
  details->set(kFrameDetailsLocalCountIndex,
               Smi::FromInt(info.NumberOfLocals()));

  // Add the source position.
  if (position != RelocInfo::kNoPosition) {
    details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position));
  } else {
    details->set(kFrameDetailsSourcePositionIndex, Heap::undefined_value());
  }

  // Add the constructor information.
  details->set(kFrameDetailsConstructCallIndex, Heap::ToBoolean(constructor));

  // Add information on whether this frame is invoked in the debugger context.
  details->set(kFrameDetailsDebuggerFrameIndex,
               Heap::ToBoolean(*save->context() == *Debug::debug_context()));

  // Fill the dynamic part.
  int details_index = kFrameDetailsFirstDynamicIndex;

  // Add arguments name and value.
  for (int i = 0; i < argument_count; i++) {
    // Name of the argument.
    if (i < info.number_of_parameters()) {
      details->set(details_index++, *info.parameter_name(i));
    } else {
      details->set(details_index++, Heap::undefined_value());
    }

    // Parameter value.
    if (i < it.frame()->GetProvidedParametersCount()) {
      details->set(details_index++, it.frame()->GetParameter(i));
    } else {
      details->set(details_index++, Heap::undefined_value());
    }
  }

  // Add locals name and value from the temporary copy from the function frame.
  for (int i = 0; i < info.NumberOfLocals() * 2; i++) {
    details->set(details_index++, locals->get(i));
  }

  // Add the receiver (same as in function frame).
  // THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE
  // THE FRAME ITERATOR TO WRAP THE RECEIVER.
  Handle<Object> receiver(it.frame()->receiver());
  if (!receiver->IsJSObject()) {
    // If the receiver is NOT a JSObject we have hit an optimization
    // where a value object is not converted into a wrapped JS objects.
    // To hide this optimization from the debugger, we wrap the receiver
    // by creating correct wrapper object based on the calling frame's
    // global context.
    it.Advance();
    Handle<Context> calling_frames_global_context(
        Context::cast(Context::cast(it.frame()->context())->global_context()));
    receiver = Factory::ToObject(receiver, calling_frames_global_context);
  }
  details->set(kFrameDetailsReceiverIndex, *receiver);

  ASSERT_EQ(details_size, details_index);
  return *Factory::NewJSArrayWithElements(details);
}


// Copy all the context locals into an object used to materialize a scope.
static void CopyContextLocalsToScopeObject(Handle<Code> code,
                                           ScopeInfo<>& scope_info,
                                           Handle<Context> context,
                                           Handle<JSObject> scope_object) {
  // Fill all context locals to the context extension.
  for (int i = Context::MIN_CONTEXT_SLOTS;
       i < scope_info.number_of_context_slots();
       i++) {
    int context_index =
        ScopeInfo<>::ContextSlotIndex(*code,
                                      *scope_info.context_slot_name(i),
                                      NULL);

    // Don't include the arguments shadow (.arguments) context variable.
    if (*scope_info.context_slot_name(i) != Heap::arguments_shadow_symbol()) {
      SetProperty(scope_object,
                  scope_info.context_slot_name(i),
                  Handle<Object>(context->get(context_index)), NONE);
    }
  }
}


// Create a plain JSObject which materializes the local scope for the specified
// frame.
static Handle<JSObject> MaterializeLocalScope(JavaScriptFrame* frame) {
  Handle<JSFunction> function(JSFunction::cast(frame->function()));
  Handle<Code> code(function->code());
  ScopeInfo<> scope_info(*code);

  // Allocate and initialize a JSObject with all the arguments, stack locals
  // heap locals and extension properties of the debugged function.
  Handle<JSObject> local_scope = Factory::NewJSObject(Top::object_function());

  // First fill all parameters.
  for (int i = 0; i < scope_info.number_of_parameters(); ++i) {
    SetProperty(local_scope,
                scope_info.parameter_name(i),
                Handle<Object>(frame->GetParameter(i)), NONE);
  }

  // Second fill all stack locals.
  for (int i = 0; i < scope_info.number_of_stack_slots(); i++) {
    SetProperty(local_scope,
                scope_info.stack_slot_name(i),
                Handle<Object>(frame->GetExpression(i)), NONE);
  }

  // Third fill all context locals.
  Handle<Context> frame_context(Context::cast(frame->context()));
  Handle<Context> function_context(frame_context->fcontext());
  CopyContextLocalsToScopeObject(code, scope_info,
                                 function_context, local_scope);

  // Finally copy any properties from the function context extension. This will
  // be variables introduced by eval.
  if (function_context->closure() == *function) {
    if (function_context->has_extension() &&
        !function_context->IsGlobalContext()) {
      Handle<JSObject> ext(JSObject::cast(function_context->extension()));
      Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS);
      for (int i = 0; i < keys->length(); i++) {
        // Names of variables introduced by eval are strings.
        ASSERT(keys->get(i)->IsString());
        Handle<String> key(String::cast(keys->get(i)));
        SetProperty(local_scope, key, GetProperty(ext, key), NONE);
      }
    }
  }
  return local_scope;
}


// Create a plain JSObject which materializes the closure content for the
// context.
static Handle<JSObject> MaterializeClosure(Handle<Context> context) {
  ASSERT(context->is_function_context());

  Handle<Code> code(context->closure()->code());
  ScopeInfo<> scope_info(*code);

  // Allocate and initialize a JSObject with all the content of theis function
  // closure.
  Handle<JSObject> closure_scope = Factory::NewJSObject(Top::object_function());

  // Check whether the arguments shadow object exists.
  int arguments_shadow_index =
      ScopeInfo<>::ContextSlotIndex(*code,
                                    Heap::arguments_shadow_symbol(),
                                    NULL);
  if (arguments_shadow_index >= 0) {
    // In this case all the arguments are available in the arguments shadow
    // object.
    Handle<JSObject> arguments_shadow(
        JSObject::cast(context->get(arguments_shadow_index)));
    for (int i = 0; i < scope_info.number_of_parameters(); ++i) {
      SetProperty(closure_scope,
                  scope_info.parameter_name(i),
                  Handle<Object>(arguments_shadow->GetElement(i)), NONE);
    }
  }

  // Fill all context locals to the context extension.
  CopyContextLocalsToScopeObject(code, scope_info, context, closure_scope);

  // Finally copy any properties from the function context extension. This will
  // be variables introduced by eval.
  if (context->has_extension()) {
    Handle<JSObject> ext(JSObject::cast(context->extension()));
    Handle<FixedArray> keys = GetKeysInFixedArrayFor(ext, INCLUDE_PROTOS);
    for (int i = 0; i < keys->length(); i++) {
      // Names of variables introduced by eval are strings.
      ASSERT(keys->get(i)->IsString());
      Handle<String> key(String::cast(keys->get(i)));
      SetProperty(closure_scope, key, GetProperty(ext, key), NONE);
    }
  }

  return closure_scope;
}


// Iterate over the actual scopes visible from a stack frame. All scopes are
// backed by an actual context except the local scope, which is inserted
// "artifically" in the context chain.
class ScopeIterator {
 public:
  enum ScopeType {
    ScopeTypeGlobal = 0,
    ScopeTypeLocal,
    ScopeTypeWith,
    ScopeTypeClosure,
    // Every catch block contains an implicit with block (its parameter is
    // a JSContextExtensionObject) that extends current scope with a variable
    // holding exception object. Such with blocks are treated as scopes of their
    // own type.
    ScopeTypeCatch
  };

  explicit ScopeIterator(JavaScriptFrame* frame)
    : frame_(frame),
      function_(JSFunction::cast(frame->function())),
      context_(Context::cast(frame->context())),
      local_done_(false),
      at_local_(false) {

    // Check whether the first scope is actually a local scope.
    if (context_->IsGlobalContext()) {
      // If there is a stack slot for .result then this local scope has been
      // created for evaluating top level code and it is not a real local scope.
      // Checking for the existence of .result seems fragile, but the scope info
      // saved with the code object does not otherwise have that information.
      Handle<Code> code(function_->code());
      int index = ScopeInfo<>::StackSlotIndex(*code, Heap::result_symbol());
      at_local_ = index < 0;
    } else if (context_->is_function_context()) {
      at_local_ = true;
    }
  }

  // More scopes?
  bool Done() { return context_.is_null(); }

  // Move to the next scope.
  void Next() {
    // If at a local scope mark the local scope as passed.
    if (at_local_) {
      at_local_ = false;
      local_done_ = true;

      // If the current context is not associated with the local scope the
      // current context is the next real scope, so don't move to the next
      // context in this case.
      if (context_->closure() != *function_) {
        return;
      }
    }

    // The global scope is always the last in the chain.
    if (context_->IsGlobalContext()) {
      context_ = Handle<Context>();
      return;
    }

    // Move to the next context.
    if (context_->is_function_context()) {
      context_ = Handle<Context>(Context::cast(context_->closure()->context()));
    } else {
      context_ = Handle<Context>(context_->previous());
    }

    // If passing the local scope indicate that the current scope is now the
    // local scope.
    if (!local_done_ &&
        (context_->IsGlobalContext() || (context_->is_function_context()))) {
      at_local_ = true;
    }
  }

  // Return the type of the current scope.
  int Type() {
    if (at_local_) {
      return ScopeTypeLocal;
    }
    if (context_->IsGlobalContext()) {
      ASSERT(context_->global()->IsGlobalObject());
      return ScopeTypeGlobal;
    }
    if (context_->is_function_context()) {
      return ScopeTypeClosure;
    }
    ASSERT(context_->has_extension());
    // Current scope is either an explicit with statement or a with statement
    // implicitely generated for a catch block.
    // If the extension object here is a JSContextExtensionObject then
    // current with statement is one frome a catch block otherwise it's a
    // regular with statement.
    if (context_->extension()->IsJSContextExtensionObject()) {
      return ScopeTypeCatch;
    }
    return ScopeTypeWith;
  }

  // Return the JavaScript object with the content of the current scope.
  Handle<JSObject> ScopeObject() {
    switch (Type()) {
      case ScopeIterator::ScopeTypeGlobal:
        return Handle<JSObject>(CurrentContext()->global());
        break;
      case ScopeIterator::ScopeTypeLocal:
        // Materialize the content of the local scope into a JSObject.
        return MaterializeLocalScope(frame_);
        break;
      case ScopeIterator::ScopeTypeWith:
      case ScopeIterator::ScopeTypeCatch:
        // Return the with object.
        return Handle<JSObject>(CurrentContext()->extension());
        break;
      case ScopeIterator::ScopeTypeClosure:
        // Materialize the content of the closure scope into a JSObject.
        return MaterializeClosure(CurrentContext());
        break;
    }
    UNREACHABLE();
    return Handle<JSObject>();
  }

  // Return the context for this scope. For the local context there might not
  // be an actual context.
  Handle<Context> CurrentContext() {
    if (at_local_ && context_->closure() != *function_) {
      return Handle<Context>();
    }
    return context_;
  }

#ifdef DEBUG
  // Debug print of the content of the current scope.
  void DebugPrint() {
    switch (Type()) {
      case ScopeIterator::ScopeTypeGlobal:
        PrintF("Global:\n");
        CurrentContext()->Print();
        break;

      case ScopeIterator::ScopeTypeLocal: {
        PrintF("Local:\n");
        Handle<Code> code(function_->code());
        ScopeInfo<> scope_info(*code);
        scope_info.Print();
        if (!CurrentContext().is_null()) {
          CurrentContext()->Print();
          if (CurrentContext()->has_extension()) {
            Handle<JSObject> extension =
                Handle<JSObject>(CurrentContext()->extension());
            if (extension->IsJSContextExtensionObject()) {
              extension->Print();
            }
          }
        }
        break;
      }

      case ScopeIterator::ScopeTypeWith: {
        PrintF("With:\n");
        Handle<JSObject> extension =
            Handle<JSObject>(CurrentContext()->extension());
        extension->Print();
        break;
      }

      case ScopeIterator::ScopeTypeCatch: {
        PrintF("Catch:\n");
        Handle<JSObject> extension =
            Handle<JSObject>(CurrentContext()->extension());
        extension->Print();
        break;
      }

      case ScopeIterator::ScopeTypeClosure: {
        PrintF("Closure:\n");
        CurrentContext()->Print();
        if (CurrentContext()->has_extension()) {
          Handle<JSObject> extension =
              Handle<JSObject>(CurrentContext()->extension());
          if (extension->IsJSContextExtensionObject()) {
            extension->Print();
          }
        }
        break;
      }

      default:
        UNREACHABLE();
    }
    PrintF("\n");
  }
#endif

 private:
  JavaScriptFrame* frame_;
  Handle<JSFunction> function_;
  Handle<Context> context_;
  bool local_done_;
  bool at_local_;

  DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator);
};


static Object* Runtime_GetScopeCount(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 2);

  // Check arguments.
  Object* check = Runtime_CheckExecutionState(args);
  if (check->IsFailure()) return check;
  CONVERT_CHECKED(Smi, wrapped_id, args[1]);

  // Get the frame where the debugging is performed.
  StackFrame::Id id = UnwrapFrameId(wrapped_id);
  JavaScriptFrameIterator it(id);
  JavaScriptFrame* frame = it.frame();

  // Count the visible scopes.
  int n = 0;
  for (ScopeIterator it(frame); !it.Done(); it.Next()) {
    n++;
  }

  return Smi::FromInt(n);
}


static const int kScopeDetailsTypeIndex = 0;
static const int kScopeDetailsObjectIndex = 1;
static const int kScopeDetailsSize = 2;

// Return an array with scope details
// args[0]: number: break id
// args[1]: number: frame index
// args[2]: number: scope index
//
// The array returned contains the following information:
// 0: Scope type
// 1: Scope object
static Object* Runtime_GetScopeDetails(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 3);

  // Check arguments.
  Object* check = Runtime_CheckExecutionState(args);
  if (check->IsFailure()) return check;
  CONVERT_CHECKED(Smi, wrapped_id, args[1]);
  CONVERT_NUMBER_CHECKED(int, index, Int32, args[2]);

  // Get the frame where the debugging is performed.
  StackFrame::Id id = UnwrapFrameId(wrapped_id);
  JavaScriptFrameIterator frame_it(id);
  JavaScriptFrame* frame = frame_it.frame();

  // Find the requested scope.
  int n = 0;
  ScopeIterator it(frame);
  for (; !it.Done() && n < index; it.Next()) {
    n++;
  }
  if (it.Done()) {
    return Heap::undefined_value();
  }

  // Calculate the size of the result.
  int details_size = kScopeDetailsSize;
  Handle<FixedArray> details = Factory::NewFixedArray(details_size);

  // Fill in scope details.
  details->set(kScopeDetailsTypeIndex, Smi::FromInt(it.Type()));
  details->set(kScopeDetailsObjectIndex, *it.ScopeObject());

  return *Factory::NewJSArrayWithElements(details);
}


static Object* Runtime_DebugPrintScopes(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 0);

#ifdef DEBUG
  // Print the scopes for the top frame.
  StackFrameLocator locator;
  JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
  for (ScopeIterator it(frame); !it.Done(); it.Next()) {
    it.DebugPrint();
  }
#endif
  return Heap::undefined_value();
}


static Object* Runtime_GetCFrames(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);
  Object* result = Runtime_CheckExecutionState(args);
  if (result->IsFailure()) return result;

#if V8_HOST_ARCH_64_BIT
  UNIMPLEMENTED();
  return Heap::undefined_value();
#else

  static const int kMaxCFramesSize = 200;
  ScopedVector<OS::StackFrame> frames(kMaxCFramesSize);
  int frames_count = OS::StackWalk(frames);
  if (frames_count == OS::kStackWalkError) {
    return Heap::undefined_value();
  }

  Handle<String> address_str = Factory::LookupAsciiSymbol("address");
  Handle<String> text_str = Factory::LookupAsciiSymbol("text");
  Handle<FixedArray> frames_array = Factory::NewFixedArray(frames_count);
  for (int i = 0; i < frames_count; i++) {
    Handle<JSObject> frame_value = Factory::NewJSObject(Top::object_function());
    frame_value->SetProperty(
        *address_str,
        *Factory::NewNumberFromInt(reinterpret_cast<int>(frames[i].address)),
        NONE);

    // Get the stack walk text for this frame.
    Handle<String> frame_text;
    int frame_text_length = StrLength(frames[i].text);
    if (frame_text_length > 0) {
      Vector<const char> str(frames[i].text, frame_text_length);
      frame_text = Factory::NewStringFromAscii(str);
    }

    if (!frame_text.is_null()) {
      frame_value->SetProperty(*text_str, *frame_text, NONE);
    }

    frames_array->set(i, *frame_value);
  }
  return *Factory::NewJSArrayWithElements(frames_array);
#endif  // V8_HOST_ARCH_64_BIT
}


static Object* Runtime_GetThreadCount(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);

  // Check arguments.
  Object* result = Runtime_CheckExecutionState(args);
  if (result->IsFailure()) return result;

  // Count all archived V8 threads.
  int n = 0;
  for (ThreadState* thread = ThreadState::FirstInUse();
       thread != NULL;
       thread = thread->Next()) {
    n++;
  }

  // Total number of threads is current thread and archived threads.
  return Smi::FromInt(n + 1);
}


static const int kThreadDetailsCurrentThreadIndex = 0;
static const int kThreadDetailsThreadIdIndex = 1;
static const int kThreadDetailsSize = 2;

// Return an array with thread details
// args[0]: number: break id
// args[1]: number: thread index
//
// The array returned contains the following information:
// 0: Is current thread?
// 1: Thread id
static Object* Runtime_GetThreadDetails(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 2);

  // Check arguments.
  Object* check = Runtime_CheckExecutionState(args);
  if (check->IsFailure()) return check;
  CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);

  // Allocate array for result.
  Handle<FixedArray> details = Factory::NewFixedArray(kThreadDetailsSize);

  // Thread index 0 is current thread.
  if (index == 0) {
    // Fill the details.
    details->set(kThreadDetailsCurrentThreadIndex, Heap::true_value());
    details->set(kThreadDetailsThreadIdIndex,
                 Smi::FromInt(ThreadManager::CurrentId()));
  } else {
    // Find the thread with the requested index.
    int n = 1;
    ThreadState* thread = ThreadState::FirstInUse();
    while (index != n && thread != NULL) {
      thread = thread->Next();
      n++;
    }
    if (thread == NULL) {
      return Heap::undefined_value();
    }

    // Fill the details.
    details->set(kThreadDetailsCurrentThreadIndex, Heap::false_value());
    details->set(kThreadDetailsThreadIdIndex, Smi::FromInt(thread->id()));
  }

  // Convert to JS array and return.
  return *Factory::NewJSArrayWithElements(details);
}


static Object* Runtime_GetBreakLocations(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);

  CONVERT_ARG_CHECKED(JSFunction, fun, 0);
  Handle<SharedFunctionInfo> shared(fun->shared());
  // Find the number of break points
  Handle<Object> break_locations = Debug::GetSourceBreakLocations(shared);
  if (break_locations->IsUndefined()) return Heap::undefined_value();
  // Return array as JS array
  return *Factory::NewJSArrayWithElements(
      Handle<FixedArray>::cast(break_locations));
}


// Set a break point in a function
// args[0]: function
// args[1]: number: break source position (within the function source)
// args[2]: number: break point object
static Object* Runtime_SetFunctionBreakPoint(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 3);
  CONVERT_ARG_CHECKED(JSFunction, fun, 0);
  Handle<SharedFunctionInfo> shared(fun->shared());
  CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
  RUNTIME_ASSERT(source_position >= 0);
  Handle<Object> break_point_object_arg = args.at<Object>(2);

  // Set break point.
  Debug::SetBreakPoint(shared, source_position, break_point_object_arg);

  return Heap::undefined_value();
}


Object* Runtime::FindSharedFunctionInfoInScript(Handle<Script> script,
                                                int position) {
  // Iterate the heap looking for SharedFunctionInfo generated from the
  // script. The inner most SharedFunctionInfo containing the source position
  // for the requested break point is found.
  // NOTE: This might reqire several heap iterations. If the SharedFunctionInfo
  // which is found is not compiled it is compiled and the heap is iterated
  // again as the compilation might create inner functions from the newly
  // compiled function and the actual requested break point might be in one of
  // these functions.
  bool done = false;
  // The current candidate for the source position:
  int target_start_position = RelocInfo::kNoPosition;
  Handle<SharedFunctionInfo> target;
  // The current candidate for the last function in script:
  Handle<SharedFunctionInfo> last;
  while (!done) {
    HeapIterator iterator;
    while (iterator.has_next()) {
      HeapObject* obj = iterator.next();
      ASSERT(obj != NULL);
      if (obj->IsSharedFunctionInfo()) {
        Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(obj));
        if (shared->script() == *script) {
          // If the SharedFunctionInfo found has the requested script data and
          // contains the source position it is a candidate.
          int start_position = shared->function_token_position();
          if (start_position == RelocInfo::kNoPosition) {
            start_position = shared->start_position();
          }
          if (start_position <= position &&
              position <= shared->end_position()) {
            // If there is no candidate or this function is within the current
            // candidate this is the new candidate.
            if (target.is_null()) {
              target_start_position = start_position;
              target = shared;
            } else {
              if (target_start_position == start_position &&
                  shared->end_position() == target->end_position()) {
                  // If a top-level function contain only one function
                  // declartion the source for the top-level and the function is
                  // the same. In that case prefer the non top-level function.
                if (!shared->is_toplevel()) {
                  target_start_position = start_position;
                  target = shared;
                }
              } else if (target_start_position <= start_position &&
                         shared->end_position() <= target->end_position()) {
                // This containment check includes equality as a function inside
                // a top-level function can share either start or end position
                // with the top-level function.
                target_start_position = start_position;
                target = shared;
              }
            }
          }

          // Keep track of the last function in the script.
          if (last.is_null() ||
              shared->end_position() > last->start_position()) {
            last = shared;
          }
        }
      }
    }

    // Make sure some candidate is selected.
    if (target.is_null()) {
      if (!last.is_null()) {
        // Position after the last function - use last.
        target = last;
      } else {
        // Unable to find function - possibly script without any function.
        return Heap::undefined_value();
      }
    }

    // If the candidate found is compiled we are done. NOTE: when lazy
    // compilation of inner functions is introduced some additional checking
    // needs to be done here to compile inner functions.
    done = target->is_compiled();
    if (!done) {
      // If the candidate is not compiled compile it to reveal any inner
      // functions which might contain the requested source position.
      CompileLazyShared(target, KEEP_EXCEPTION, 0);
    }
  }

  return *target;
}


// Change the state of a break point in a script. NOTE: Regarding performance
// see the NOTE for GetScriptFromScriptData.
// args[0]: script to set break point in
// args[1]: number: break source position (within the script source)
// args[2]: number: break point object
static Object* Runtime_SetScriptBreakPoint(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 3);
  CONVERT_ARG_CHECKED(JSValue, wrapper, 0);
  CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
  RUNTIME_ASSERT(source_position >= 0);
  Handle<Object> break_point_object_arg = args.at<Object>(2);

  // Get the script from the script wrapper.
  RUNTIME_ASSERT(wrapper->value()->IsScript());
  Handle<Script> script(Script::cast(wrapper->value()));

  Object* result = Runtime::FindSharedFunctionInfoInScript(
      script, source_position);
  if (!result->IsUndefined()) {
    Handle<SharedFunctionInfo> shared(SharedFunctionInfo::cast(result));
    // Find position within function. The script position might be before the
    // source position of the first function.
    int position;
    if (shared->start_position() > source_position) {
      position = 0;
    } else {
      position = source_position - shared->start_position();
    }
    Debug::SetBreakPoint(shared, position, break_point_object_arg);
  }
  return  Heap::undefined_value();
}


// Clear a break point
// args[0]: number: break point object
static Object* Runtime_ClearBreakPoint(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 1);
  Handle<Object> break_point_object_arg = args.at<Object>(0);

  // Clear break point.
  Debug::ClearBreakPoint(break_point_object_arg);

  return Heap::undefined_value();
}


// Change the state of break on exceptions
// args[0]: boolean indicating uncaught exceptions
// args[1]: boolean indicating on/off
static Object* Runtime_ChangeBreakOnException(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 2);
  ASSERT(args[0]->IsNumber());
  ASSERT(args[1]->IsBoolean());

  // Update break point state
  ExceptionBreakType type =
      static_cast<ExceptionBreakType>(NumberToUint32(args[0]));
  bool enable = args[1]->ToBoolean()->IsTrue();
  Debug::ChangeBreakOnException(type, enable);
  return Heap::undefined_value();
}


// Prepare for stepping
// args[0]: break id for checking execution state
// args[1]: step action from the enumeration StepAction
// args[2]: number of times to perform the step, for step out it is the number
//          of frames to step down.
static Object* Runtime_PrepareStep(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 3);
  // Check arguments.
  Object* check = Runtime_CheckExecutionState(args);
  if (check->IsFailure()) return check;
  if (!args[1]->IsNumber() || !args[2]->IsNumber()) {
    return Top::Throw(Heap::illegal_argument_symbol());
  }

  // Get the step action and check validity.
  StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1]));
  if (step_action != StepIn &&
      step_action != StepNext &&
      step_action != StepOut &&
      step_action != StepInMin &&
      step_action != StepMin) {
    return Top::Throw(Heap::illegal_argument_symbol());
  }

  // Get the number of steps.
  int step_count = NumberToInt32(args[2]);
  if (step_count < 1) {
    return Top::Throw(Heap::illegal_argument_symbol());
  }

  // Clear all current stepping setup.
  Debug::ClearStepping();

  // Prepare step.
  Debug::PrepareStep(static_cast<StepAction>(step_action), step_count);
  return Heap::undefined_value();
}


// Clear all stepping set by PrepareStep.
static Object* Runtime_ClearStepping(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 0);
  Debug::ClearStepping();
  return Heap::undefined_value();
}


// Creates a copy of the with context chain. The copy of the context chain is
// is linked to the function context supplied.
static Handle<Context> CopyWithContextChain(Handle<Context> context_chain,
                                            Handle<Context> function_context) {
  // At the bottom of the chain. Return the function context to link to.
  if (context_chain->is_function_context()) {
    return function_context;
  }

  // Recursively copy the with contexts.
  Handle<Context> previous(context_chain->previous());
  Handle<JSObject> extension(JSObject::cast(context_chain->extension()));
  return Factory::NewWithContext(
      CopyWithContextChain(function_context, previous),
      extension,
      context_chain->IsCatchContext());
}


// Helper function to find or create the arguments object for
// Runtime_DebugEvaluate.
static Handle<Object> GetArgumentsObject(JavaScriptFrame* frame,
                                         Handle<JSFunction> function,
                                         Handle<Code> code,
                                         const ScopeInfo<>* sinfo,
                                         Handle<Context> function_context) {
  // Try to find the value of 'arguments' to pass as parameter. If it is not
  // found (that is the debugged function does not reference 'arguments' and
  // does not support eval) then create an 'arguments' object.
  int index;
  if (sinfo->number_of_stack_slots() > 0) {
    index = ScopeInfo<>::StackSlotIndex(*code, Heap::arguments_symbol());
    if (index != -1) {
      return Handle<Object>(frame->GetExpression(index));
    }
  }

  if (sinfo->number_of_context_slots() > Context::MIN_CONTEXT_SLOTS) {
    index = ScopeInfo<>::ContextSlotIndex(*code, Heap::arguments_symbol(),
                                          NULL);
    if (index != -1) {
      return Handle<Object>(function_context->get(index));
    }
  }

  const int length = frame->GetProvidedParametersCount();
  Handle<JSObject> arguments = Factory::NewArgumentsObject(function, length);
  Handle<FixedArray> array = Factory::NewFixedArray(length);
  WriteBarrierMode mode = array->GetWriteBarrierMode();
  for (int i = 0; i < length; i++) {
    array->set(i, frame->GetParameter(i), mode);
  }
  arguments->set_elements(*array);
  return arguments;
}


// Evaluate a piece of JavaScript in the context of a stack frame for
// debugging. This is accomplished by creating a new context which in its
// extension part has all the parameters and locals of the function on the
// stack frame. A function which calls eval with the code to evaluate is then
// compiled in this context and called in this context. As this context
// replaces the context of the function on the stack frame a new (empty)
// function is created as well to be used as the closure for the context.
// This function and the context acts as replacements for the function on the
// stack frame presenting the same view of the values of parameters and
// local variables as if the piece of JavaScript was evaluated at the point
// where the function on the stack frame is currently stopped.
static Object* Runtime_DebugEvaluate(Arguments args) {
  HandleScope scope;

  // Check the execution state and decode arguments frame and source to be
  // evaluated.
  ASSERT(args.length() == 4);
  Object* check_result = Runtime_CheckExecutionState(args);
  if (check_result->IsFailure()) return check_result;
  CONVERT_CHECKED(Smi, wrapped_id, args[1]);
  CONVERT_ARG_CHECKED(String, source, 2);
  CONVERT_BOOLEAN_CHECKED(disable_break, args[3]);

  // Handle the processing of break.
  DisableBreak disable_break_save(disable_break);

  // Get the frame where the debugging is performed.
  StackFrame::Id id = UnwrapFrameId(wrapped_id);
  JavaScriptFrameIterator it(id);
  JavaScriptFrame* frame = it.frame();
  Handle<JSFunction> function(JSFunction::cast(frame->function()));
  Handle<Code> code(function->code());
  ScopeInfo<> sinfo(*code);

  // Traverse the saved contexts chain to find the active context for the
  // selected frame.
  SaveContext* save = Top::save_context();
  while (save != NULL && !save->below(frame)) {
    save = save->prev();
  }
  ASSERT(save != NULL);
  SaveContext savex;
  Top::set_context(*(save->context()));

  // Create the (empty) function replacing the function on the stack frame for
  // the purpose of evaluating in the context created below. It is important
  // that this function does not describe any parameters and local variables
  // in the context. If it does then this will cause problems with the lookup
  // in Context::Lookup, where context slots for parameters and local variables
  // are looked at before the extension object.
  Handle<JSFunction> go_between =
      Factory::NewFunction(Factory::empty_string(), Factory::undefined_value());
  go_between->set_context(function->context());
#ifdef DEBUG
  ScopeInfo<> go_between_sinfo(go_between->shared()->code());
  ASSERT(go_between_sinfo.number_of_parameters() == 0);
  ASSERT(go_between_sinfo.number_of_context_slots() == 0);
#endif

  // Materialize the content of the local scope into a JSObject.
  Handle<JSObject> local_scope = MaterializeLocalScope(frame);

  // Allocate a new context for the debug evaluation and set the extension
  // object build.
  Handle<Context> context =
      Factory::NewFunctionContext(Context::MIN_CONTEXT_SLOTS, go_between);
  context->set_extension(*local_scope);
  // Copy any with contexts present and chain them in front of this context.
  Handle<Context> frame_context(Context::cast(frame->context()));
  Handle<Context> function_context(frame_context->fcontext());
  context = CopyWithContextChain(frame_context, context);

  // Wrap the evaluation statement in a new function compiled in the newly
  // created context. The function has one parameter which has to be called
  // 'arguments'. This it to have access to what would have been 'arguments' in
  // the function being debugged.
  // function(arguments,__source__) {return eval(__source__);}
  static const char* source_str =
      "(function(arguments,__source__){return eval(__source__);})";
  static const int source_str_length = StrLength(source_str);
  Handle<String> function_source =
      Factory::NewStringFromAscii(Vector<const char>(source_str,
                                                     source_str_length));
  Handle<JSFunction> boilerplate =
      Compiler::CompileEval(function_source,
                            context,
                            context->IsGlobalContext(),
                            Compiler::DONT_VALIDATE_JSON);
  if (boilerplate.is_null()) return Failure::Exception();
  Handle<JSFunction> compiled_function =
      Factory::NewFunctionFromBoilerplate(boilerplate, context);

  // Invoke the result of the compilation to get the evaluation function.
  bool has_pending_exception;
  Handle<Object> receiver(frame->receiver());
  Handle<Object> evaluation_function =
      Execution::Call(compiled_function, receiver, 0, NULL,
                      &has_pending_exception);
  if (has_pending_exception) return Failure::Exception();

  Handle<Object> arguments = GetArgumentsObject(frame, function, code, &sinfo,
                                                function_context);

  // Invoke the evaluation function and return the result.
  const int argc = 2;
  Object** argv[argc] = { arguments.location(),
                          Handle<Object>::cast(source).location() };
  Handle<Object> result =
      Execution::Call(Handle<JSFunction>::cast(evaluation_function), receiver,
                      argc, argv, &has_pending_exception);
  if (has_pending_exception) return Failure::Exception();

  // Skip the global proxy as it has no properties and always delegates to the
  // real global object.
  if (result->IsJSGlobalProxy()) {
    result = Handle<JSObject>(JSObject::cast(result->GetPrototype()));
  }

  return *result;
}


static Object* Runtime_DebugEvaluateGlobal(Arguments args) {
  HandleScope scope;

  // Check the execution state and decode arguments frame and source to be
  // evaluated.
  ASSERT(args.length() == 3);
  Object* check_result = Runtime_CheckExecutionState(args);
  if (check_result->IsFailure()) return check_result;
  CONVERT_ARG_CHECKED(String, source, 1);
  CONVERT_BOOLEAN_CHECKED(disable_break, args[2]);

  // Handle the processing of break.
  DisableBreak disable_break_save(disable_break);

  // Enter the top context from before the debugger was invoked.
  SaveContext save;
  SaveContext* top = &save;
  while (top != NULL && *top->context() == *Debug::debug_context()) {
    top = top->prev();
  }
  if (top != NULL) {
    Top::set_context(*top->context());
  }

  // Get the global context now set to the top context from before the
  // debugger was invoked.
  Handle<Context> context = Top::global_context();

  // Compile the source to be evaluated.
  Handle<JSFunction> boilerplate =
      Handle<JSFunction>(Compiler::CompileEval(source,
                                               context,
                                               true,
                                               Compiler::DONT_VALIDATE_JSON));
  if (boilerplate.is_null()) return Failure::Exception();
  Handle<JSFunction> compiled_function =
      Handle<JSFunction>(Factory::NewFunctionFromBoilerplate(boilerplate,
                                                             context));

  // Invoke the result of the compilation to get the evaluation function.
  bool has_pending_exception;
  Handle<Object> receiver = Top::global();
  Handle<Object> result =
    Execution::Call(compiled_function, receiver, 0, NULL,
                    &has_pending_exception);
  if (has_pending_exception) return Failure::Exception();
  return *result;
}


static Object* Runtime_DebugGetLoadedScripts(Arguments args) {
  HandleScope scope;
  ASSERT(args.length() == 0);

  // Fill the script objects.
  Handle<FixedArray> instances = Debug::GetLoadedScripts();

  // Convert the script objects to proper JS objects.
  for (int i = 0; i < instances->length(); i++) {
    Handle<Script> script = Handle<Script>(Script::cast(instances->get(i)));
    // Get the script wrapper in a local handle before calling GetScriptWrapper,
    // because using
    //   instances->set(i, *GetScriptWrapper(script))
    // is unsafe as GetScriptWrapper might call GC and the C++ compiler might
    // already have deferenced the instances handle.
    Handle<JSValue> wrapper = GetScriptWrapper(script);
    instances->set(i, *wrapper);
  }

  // Return result as a JS array.
  Handle<JSObject> result = Factory::NewJSObject(Top::array_function());
  Handle<JSArray>::cast(result)->SetContent(*instances);
  return *result;
}


// Helper function used by Runtime_DebugReferencedBy below.
static int DebugReferencedBy(JSObject* target,
                             Object* instance_filter, int max_references,
                             FixedArray* instances, int instances_size,
                             JSFunction* arguments_function) {
  NoHandleAllocation ha;
  AssertNoAllocation no_alloc;

  // Iterate the heap.
  int count = 0;
  JSObject* last = NULL;
  HeapIterator iterator;
  while (iterator.has_next() &&
         (max_references == 0 || count < max_references)) {
    // Only look at all JSObjects.
    HeapObject* heap_obj = iterator.next();
    if (heap_obj->IsJSObject()) {
      // Skip context extension objects and argument arrays as these are
      // checked in the context of functions using them.
      JSObject* obj = JSObject::cast(heap_obj);
      if (obj->IsJSContextExtensionObject() ||
          obj->map()->constructor() == arguments_function) {
        continue;
      }

      // Check if the JS object has a reference to the object looked for.
      if (obj->ReferencesObject(target)) {
        // Check instance filter if supplied. This is normally used to avoid
        // references from mirror objects (see Runtime_IsInPrototypeChain).
        if (!instance_filter->IsUndefined()) {
          Object* V = obj;
          while (true) {
            Object* prototype = V->GetPrototype();
            if (prototype->IsNull()) {
              break;
            }
            if (instance_filter == prototype) {
              obj = NULL;  // Don't add this object.
              break;
            }
            V = prototype;
          }
        }

        if (obj != NULL) {
          // Valid reference found add to instance array if supplied an update
          // count.
          if (instances != NULL && count < instances_size) {
            instances->set(count, obj);
          }
          last = obj;
          count++;
        }
      }
    }
  }

  // Check for circular reference only. This can happen when the object is only
  // referenced from mirrors and has a circular reference in which case the
  // object is not really alive and would have been garbage collected if not
  // referenced from the mirror.
  if (count == 1 && last == target) {
    count = 0;
  }

  // Return the number of referencing objects found.
  return count;
}


// Scan the heap for objects with direct references to an object
// args[0]: the object to find references to
// args[1]: constructor function for instances to exclude (Mirror)
// args[2]: the the maximum number of objects to return
static Object* Runtime_DebugReferencedBy(Arguments args) {
  ASSERT(args.length() == 3);

  // First perform a full GC in order to avoid references from dead objects.
  Heap::CollectAllGarbage(false);

  // Check parameters.
  CONVERT_CHECKED(JSObject, target, args[0]);
  Object* instance_filter = args[1];
  RUNTIME_ASSERT(instance_filter->IsUndefined() ||
                 instance_filter->IsJSObject());
  CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]);
  RUNTIME_ASSERT(max_references >= 0);

  // Get the constructor function for context extension and arguments array.
  JSObject* arguments_boilerplate =
      Top::context()->global_context()->arguments_boilerplate();
  JSFunction* arguments_function =
      JSFunction::cast(arguments_boilerplate->map()->constructor());

  // Get the number of referencing objects.
  int count;
  count = DebugReferencedBy(target, instance_filter, max_references,
                            NULL, 0, arguments_function);

  // Allocate an array to hold the result.
  Object* object = Heap::AllocateFixedArray(count);
  if (object->IsFailure()) return object;
  FixedArray* instances = FixedArray::cast(object);

  // Fill the referencing objects.
  count = DebugReferencedBy(target, instance_filter, max_references,
                            instances, count, arguments_function);

  // Return result as JS array.
  Object* result =
      Heap::AllocateJSObject(
          Top::context()->global_context()->array_function());
  if (!result->IsFailure()) JSArray::cast(result)->SetContent(instances);
  return result;
}


// Helper function used by Runtime_DebugConstructedBy below.
static int DebugConstructedBy(JSFunction* constructor, int max_references,
                              FixedArray* instances, int instances_size) {
  AssertNoAllocation no_alloc;

  // Iterate the heap.
  int count = 0;
  HeapIterator iterator;
  while (iterator.has_next() &&
         (max_references == 0 || count < max_references)) {
    // Only look at all JSObjects.
    HeapObject* heap_obj = iterator.next();
    if (heap_obj->IsJSObject()) {
      JSObject* obj = JSObject::cast(heap_obj);
      if (obj->map()->constructor() == constructor) {
        // Valid reference found add to instance array if supplied an update
        // count.
        if (instances != NULL && count < instances_size) {
          instances->set(count, obj);
        }
        count++;
      }
    }
  }

  // Return the number of referencing objects found.
  return count;
}


// Scan the heap for objects constructed by a specific function.
// args[0]: the constructor to find instances of
// args[1]: the the maximum number of objects to return
static Object* Runtime_DebugConstructedBy(Arguments args) {
  ASSERT(args.length() == 2);

  // First perform a full GC in order to avoid dead objects.
  Heap::CollectAllGarbage(false);

  // Check parameters.
  CONVERT_CHECKED(JSFunction, constructor, args[0]);
  CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]);
  RUNTIME_ASSERT(max_references >= 0);

  // Get the number of referencing objects.
  int count;
  count = DebugConstructedBy(constructor, max_references, NULL, 0);

  // Allocate an array to hold the result.
  Object* object = Heap::AllocateFixedArray(count);
  if (object->IsFailure()) return object;
  FixedArray* instances = FixedArray::cast(object);

  // Fill the referencing objects.
  count = DebugConstructedBy(constructor, max_references, instances, count);

  // Return result as JS array.
  Object* result =
      Heap::AllocateJSObject(
          Top::context()->global_context()->array_function());
  if (!result->IsFailure()) JSArray::cast(result)->SetContent(instances);
  return result;
}


// Find the effective prototype object as returned by __proto__.
// args[0]: the object to find the prototype for.
static Object* Runtime_DebugGetPrototype(Arguments args) {
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(JSObject, obj, args[0]);

  // Use the __proto__ accessor.
  return Accessors::ObjectPrototype.getter(obj, NULL);
}


static Object* Runtime_SystemBreak(Arguments args) {
  ASSERT(args.length() == 0);
  CPU::DebugBreak();
  return Heap::undefined_value();
}


static Object* Runtime_DebugDisassembleFunction(Arguments args) {
#ifdef DEBUG
  HandleScope scope;
  ASSERT(args.length() == 1);
  // Get the function and make sure it is compiled.
  CONVERT_ARG_CHECKED(JSFunction, func, 0);
  if (!func->is_compiled() && !CompileLazy(func, KEEP_EXCEPTION)) {
    return Failure::Exception();
  }
  func->code()->PrintLn();
#endif  // DEBUG
  return Heap::undefined_value();
}


static Object* Runtime_DebugDisassembleConstructor(Arguments args) {
#ifdef DEBUG
  HandleScope scope;
  ASSERT(args.length() == 1);
  // Get the function and make sure it is compiled.
  CONVERT_ARG_CHECKED(JSFunction, func, 0);
  if (!func->is_compiled() && !CompileLazy(func, KEEP_EXCEPTION)) {
    return Failure::Exception();
  }
  func->shared()->construct_stub()->PrintLn();
#endif  // DEBUG
  return Heap::undefined_value();
}


static Object* Runtime_FunctionGetInferredName(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(JSFunction, f, args[0]);
  return f->shared()->inferred_name();
}

#endif  // ENABLE_DEBUGGER_SUPPORT

#ifdef ENABLE_LOGGING_AND_PROFILING

static Object* Runtime_ProfilerResume(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(Smi, smi_modules, args[0]);
  v8::V8::ResumeProfilerEx(smi_modules->value());
  return Heap::undefined_value();
}


static Object* Runtime_ProfilerPause(Arguments args) {
  NoHandleAllocation ha;
  ASSERT(args.length() == 1);

  CONVERT_CHECKED(Smi, smi_modules, args[0]);
  v8::V8::PauseProfilerEx(smi_modules->value());
  return Heap::undefined_value();
}

#endif  // ENABLE_LOGGING_AND_PROFILING

// Finds the script object from the script data. NOTE: This operation uses
// heap traversal to find the function generated for the source position
// for the requested break point. For lazily compiled functions several heap
// traversals might be required rendering this operation as a rather slow
// operation. However for setting break points which is normally done through
// some kind of user interaction the performance is not crucial.
static Handle<Object> Runtime_GetScriptFromScriptName(
    Handle<String> script_name) {
  // Scan the heap for Script objects to find the script with the requested
  // script data.
  Handle<Script> script;
  HeapIterator iterator;
  while (script.is_null() && iterator.has_next()) {
    HeapObject* obj = iterator.next();
    // If a script is found check if it has the script data requested.
    if (obj->IsScript()) {
      if (Script::cast(obj)->name()->IsString()) {
        if (String::cast(Script::cast(obj)->name())->Equals(*script_name)) {
          script = Handle<Script>(Script::cast(obj));
        }
      }
    }
  }

  // If no script with the requested script data is found return undefined.
  if (script.is_null()) return Factory::undefined_value();

  // Return the script found.
  return GetScriptWrapper(script);
}


// Get the script object from script data. NOTE: Regarding performance
// see the NOTE for GetScriptFromScriptData.
// args[0]: script data for the script to find the source for
static Object* Runtime_GetScript(Arguments args) {
  HandleScope scope;

  ASSERT(args.length() == 1);

  CONVERT_CHECKED(String, script_name, args[0]);

  // Find the requested script.
  Handle<Object> result =
      Runtime_GetScriptFromScriptName(Handle<String>(script_name));
  return *result;
}


// Determines whether the given stack frame should be displayed in
// a stack trace.  The caller is the error constructor that asked
// for the stack trace to be collected.  The first time a construct
// call to this function is encountered it is skipped.  The seen_caller
// in/out parameter is used to remember if the caller has been seen
// yet.
static bool ShowFrameInStackTrace(StackFrame* raw_frame, Object* caller,
    bool* seen_caller) {
  // Only display JS frames.
  if (!raw_frame->is_java_script())
    return false;
  JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame);
  Object* raw_fun = frame->function();
  // Not sure when this can happen but skip it just in case.
  if (!raw_fun->IsJSFunction())
    return false;
  if ((raw_fun == caller) && !(*seen_caller)) {
    *seen_caller = true;
    return false;
  }
  // Skip all frames until we've seen the caller.  Also, skip the most
  // obvious builtin calls.  Some builtin calls (such as Number.ADD
  // which is invoked using 'call') are very difficult to recognize
  // so we're leaving them in for now.
  return *seen_caller && !frame->receiver()->IsJSBuiltinsObject();
}


// Collect the raw data for a stack trace.  Returns an array of three
// element segments each containing a receiver, function and native
// code offset.
static Object* Runtime_CollectStackTrace(Arguments args) {
  ASSERT_EQ(args.length(), 2);
  Handle<Object> caller = args.at<Object>(0);
  CONVERT_NUMBER_CHECKED(int32_t, limit, Int32, args[1]);

  HandleScope scope;

  limit = Max(limit, 0);  // Ensure that limit is not negative.
  int initial_size = Min(limit, 10);
  Handle<JSArray> result = Factory::NewJSArray(initial_size * 3);

  StackFrameIterator iter;
  // If the caller parameter is a function we skip frames until we're
  // under it before starting to collect.
  bool seen_caller = !caller->IsJSFunction();
  int cursor = 0;
  int frames_seen = 0;
  while (!iter.done() && frames_seen < limit) {
    StackFrame* raw_frame = iter.frame();
    if (ShowFrameInStackTrace(raw_frame, *caller, &seen_caller)) {
      frames_seen++;
      JavaScriptFrame* frame = JavaScriptFrame::cast(raw_frame);
      Object* recv = frame->receiver();
      Object* fun = frame->function();
      Address pc = frame->pc();
      Address start = frame->code()->address();
      Smi* offset = Smi::FromInt(static_cast<int>(pc - start));
      FixedArray* elements = FixedArray::cast(result->elements());
      if (cursor + 2 < elements->length()) {
        elements->set(cursor++, recv);
        elements->set(cursor++, fun);
        elements->set(cursor++, offset, SKIP_WRITE_BARRIER);
      } else {
        HandleScope scope;
        Handle<Object> recv_handle(recv);
        Handle<Object> fun_handle(fun);
        SetElement(result, cursor++, recv_handle);
        SetElement(result, cursor++, fun_handle);
        SetElement(result, cursor++, Handle<Smi>(offset));
      }
    }
    iter.Advance();
  }

  result->set_length(Smi::FromInt(cursor), SKIP_WRITE_BARRIER);

  return *result;
}


// Returns V8 version as a string.
static Object* Runtime_GetV8Version(Arguments args) {
  ASSERT_EQ(args.length(), 0);

  NoHandleAllocation ha;

  const char* version_string = v8::V8::GetVersion();

  return Heap::AllocateStringFromAscii(CStrVector(version_string), NOT_TENURED);
}


static Object* Runtime_Abort(Arguments args) {
  ASSERT(args.length() == 2);
  OS::PrintError("abort: %s\n", reinterpret_cast<char*>(args[0]) +
                                    Smi::cast(args[1])->value());
  Top::PrintStack();
  OS::Abort();
  UNREACHABLE();
  return NULL;
}


static Object* Runtime_DeleteHandleScopeExtensions(Arguments args) {
  ASSERT(args.length() == 0);
  HandleScope::DeleteExtensions();
  return Heap::undefined_value();
}


#ifdef DEBUG
// ListNatives is ONLY used by the fuzz-natives.js in debug mode
// Exclude the code in release mode.
static Object* Runtime_ListNatives(Arguments args) {
  ASSERT(args.length() == 0);
  HandleScope scope;
  Handle<JSArray> result = Factory::NewJSArray(0);
  int index = 0;
#define ADD_ENTRY(Name, argc, ressize)                                       \
  {                                                                          \
    HandleScope inner;                                                       \
    Handle<String> name =                                                    \
      Factory::NewStringFromAscii(                                           \
          Vector<const char>(#Name, StrLength(#Name)));       \
    Handle<JSArray> pair = Factory::NewJSArray(0);                           \
    SetElement(pair, 0, name);                                               \
    SetElement(pair, 1, Handle<Smi>(Smi::FromInt(argc)));                    \
    SetElement(result, index++, pair);                                       \
  }
  RUNTIME_FUNCTION_LIST(ADD_ENTRY)
#undef ADD_ENTRY
  return *result;
}
#endif


static Object* Runtime_Log(Arguments args) {
  ASSERT(args.length() == 2);
  CONVERT_CHECKED(String, format, args[0]);
  CONVERT_CHECKED(JSArray, elms, args[1]);
  Vector<const char> chars = format->ToAsciiVector();
  Logger::LogRuntime(chars, elms);
  return Heap::undefined_value();
}


static Object* Runtime_IS_VAR(Arguments args) {
  UNREACHABLE();  // implemented as macro in the parser
  return NULL;
}


// ----------------------------------------------------------------------------
// Implementation of Runtime

#define F(name, nargs, ressize)                                           \
  { #name, "RuntimeStub_" #name, FUNCTION_ADDR(Runtime_##name), nargs, \
    static_cast<int>(Runtime::k##name), ressize },

static Runtime::Function Runtime_functions[] = {
  RUNTIME_FUNCTION_LIST(F)
  { NULL, NULL, NULL, 0, -1, 0 }
};

#undef F


Runtime::Function* Runtime::FunctionForId(FunctionId fid) {
  ASSERT(0 <= fid && fid < kNofFunctions);
  return &Runtime_functions[fid];
}


Runtime::Function* Runtime::FunctionForName(const char* name) {
  for (Function* f = Runtime_functions; f->name != NULL; f++) {
    if (strcmp(f->name, name) == 0) {
      return f;
    }
  }
  return NULL;
}


void Runtime::PerformGC(Object* result) {
  Failure* failure = Failure::cast(result);
  if (failure->IsRetryAfterGC()) {
    // Try to do a garbage collection; ignore it if it fails. The C
    // entry stub will throw an out-of-memory exception in that case.
    Heap::CollectGarbage(failure->requested(), failure->allocation_space());
  } else {
    // Handle last resort GC and make sure to allow future allocations
    // to grow the heap without causing GCs (if possible).
    Counters::gc_last_resort_from_js.Increment();
    Heap::CollectAllGarbage(false);
  }
}


} }  // namespace v8::internal