1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
|
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/arguments.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/runtime/runtime-utils.h"
#ifndef _STLP_VENDOR_CSTD
// STLPort doesn't import fpclassify and isless into the std namespace.
using std::fpclassify;
using std::isless;
#endif
namespace v8 {
namespace internal {
RUNTIME_FUNCTION(Runtime_NumberToRadixString) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_SMI_ARG_CHECKED(radix, 1);
RUNTIME_ASSERT(2 <= radix && radix <= 36);
// Fast case where the result is a one character string.
if (args[0]->IsSmi()) {
int value = args.smi_at(0);
if (value >= 0 && value < radix) {
// Character array used for conversion.
static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
return *isolate->factory()->LookupSingleCharacterStringFromCode(
kCharTable[value]);
}
}
// Slow case.
CONVERT_DOUBLE_ARG_CHECKED(value, 0);
if (std::isnan(value)) {
return isolate->heap()->nan_string();
}
if (std::isinf(value)) {
if (value < 0) {
return isolate->heap()->minus_infinity_string();
}
return isolate->heap()->infinity_string();
}
char* str = DoubleToRadixCString(value, radix);
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
RUNTIME_FUNCTION(Runtime_NumberToFixed) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(value, 0);
CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
int f = FastD2IChecked(f_number);
// See DoubleToFixedCString for these constants:
RUNTIME_ASSERT(f >= 0 && f <= 20);
RUNTIME_ASSERT(!Double(value).IsSpecial());
char* str = DoubleToFixedCString(value, f);
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
RUNTIME_FUNCTION(Runtime_NumberToExponential) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(value, 0);
CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
int f = FastD2IChecked(f_number);
RUNTIME_ASSERT(f >= -1 && f <= 20);
RUNTIME_ASSERT(!Double(value).IsSpecial());
char* str = DoubleToExponentialCString(value, f);
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
RUNTIME_FUNCTION(Runtime_NumberToPrecision) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(value, 0);
CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
int f = FastD2IChecked(f_number);
RUNTIME_ASSERT(f >= 1 && f <= 21);
RUNTIME_ASSERT(!Double(value).IsSpecial());
char* str = DoubleToPrecisionCString(value, f);
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
RUNTIME_FUNCTION(Runtime_IsValidSmi) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]);
return isolate->heap()->ToBoolean(Smi::IsValid(number));
}
static bool AreDigits(const uint8_t* s, int from, int to) {
for (int i = from; i < to; i++) {
if (s[i] < '0' || s[i] > '9') return false;
}
return true;
}
static int ParseDecimalInteger(const uint8_t* s, int from, int to) {
DCHECK(to - from < 10); // Overflow is not possible.
DCHECK(from < to);
int d = s[from] - '0';
for (int i = from + 1; i < to; i++) {
d = 10 * d + (s[i] - '0');
}
return d;
}
RUNTIME_FUNCTION(Runtime_StringToNumber) {
HandleScope handle_scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
subject = String::Flatten(subject);
// Fast case: short integer or some sorts of junk values.
if (subject->IsSeqOneByteString()) {
int len = subject->length();
if (len == 0) return Smi::FromInt(0);
DisallowHeapAllocation no_gc;
uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars();
bool minus = (data[0] == '-');
int start_pos = (minus ? 1 : 0);
if (start_pos == len) {
return isolate->heap()->nan_value();
} else if (data[start_pos] > '9') {
// Fast check for a junk value. A valid string may start from a
// whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
// or the 'I' character ('Infinity'). All of that have codes not greater
// than '9' except 'I' and .
if (data[start_pos] != 'I' && data[start_pos] != 0xa0) {
return isolate->heap()->nan_value();
}
} else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
// The maximal/minimal smi has 10 digits. If the string has less digits
// we know it will fit into the smi-data type.
int d = ParseDecimalInteger(data, start_pos, len);
if (minus) {
if (d == 0) return isolate->heap()->minus_zero_value();
d = -d;
} else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize &&
(len == 1 || data[0] != '0')) {
// String hash is not calculated yet but all the data are present.
// Update the hash field to speed up sequential convertions.
uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
#ifdef DEBUG
subject->Hash(); // Force hash calculation.
DCHECK_EQ(static_cast<int>(subject->hash_field()),
static_cast<int>(hash));
#endif
subject->set_hash_field(hash);
}
return Smi::FromInt(d);
}
}
// Slower case.
int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_BINARY;
return *isolate->factory()->NewNumber(
StringToDouble(isolate->unicode_cache(), subject, flags));
}
RUNTIME_FUNCTION(Runtime_StringParseInt) {
HandleScope handle_scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
CONVERT_NUMBER_CHECKED(int, radix, Int32, args[1]);
RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36));
subject = String::Flatten(subject);
double value;
{
DisallowHeapAllocation no_gc;
String::FlatContent flat = subject->GetFlatContent();
// ECMA-262 section 15.1.2.3, empty string is NaN
if (flat.IsOneByte()) {
value =
StringToInt(isolate->unicode_cache(), flat.ToOneByteVector(), radix);
} else {
value = StringToInt(isolate->unicode_cache(), flat.ToUC16Vector(), radix);
}
}
return *isolate->factory()->NewNumber(value);
}
RUNTIME_FUNCTION(Runtime_StringParseFloat) {
HandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
double value =
StringToDouble(isolate->unicode_cache(), subject, ALLOW_TRAILING_JUNK,
std::numeric_limits<double>::quiet_NaN());
return *isolate->factory()->NewNumber(value);
}
RUNTIME_FUNCTION(Runtime_NumberToStringRT) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
return *isolate->factory()->NumberToString(number);
}
RUNTIME_FUNCTION(Runtime_NumberToStringSkipCache) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
return *isolate->factory()->NumberToString(number, false);
}
RUNTIME_FUNCTION(Runtime_NumberToInteger) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(number, 0);
return *isolate->factory()->NewNumber(DoubleToInteger(number));
}
RUNTIME_FUNCTION(Runtime_NumberToIntegerMapMinusZero) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(number, 0);
double double_value = DoubleToInteger(number);
// Map both -0 and +0 to +0.
if (double_value == 0) double_value = 0;
return *isolate->factory()->NewNumber(double_value);
}
RUNTIME_FUNCTION(Runtime_NumberToJSUint32) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]);
return *isolate->factory()->NewNumberFromUint(number);
}
RUNTIME_FUNCTION(Runtime_NumberToJSInt32) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(number, 0);
return *isolate->factory()->NewNumberFromInt(DoubleToInt32(number));
}
// Converts a Number to a Smi, if possible. Returns NaN if the number is not
// a small integer.
RUNTIME_FUNCTION(Runtime_NumberToSmi) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
if (obj->IsSmi()) {
return obj;
}
if (obj->IsHeapNumber()) {
double value = HeapNumber::cast(obj)->value();
int int_value = FastD2I(value);
if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
return Smi::FromInt(int_value);
}
}
return isolate->heap()->nan_value();
}
RUNTIME_FUNCTION(Runtime_NumberAdd) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return *isolate->factory()->NewNumber(x + y);
}
RUNTIME_FUNCTION(Runtime_NumberSub) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return *isolate->factory()->NewNumber(x - y);
}
RUNTIME_FUNCTION(Runtime_NumberMul) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return *isolate->factory()->NewNumber(x * y);
}
RUNTIME_FUNCTION(Runtime_NumberUnaryMinus) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
return *isolate->factory()->NewNumber(-x);
}
RUNTIME_FUNCTION(Runtime_NumberDiv) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return *isolate->factory()->NewNumber(x / y);
}
RUNTIME_FUNCTION(Runtime_NumberMod) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return *isolate->factory()->NewNumber(modulo(x, y));
}
RUNTIME_FUNCTION(Runtime_NumberImul) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
// We rely on implementation-defined behavior below, but at least not on
// undefined behavior.
CONVERT_NUMBER_CHECKED(uint32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(uint32_t, y, Int32, args[1]);
int32_t product = static_cast<int32_t>(x * y);
return *isolate->factory()->NewNumberFromInt(product);
}
RUNTIME_FUNCTION(Runtime_NumberOr) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return *isolate->factory()->NewNumberFromInt(x | y);
}
RUNTIME_FUNCTION(Runtime_NumberAnd) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return *isolate->factory()->NewNumberFromInt(x & y);
}
RUNTIME_FUNCTION(Runtime_NumberXor) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return *isolate->factory()->NewNumberFromInt(x ^ y);
}
RUNTIME_FUNCTION(Runtime_NumberShl) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return *isolate->factory()->NewNumberFromInt(x << (y & 0x1f));
}
RUNTIME_FUNCTION(Runtime_NumberShr) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return *isolate->factory()->NewNumberFromUint(x >> (y & 0x1f));
}
RUNTIME_FUNCTION(Runtime_NumberSar) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return *isolate->factory()->NewNumberFromInt(
ArithmeticShiftRight(x, y & 0x1f));
}
RUNTIME_FUNCTION(Runtime_NumberEquals) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
if (std::isnan(x)) return Smi::FromInt(NOT_EQUAL);
if (std::isnan(y)) return Smi::FromInt(NOT_EQUAL);
if (x == y) return Smi::FromInt(EQUAL);
Object* result;
if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
result = Smi::FromInt(EQUAL);
} else {
result = Smi::FromInt(NOT_EQUAL);
}
return result;
}
RUNTIME_FUNCTION(Runtime_NumberCompare) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 3);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, uncomparable_result, 2)
if (std::isnan(x) || std::isnan(y)) return *uncomparable_result;
if (x == y) return Smi::FromInt(EQUAL);
if (isless(x, y)) return Smi::FromInt(LESS);
return Smi::FromInt(GREATER);
}
// Compare two Smis as if they were converted to strings and then
// compared lexicographically.
RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 2);
CONVERT_SMI_ARG_CHECKED(x_value, 0);
CONVERT_SMI_ARG_CHECKED(y_value, 1);
// If the integers are equal so are the string representations.
if (x_value == y_value) return Smi::FromInt(EQUAL);
// If one of the integers is zero the normal integer order is the
// same as the lexicographic order of the string representations.
if (x_value == 0 || y_value == 0)
return Smi::FromInt(x_value < y_value ? LESS : GREATER);
// If only one of the integers is negative the negative number is
// smallest because the char code of '-' is less than the char code
// of any digit. Otherwise, we make both values positive.
// Use unsigned values otherwise the logic is incorrect for -MIN_INT on
// architectures using 32-bit Smis.
uint32_t x_scaled = x_value;
uint32_t y_scaled = y_value;
if (x_value < 0 || y_value < 0) {
if (y_value >= 0) return Smi::FromInt(LESS);
if (x_value >= 0) return Smi::FromInt(GREATER);
x_scaled = -x_value;
y_scaled = -y_value;
}
static const uint32_t kPowersOf10[] = {
1, 10, 100, 1000,
10 * 1000, 100 * 1000, 1000 * 1000, 10 * 1000 * 1000,
100 * 1000 * 1000, 1000 * 1000 * 1000};
// If the integers have the same number of decimal digits they can be
// compared directly as the numeric order is the same as the
// lexicographic order. If one integer has fewer digits, it is scaled
// by some power of 10 to have the same number of digits as the longer
// integer. If the scaled integers are equal it means the shorter
// integer comes first in the lexicographic order.
// From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
int x_log2 = 31 - base::bits::CountLeadingZeros32(x_scaled);
int x_log10 = ((x_log2 + 1) * 1233) >> 12;
x_log10 -= x_scaled < kPowersOf10[x_log10];
int y_log2 = 31 - base::bits::CountLeadingZeros32(y_scaled);
int y_log10 = ((y_log2 + 1) * 1233) >> 12;
y_log10 -= y_scaled < kPowersOf10[y_log10];
int tie = EQUAL;
if (x_log10 < y_log10) {
// X has fewer digits. We would like to simply scale up X but that
// might overflow, e.g when comparing 9 with 1_000_000_000, 9 would
// be scaled up to 9_000_000_000. So we scale up by the next
// smallest power and scale down Y to drop one digit. It is OK to
// drop one digit from the longer integer since the final digit is
// past the length of the shorter integer.
x_scaled *= kPowersOf10[y_log10 - x_log10 - 1];
y_scaled /= 10;
tie = LESS;
} else if (y_log10 < x_log10) {
y_scaled *= kPowersOf10[x_log10 - y_log10 - 1];
x_scaled /= 10;
tie = GREATER;
}
if (x_scaled < y_scaled) return Smi::FromInt(LESS);
if (x_scaled > y_scaled) return Smi::FromInt(GREATER);
return Smi::FromInt(tie);
}
RUNTIME_FUNCTION(Runtime_MaxSmi) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 0);
return Smi::FromInt(Smi::kMaxValue);
}
RUNTIME_FUNCTION(Runtime_NumberToString) {
SealHandleScope shs(isolate);
return __RT_impl_Runtime_NumberToStringRT(args, isolate);
}
RUNTIME_FUNCTION(Runtime_IsSmi) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
return isolate->heap()->ToBoolean(obj->IsSmi());
}
RUNTIME_FUNCTION(Runtime_IsNonNegativeSmi) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
return isolate->heap()->ToBoolean(obj->IsSmi() &&
Smi::cast(obj)->value() >= 0);
}
RUNTIME_FUNCTION(Runtime_GetRootNaN) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 0);
return isolate->heap()->nan_value();
}
} // namespace internal
} // namespace v8
|