summaryrefslogtreecommitdiff
path: root/deps/v8/src/snapshot/deserializer.cc
blob: 0fb36559499b6c4c526fce0fe131d0301cdc08e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/snapshot/deserializer.h"

#include "src/base/logging.h"
#include "src/codegen/assembler-inl.h"
#include "src/common/assert-scope.h"
#include "src/common/globals.h"
#include "src/execution/isolate.h"
#include "src/heap/heap-inl.h"
#include "src/heap/heap-write-barrier-inl.h"
#include "src/heap/heap-write-barrier.h"
#include "src/heap/heap.h"
#include "src/heap/local-heap-inl.h"
#include "src/logging/local-logger.h"
#include "src/logging/log.h"
#include "src/objects/backing-store.h"
#include "src/objects/js-array-buffer-inl.h"
#include "src/objects/maybe-object.h"
#include "src/objects/objects-body-descriptors-inl.h"
#include "src/objects/objects.h"
#include "src/objects/slots.h"
#include "src/objects/string.h"
#include "src/roots/roots.h"
#include "src/snapshot/embedded/embedded-data-inl.h"
#include "src/snapshot/references.h"
#include "src/snapshot/serializer-deserializer.h"
#include "src/snapshot/shared-heap-serializer.h"
#include "src/snapshot/snapshot-data.h"
#include "src/utils/memcopy.h"

namespace v8 {
namespace internal {

// A SlotAccessor for a slot in a HeapObject, which abstracts the slot
// operations done by the deserializer in a way which is GC-safe. In particular,
// rather than an absolute slot address, this accessor holds a Handle to the
// HeapObject, which is updated if the HeapObject moves.
class SlotAccessorForHeapObject {
 public:
  static SlotAccessorForHeapObject ForSlotIndex(Handle<HeapObject> object,
                                                int index) {
    return SlotAccessorForHeapObject(object, index * kTaggedSize);
  }
  static SlotAccessorForHeapObject ForSlotOffset(Handle<HeapObject> object,
                                                 int offset) {
    return SlotAccessorForHeapObject(object, offset);
  }

  MaybeObjectSlot slot() const { return object_->RawMaybeWeakField(offset_); }
  ExternalPointerSlot external_pointer_slot() const {
    return object_->RawExternalPointerField(offset_);
  }
  Handle<HeapObject> object() const { return object_; }
  int offset() const { return offset_; }

  // Writes the given value to this slot, optionally with an offset (e.g. for
  // repeat writes). Returns the number of slots written (which is one).
  int Write(MaybeObject value, int slot_offset = 0) {
    MaybeObjectSlot current_slot = slot() + slot_offset;
    current_slot.Relaxed_Store(value);
    CombinedWriteBarrier(*object_, current_slot, value, UPDATE_WRITE_BARRIER);
    return 1;
  }
  int Write(HeapObject value, HeapObjectReferenceType ref_type,
            int slot_offset = 0) {
    return Write(HeapObjectReference::From(value, ref_type), slot_offset);
  }
  int Write(Handle<HeapObject> value, HeapObjectReferenceType ref_type,
            int slot_offset = 0) {
    return Write(*value, ref_type, slot_offset);
  }

 private:
  SlotAccessorForHeapObject(Handle<HeapObject> object, int offset)
      : object_(object), offset_(offset) {}

  const Handle<HeapObject> object_;
  const int offset_;
};

// A SlotAccessor for absolute full slot addresses.
class SlotAccessorForRootSlots {
 public:
  explicit SlotAccessorForRootSlots(FullMaybeObjectSlot slot) : slot_(slot) {}

  FullMaybeObjectSlot slot() const { return slot_; }
  ExternalPointerSlot external_pointer_slot() const { UNREACHABLE(); }
  Handle<HeapObject> object() const { UNREACHABLE(); }
  int offset() const { UNREACHABLE(); }

  // Writes the given value to this slot, optionally with an offset (e.g. for
  // repeat writes). Returns the number of slots written (which is one).
  int Write(MaybeObject value, int slot_offset = 0) {
    FullMaybeObjectSlot current_slot = slot() + slot_offset;
    current_slot.Relaxed_Store(value);
    return 1;
  }
  int Write(HeapObject value, HeapObjectReferenceType ref_type,
            int slot_offset = 0) {
    return Write(HeapObjectReference::From(value, ref_type), slot_offset);
  }
  int Write(Handle<HeapObject> value, HeapObjectReferenceType ref_type,
            int slot_offset = 0) {
    return Write(*value, ref_type, slot_offset);
  }

 private:
  const FullMaybeObjectSlot slot_;
};

// A SlotAccessor for creating a Handle, which saves a Handle allocation when
// a Handle already exists.
template <typename IsolateT>
class SlotAccessorForHandle {
 public:
  SlotAccessorForHandle(Handle<HeapObject>* handle, IsolateT* isolate)
      : handle_(handle), isolate_(isolate) {}

  MaybeObjectSlot slot() const { UNREACHABLE(); }
  ExternalPointerSlot external_pointer_slot() const { UNREACHABLE(); }
  Handle<HeapObject> object() const { UNREACHABLE(); }
  int offset() const { UNREACHABLE(); }

  int Write(MaybeObject value, int slot_offset = 0) { UNREACHABLE(); }
  int Write(HeapObject value, HeapObjectReferenceType ref_type,
            int slot_offset = 0) {
    DCHECK_EQ(slot_offset, 0);
    DCHECK_EQ(ref_type, HeapObjectReferenceType::STRONG);
    *handle_ = handle(value, isolate_);
    return 1;
  }
  int Write(Handle<HeapObject> value, HeapObjectReferenceType ref_type,
            int slot_offset = 0) {
    DCHECK_EQ(slot_offset, 0);
    DCHECK_EQ(ref_type, HeapObjectReferenceType::STRONG);
    *handle_ = value;
    return 1;
  }

 private:
  Handle<HeapObject>* handle_;
  IsolateT* isolate_;
};

template <typename IsolateT>
template <typename TSlot>
int Deserializer<IsolateT>::WriteAddress(TSlot dest, Address value) {
  DCHECK(!next_reference_is_weak_);
  memcpy(dest.ToVoidPtr(), &value, kSystemPointerSize);
  static_assert(IsAligned(kSystemPointerSize, TSlot::kSlotDataSize));
  return (kSystemPointerSize / TSlot::kSlotDataSize);
}

template <typename IsolateT>
int Deserializer<IsolateT>::WriteExternalPointer(ExternalPointerSlot dest,
                                                 Address value,
                                                 ExternalPointerTag tag) {
  DCHECK(!next_reference_is_weak_);
  dest.init(main_thread_isolate(), value, tag);
  // ExternalPointers can only be written into HeapObject fields, therefore they
  // cover (kExternalPointerSlotSize / kTaggedSize) slots.
  return (kExternalPointerSlotSize / kTaggedSize);
}

namespace {
#ifdef DEBUG
int GetNumApiReferences(Isolate* isolate) {
  int num_api_references = 0;
  // The read-only deserializer is run by read-only heap set-up before the
  // heap is fully set up. External reference table relies on a few parts of
  // this set-up (like old-space), so it may be uninitialized at this point.
  if (isolate->isolate_data()->external_reference_table()->is_initialized()) {
    // Count the number of external references registered through the API.
    if (isolate->api_external_references() != nullptr) {
      while (isolate->api_external_references()[num_api_references] != 0) {
        num_api_references++;
      }
    }
  }
  return num_api_references;
}
int GetNumApiReferences(LocalIsolate* isolate) { return 0; }
#endif
}  // namespace

template <typename IsolateT>
Deserializer<IsolateT>::Deserializer(IsolateT* isolate,
                                     base::Vector<const byte> payload,
                                     uint32_t magic_number,
                                     bool deserializing_user_code,
                                     bool can_rehash)
    : isolate_(isolate),
      source_(payload),
      magic_number_(magic_number),
      deserializing_user_code_(deserializing_user_code),
      should_rehash_((v8_flags.rehash_snapshot && can_rehash) ||
                     deserializing_user_code) {
  DCHECK_NOT_NULL(isolate);
  isolate->RegisterDeserializerStarted();

  // We start the indices here at 1, so that we can distinguish between an
  // actual index and an empty backing store (serialized as
  // kEmptyBackingStoreRefSentinel) in a deserialized object requiring fix-up.
  static_assert(kEmptyBackingStoreRefSentinel == 0);
  backing_stores_.push_back({});

#ifdef DEBUG
  num_api_references_ = GetNumApiReferences(isolate);
#endif  // DEBUG
  CHECK_EQ(magic_number_, SerializedData::kMagicNumber);
}

template <typename IsolateT>
void Deserializer<IsolateT>::Rehash() {
  DCHECK(should_rehash());
  for (Handle<HeapObject> item : to_rehash_) {
    item->RehashBasedOnMap(isolate());
  }
}

template <typename IsolateT>
Deserializer<IsolateT>::~Deserializer() {
#ifdef DEBUG
  // Do not perform checks if we aborted deserialization.
  if (source_.position() == 0) return;
  // Check that we only have padding bytes remaining.
  while (source_.HasMore()) DCHECK_EQ(kNop, source_.Get());
  // Check that there are no remaining forward refs.
  DCHECK_EQ(num_unresolved_forward_refs_, 0);
  DCHECK(unresolved_forward_refs_.empty());
#endif  // DEBUG
  isolate_->RegisterDeserializerFinished();
}

// This is called on the roots.  It is the driver of the deserialization
// process.  It is also called on the body of each function.
template <typename IsolateT>
void Deserializer<IsolateT>::VisitRootPointers(Root root,
                                               const char* description,
                                               FullObjectSlot start,
                                               FullObjectSlot end) {
  ReadData(FullMaybeObjectSlot(start), FullMaybeObjectSlot(end));
}

template <typename IsolateT>
void Deserializer<IsolateT>::Synchronize(VisitorSynchronization::SyncTag tag) {
  static const byte expected = kSynchronize;
  CHECK_EQ(expected, source_.Get());
}

template <typename IsolateT>
void Deserializer<IsolateT>::DeserializeDeferredObjects() {
  for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) {
    SnapshotSpace space = NewObject::Decode(code);
    ReadObject(space);
  }
}

template <typename IsolateT>
void Deserializer<IsolateT>::LogNewMapEvents() {
  if (V8_LIKELY(!v8_flags.log_maps)) return;
  DisallowGarbageCollection no_gc;
  for (Handle<Map> map : new_maps_) {
    DCHECK(v8_flags.log_maps);
    LOG(isolate(), MapCreate(*map));
    LOG(isolate(), MapDetails(*map));
  }
}

template <typename IsolateT>
void Deserializer<IsolateT>::WeakenDescriptorArrays() {
  DisallowGarbageCollection no_gc;
  Map descriptor_array_map = ReadOnlyRoots(isolate()).descriptor_array_map();
  for (Handle<DescriptorArray> descriptor_array : new_descriptor_arrays_) {
    DescriptorArray raw = *descriptor_array;
    DCHECK(raw.IsStrongDescriptorArray());
    raw.set_map_safe_transition(descriptor_array_map);
    WriteBarrier::Marking(raw, raw.number_of_descriptors());
  }
}

template <typename IsolateT>
void Deserializer<IsolateT>::LogScriptEvents(Script script) {
  DisallowGarbageCollection no_gc;
  LOG(isolate(),
      ScriptEvent(V8FileLogger::ScriptEventType::kDeserialize, script.id()));
  LOG(isolate(), ScriptDetails(script));
}

namespace {
template <typename IsolateT>
uint32_t ComputeRawHashField(IsolateT* isolate, String string) {
  // Make sure raw_hash_field() is computed.
  string.EnsureHash(SharedStringAccessGuardIfNeeded(isolate));
  return string.raw_hash_field();
}
}  // namespace

StringTableInsertionKey::StringTableInsertionKey(
    Isolate* isolate, Handle<String> string,
    DeserializingUserCodeOption deserializing_user_code)
    : StringTableKey(ComputeRawHashField(isolate, *string), string->length()),
      string_(string) {
#ifdef DEBUG
  deserializing_user_code_ = deserializing_user_code;
#endif
  DCHECK(string->IsInternalizedString());
}

StringTableInsertionKey::StringTableInsertionKey(
    LocalIsolate* isolate, Handle<String> string,
    DeserializingUserCodeOption deserializing_user_code)
    : StringTableKey(ComputeRawHashField(isolate, *string), string->length()),
      string_(string) {
#ifdef DEBUG
  deserializing_user_code_ = deserializing_user_code;
#endif
  DCHECK(string->IsInternalizedString());
}

template <typename IsolateT>
bool StringTableInsertionKey::IsMatch(IsolateT* isolate, String string) {
  // We want to compare the content of two strings here.
  return string_->SlowEquals(string, SharedStringAccessGuardIfNeeded(isolate));
}
template bool StringTableInsertionKey::IsMatch(Isolate* isolate, String string);
template bool StringTableInsertionKey::IsMatch(LocalIsolate* isolate,
                                               String string);

namespace {

void NoExternalReferencesCallback() {
  // The following check will trigger if a function or object template
  // with references to native functions have been deserialized from
  // snapshot, but no actual external references were provided when the
  // isolate was created.
  FATAL("No external references provided via API");
}

void PostProcessExternalString(ExternalString string, Isolate* isolate) {
  DisallowGarbageCollection no_gc;
  uint32_t index = string.GetResourceRefForDeserialization();
  Address address =
      static_cast<Address>(isolate->api_external_references()[index]);
  string.InitExternalPointerFields(isolate);
  string.set_address_as_resource(isolate, address);
  isolate->heap()->UpdateExternalString(string, 0,
                                        string.ExternalPayloadSize());
  isolate->heap()->RegisterExternalString(string);
}

}  // namespace

// Should be called only on the main thread (not thread safe).
template <>
void Deserializer<Isolate>::PostProcessNewJSReceiver(Map map,
                                                     Handle<JSReceiver> obj,
                                                     InstanceType instance_type,
                                                     SnapshotSpace space) {
  DCHECK_EQ(map.instance_type(), instance_type);

  if (InstanceTypeChecker::IsJSDataView(instance_type)) {
    auto data_view = JSDataView::cast(*obj);
    auto buffer = JSArrayBuffer::cast(data_view.buffer());
    if (buffer.was_detached()) {
      // Directly set the data pointer to point to the EmptyBackingStoreBuffer.
      // Otherwise, we might end up setting it to EmptyBackingStoreBuffer() +
      // byte_offset() which would result in an invalid pointer.
      data_view.set_data_pointer(main_thread_isolate(),
                                 EmptyBackingStoreBuffer());
    } else {
      void* backing_store = buffer.backing_store();
      data_view.set_data_pointer(
          main_thread_isolate(),
          reinterpret_cast<uint8_t*>(backing_store) + data_view.byte_offset());
    }
  } else if (InstanceTypeChecker::IsJSTypedArray(instance_type)) {
    auto typed_array = JSTypedArray::cast(*obj);
    // Note: ByteArray objects must not be deferred s.t. they are
    // available here for is_on_heap(). See also: CanBeDeferred.
    // Fixup typed array pointers.
    if (typed_array.is_on_heap()) {
      typed_array.AddExternalPointerCompensationForDeserialization(
          main_thread_isolate());
    } else {
      // Serializer writes backing store ref as a DataPtr() value.
      uint32_t store_index =
          typed_array.GetExternalBackingStoreRefForDeserialization();
      auto backing_store = backing_stores_[store_index];
      void* start = backing_store ? backing_store->buffer_start() : nullptr;
      if (!start) start = EmptyBackingStoreBuffer();
      typed_array.SetOffHeapDataPtr(main_thread_isolate(), start,
                                    typed_array.byte_offset());
    }
  } else if (InstanceTypeChecker::IsJSArrayBuffer(instance_type)) {
    auto buffer = JSArrayBuffer::cast(*obj);
    uint32_t store_index = buffer.GetBackingStoreRefForDeserialization();
    if (store_index == kEmptyBackingStoreRefSentinel) {
      buffer.set_extension(nullptr);
      buffer.set_backing_store(main_thread_isolate(),
                               EmptyBackingStoreBuffer());
    } else {
      auto bs = backing_store(store_index);
      SharedFlag shared =
          bs && bs->is_shared() ? SharedFlag::kShared : SharedFlag::kNotShared;
      DCHECK_IMPLIES(bs,
                     buffer.is_resizable_by_js() == bs->is_resizable_by_js());
      ResizableFlag resizable = bs && bs->is_resizable_by_js()
                                    ? ResizableFlag::kResizable
                                    : ResizableFlag::kNotResizable;
      buffer.Setup(shared, resizable, bs, main_thread_isolate());
    }
  }
}

template <>
void Deserializer<LocalIsolate>::PostProcessNewJSReceiver(
    Map map, Handle<JSReceiver> obj, InstanceType instance_type,
    SnapshotSpace space) {
  UNREACHABLE();
}

template <typename IsolateT>
void Deserializer<IsolateT>::PostProcessNewObject(Handle<Map> map,
                                                  Handle<HeapObject> obj,
                                                  SnapshotSpace space) {
  DisallowGarbageCollection no_gc;
  Map raw_map = *map;
  DCHECK_EQ(raw_map, obj->map(isolate_));
  InstanceType instance_type = raw_map.instance_type();
  HeapObject raw_obj = *obj;
  DCHECK_IMPLIES(deserializing_user_code(), should_rehash());
  if (should_rehash()) {
    if (InstanceTypeChecker::IsString(instance_type)) {
      // Uninitialize hash field as we need to recompute the hash.
      String string = String::cast(raw_obj);
      string.set_raw_hash_field(String::kEmptyHashField);
      // Rehash strings before read-only space is sealed. Strings outside
      // read-only space are rehashed lazily. (e.g. when rehashing dictionaries)
      if (space == SnapshotSpace::kReadOnlyHeap) {
        to_rehash_.push_back(obj);
      }
    } else if (raw_obj.NeedsRehashing(instance_type)) {
      to_rehash_.push_back(obj);
    }

    if (deserializing_user_code()) {
      if (InstanceTypeChecker::IsInternalizedString(instance_type)) {
        // Canonicalize the internalized string. If it already exists in the
        // string table, set the string to point to the existing one and patch
        // the deserialized string handle to point to the existing one.
        // TODO(leszeks): This handle patching is ugly, consider adding an
        // explicit internalized string bytecode. Also, the new thin string
        // should be dead, try immediately freeing it.
        Handle<String> string = Handle<String>::cast(obj);

        StringTableInsertionKey key(
            isolate(), string,
            DeserializingUserCodeOption::kIsDeserializingUserCode);
        String result = *isolate()->string_table()->LookupKey(isolate(), &key);

        if (result != raw_obj) {
          // Updating invalidated object size from a background thread would
          // race. We are allowed to skip this here since this string hasn't
          // transitioned so far.
          String::cast(raw_obj).MakeThin(isolate(), result,
                                         UpdateInvalidatedObjectSize::kNo);
          // Mutate the given object handle so that the backreference entry is
          // also updated.
          obj.PatchValue(result);
        }
        return;
      } else if (InstanceTypeChecker::IsScript(instance_type)) {
        new_scripts_.push_back(Handle<Script>::cast(obj));
      } else if (InstanceTypeChecker::IsAllocationSite(instance_type)) {
        // We should link new allocation sites, but we can't do this immediately
        // because |AllocationSite::HasWeakNext()| internally accesses
        // |Heap::roots_| that may not have been initialized yet. So defer this
        // to |ObjectDeserializer::CommitPostProcessedObjects()|.
        new_allocation_sites_.push_back(Handle<AllocationSite>::cast(obj));
      } else {
        // We dont defer ByteArray because JSTypedArray needs the base_pointer
        // ByteArray immediately if it's on heap.
        DCHECK(CanBeDeferred(*obj) ||
               InstanceTypeChecker::IsByteArray(instance_type));
      }
    }
  }

  if (InstanceTypeChecker::IsCode(instance_type)) {
    // We flush all code pages after deserializing the startup snapshot.
    // Hence we only remember each individual code object when deserializing
    // user code.
    if (deserializing_user_code()) {
      new_code_objects_.push_back(Handle<Code>::cast(obj));
    }
  } else if (V8_EXTERNAL_CODE_SPACE_BOOL &&
             InstanceTypeChecker::IsCodeDataContainer(instance_type)) {
    auto code_data_container = CodeDataContainer::cast(raw_obj);
    code_data_container.init_code_entry_point(main_thread_isolate(),
                                              kNullAddress);
#ifdef V8_EXTERNAL_CODE_SPACE
    if (V8_EXTERNAL_CODE_SPACE_BOOL &&
        code_data_container.is_off_heap_trampoline()) {
      Address entry = OffHeapInstructionStart(code_data_container,
                                              code_data_container.builtin_id());
      code_data_container.SetEntryPointForOffHeapBuiltin(main_thread_isolate(),
                                                         entry);
    } else {
      code_data_container.UpdateCodeEntryPoint(main_thread_isolate(),
                                               code_data_container.code());
    }
#endif
  } else if (InstanceTypeChecker::IsMap(instance_type)) {
    if (v8_flags.log_maps) {
      // Keep track of all seen Maps to log them later since they might be only
      // partially initialized at this point.
      new_maps_.push_back(Handle<Map>::cast(obj));
    }
  } else if (InstanceTypeChecker::IsAccessorInfo(instance_type)) {
#ifdef USE_SIMULATOR
    accessor_infos_.push_back(Handle<AccessorInfo>::cast(obj));
#endif
  } else if (InstanceTypeChecker::IsCallHandlerInfo(instance_type)) {
#ifdef USE_SIMULATOR
    call_handler_infos_.push_back(Handle<CallHandlerInfo>::cast(obj));
#endif
  } else if (InstanceTypeChecker::IsExternalString(instance_type)) {
    PostProcessExternalString(ExternalString::cast(raw_obj),
                              main_thread_isolate());
  } else if (InstanceTypeChecker::IsJSReceiver(instance_type)) {
    // PostProcessNewJSReceiver may trigger GC.
    no_gc.Release();
    return PostProcessNewJSReceiver(raw_map, Handle<JSReceiver>::cast(obj),
                                    instance_type, space);
  } else if (InstanceTypeChecker::IsDescriptorArray(instance_type)) {
    DCHECK(InstanceTypeChecker::IsStrongDescriptorArray(instance_type));
    Handle<DescriptorArray> descriptors = Handle<DescriptorArray>::cast(obj);
    new_descriptor_arrays_.push_back(descriptors);
  } else if (InstanceTypeChecker::IsNativeContext(instance_type)) {
    NativeContext::cast(raw_obj).init_microtask_queue(main_thread_isolate(),
                                                      nullptr);
  } else if (InstanceTypeChecker::IsScript(instance_type)) {
    LogScriptEvents(Script::cast(*obj));
  }
}

template <typename IsolateT>
HeapObjectReferenceType Deserializer<IsolateT>::GetAndResetNextReferenceType() {
  HeapObjectReferenceType type = next_reference_is_weak_
                                     ? HeapObjectReferenceType::WEAK
                                     : HeapObjectReferenceType::STRONG;
  next_reference_is_weak_ = false;
  return type;
}

template <typename IsolateT>
Handle<HeapObject> Deserializer<IsolateT>::GetBackReferencedObject() {
  Handle<HeapObject> obj = back_refs_[source_.GetInt()];

  // We don't allow ThinStrings in backreferences -- if internalization produces
  // a thin string, then it should also update the backref handle.
  DCHECK(!obj->IsThinString(isolate()));

  hot_objects_.Add(obj);
  DCHECK(!HasWeakHeapObjectTag(*obj));
  return obj;
}

template <typename IsolateT>
Handle<HeapObject> Deserializer<IsolateT>::ReadObject() {
  Handle<HeapObject> ret;
  CHECK_EQ(ReadSingleBytecodeData(
               source_.Get(), SlotAccessorForHandle<IsolateT>(&ret, isolate())),
           1);
  return ret;
}

namespace {
AllocationType SpaceToAllocation(SnapshotSpace space) {
  switch (space) {
    case SnapshotSpace::kCode:
      return AllocationType::kCode;
    case SnapshotSpace::kOld:
      return AllocationType::kOld;
    case SnapshotSpace::kReadOnlyHeap:
      return AllocationType::kReadOnly;
  }
}
}  // namespace

template <typename IsolateT>
Handle<HeapObject> Deserializer<IsolateT>::ReadObject(SnapshotSpace space) {
  const int size_in_tagged = source_.GetInt();
  const int size_in_bytes = size_in_tagged * kTaggedSize;

  // The map can't be a forward ref. If you want the map to be a forward ref,
  // then you're probably serializing the meta-map, in which case you want to
  // use the kNewMetaMap bytecode.
  DCHECK_NE(source()->Peek(), kRegisterPendingForwardRef);
  Handle<Map> map = Handle<Map>::cast(ReadObject());

  AllocationType allocation = SpaceToAllocation(space);

  // When sharing a string table, all in-place internalizable and internalized
  // strings internalized strings are allocated in the shared heap.
  //
  // TODO(12007): When shipping, add a new SharedOld SnapshotSpace.
  if (v8_flags.shared_string_table) {
    InstanceType instance_type = map->instance_type();
    if (InstanceTypeChecker::IsInternalizedString(instance_type) ||
        String::IsInPlaceInternalizable(instance_type)) {
      allocation = isolate()
                       ->factory()
                       ->RefineAllocationTypeForInPlaceInternalizableString(
                           allocation, *map);
    }
  }

  // Filling an object's fields can cause GCs and heap walks, so this object has
  // to be in a 'sufficiently initialised' state by the time the next allocation
  // can happen. For this to be the case, the object is carefully deserialized
  // as follows:
  //   * The space for the object is allocated.
  //   * The map is set on the object so that the GC knows what type the object
  //     has.
  //   * The rest of the object is filled with a fixed Smi value
  //     - This is a Smi so that tagged fields become initialized to a valid
  //       tagged value.
  //     - It's a fixed value, "Smi::uninitialized_deserialization_value()", so
  //       that we can DCHECK for it when reading objects that are assumed to be
  //       partially initialized objects.
  //   * The fields of the object are deserialized in order, under the
  //     assumption that objects are laid out in such a way that any fields
  //     required for object iteration (e.g. length fields) are deserialized
  //     before fields with objects.
  //     - We ensure this is the case by DCHECKing on object allocation that the
  //       previously allocated object has a valid size (see `Allocate`).
  HeapObject raw_obj =
      Allocate(allocation, size_in_bytes, HeapObject::RequiredAlignment(*map));
  raw_obj.set_map_after_allocation(*map);
  MemsetTagged(raw_obj.RawField(kTaggedSize),
               Smi::uninitialized_deserialization_value(), size_in_tagged - 1);
  DCHECK(raw_obj.CheckRequiredAlignment(isolate()));

  // Make sure BytecodeArrays have a valid age, so that the marker doesn't
  // break when making them older.
  if (raw_obj.IsBytecodeArray(isolate())) {
    BytecodeArray::cast(raw_obj).set_bytecode_age(0);
  } else if (raw_obj.IsEphemeronHashTable()) {
    // Make sure EphemeronHashTables have valid HeapObject keys, so that the
    // marker does not break when marking EphemeronHashTable, see
    // MarkingVisitorBase::VisitEphemeronHashTable.
    EphemeronHashTable table = EphemeronHashTable::cast(raw_obj);
    MemsetTagged(table.RawField(table.kElementsStartOffset),
                 ReadOnlyRoots(isolate()).undefined_value(),
                 (size_in_bytes - table.kElementsStartOffset) / kTaggedSize);
  }

#ifdef DEBUG
  PtrComprCageBase cage_base(isolate());
  // We want to make sure that all embedder pointers are initialized to null.
  if (raw_obj.IsJSObject(cage_base) &&
      JSObject::cast(raw_obj).MayHaveEmbedderFields()) {
    JSObject js_obj = JSObject::cast(raw_obj);
    for (int i = 0; i < js_obj.GetEmbedderFieldCount(); ++i) {
      void* pointer;
      CHECK(EmbedderDataSlot(js_obj, i).ToAlignedPointer(main_thread_isolate(),
                                                         &pointer));
      CHECK_NULL(pointer);
    }
  } else if (raw_obj.IsEmbedderDataArray(cage_base)) {
    EmbedderDataArray array = EmbedderDataArray::cast(raw_obj);
    EmbedderDataSlot start(array, 0);
    EmbedderDataSlot end(array, array.length());
    for (EmbedderDataSlot slot = start; slot < end; ++slot) {
      void* pointer;
      CHECK(slot.ToAlignedPointer(main_thread_isolate(), &pointer));
      CHECK_NULL(pointer);
    }
  }
#endif

  Handle<HeapObject> obj = handle(raw_obj, isolate());
  back_refs_.push_back(obj);

  ReadData(obj, 1, size_in_tagged);
  PostProcessNewObject(map, obj, space);

#ifdef DEBUG
  if (obj->IsCode(cage_base)) {
    DCHECK(space == SnapshotSpace::kCode ||
           space == SnapshotSpace::kReadOnlyHeap);
  } else {
    DCHECK_NE(space, SnapshotSpace::kCode);
  }
#endif  // DEBUG

  return obj;
}

template <typename IsolateT>
Handle<HeapObject> Deserializer<IsolateT>::ReadMetaMap() {
  const SnapshotSpace space = SnapshotSpace::kReadOnlyHeap;
  const int size_in_bytes = Map::kSize;
  const int size_in_tagged = size_in_bytes / kTaggedSize;

  HeapObject raw_obj =
      Allocate(SpaceToAllocation(space), size_in_bytes, kTaggedAligned);
  raw_obj.set_map_after_allocation(Map::unchecked_cast(raw_obj));
  MemsetTagged(raw_obj.RawField(kTaggedSize),
               Smi::uninitialized_deserialization_value(), size_in_tagged - 1);
  DCHECK(raw_obj.CheckRequiredAlignment(isolate()));

  Handle<HeapObject> obj = handle(raw_obj, isolate());
  back_refs_.push_back(obj);

  // Set the instance-type manually, to allow backrefs to read it.
  Map::unchecked_cast(*obj).set_instance_type(MAP_TYPE);

  ReadData(obj, 1, size_in_tagged);
  PostProcessNewObject(Handle<Map>::cast(obj), obj, space);

  return obj;
}

class DeserializerRelocInfoVisitor {
 public:
  DeserializerRelocInfoVisitor(Deserializer<Isolate>* deserializer,
                               const std::vector<Handle<HeapObject>>* objects)
      : deserializer_(deserializer), objects_(objects), current_object_(0) {}

  DeserializerRelocInfoVisitor(Deserializer<LocalIsolate>* deserializer,
                               const std::vector<Handle<HeapObject>>* objects) {
    UNREACHABLE();
  }

  ~DeserializerRelocInfoVisitor() {
    DCHECK_EQ(current_object_, objects_->size());
  }

  void VisitCodeTarget(Code host, RelocInfo* rinfo);
  void VisitEmbeddedPointer(Code host, RelocInfo* rinfo);
  void VisitExternalReference(Code host, RelocInfo* rinfo);
  void VisitInternalReference(Code host, RelocInfo* rinfo);
  void VisitOffHeapTarget(Code host, RelocInfo* rinfo);

 private:
  Isolate* isolate() { return deserializer_->isolate(); }
  SnapshotByteSource& source() { return deserializer_->source_; }

  Deserializer<Isolate>* deserializer_;
  const std::vector<Handle<HeapObject>>* objects_;
  int current_object_;
};

void DeserializerRelocInfoVisitor::VisitCodeTarget(Code host,
                                                   RelocInfo* rinfo) {
  HeapObject object = *objects_->at(current_object_++);
  rinfo->set_target_address(Code::cast(object).raw_instruction_start());
}

void DeserializerRelocInfoVisitor::VisitEmbeddedPointer(Code host,
                                                        RelocInfo* rinfo) {
  HeapObject object = *objects_->at(current_object_++);
  // Embedded object reference must be a strong one.
  rinfo->set_target_object(isolate()->heap(), object);
}

void DeserializerRelocInfoVisitor::VisitExternalReference(Code host,
                                                          RelocInfo* rinfo) {
  byte data = source().Get();
  CHECK_EQ(data, Deserializer<Isolate>::kExternalReference);

  Address address = deserializer_->ReadExternalReferenceCase();

  if (rinfo->IsCodedSpecially()) {
    Address location_of_branch_data = rinfo->pc();
    Assembler::deserialization_set_special_target_at(location_of_branch_data,
                                                     host, address);
  } else {
    WriteUnalignedValue(rinfo->target_address_address(), address);
  }
}

void DeserializerRelocInfoVisitor::VisitInternalReference(Code host,
                                                          RelocInfo* rinfo) {
  byte data = source().Get();
  CHECK_EQ(data, Deserializer<Isolate>::kInternalReference);

  // Internal reference target is encoded as an offset from code entry.
  int target_offset = source().GetInt();
  // TODO(jgruber,v8:11036): We are being permissive for this DCHECK, but
  // consider using raw_instruction_size() instead of raw_body_size() in the
  // future.
  static_assert(Code::kOnHeapBodyIsContiguous);
  DCHECK_LT(static_cast<unsigned>(target_offset),
            static_cast<unsigned>(host.raw_body_size()));
  Address target = host.entry() + target_offset;
  Assembler::deserialization_set_target_internal_reference_at(
      rinfo->pc(), target, rinfo->rmode());
}

void DeserializerRelocInfoVisitor::VisitOffHeapTarget(Code host,
                                                      RelocInfo* rinfo) {
  // Currently we don't serialize code that contains near builtin entries.
  DCHECK_NE(rinfo->rmode(), RelocInfo::NEAR_BUILTIN_ENTRY);

  byte data = source().Get();
  CHECK_EQ(data, Deserializer<Isolate>::kOffHeapTarget);

  Builtin builtin = Builtins::FromInt(source().GetInt());

  CHECK_NOT_NULL(isolate()->embedded_blob_code());
  EmbeddedData d = EmbeddedData::FromBlob(isolate());
  Address address = d.InstructionStartOfBuiltin(builtin);
  CHECK_NE(kNullAddress, address);

  // TODO(ishell): implement RelocInfo::set_target_off_heap_target()
  if (RelocInfo::OffHeapTargetIsCodedSpecially()) {
    Address location_of_branch_data = rinfo->pc();
    Assembler::deserialization_set_special_target_at(location_of_branch_data,
                                                     host, address);
  } else {
    WriteUnalignedValue(rinfo->target_address_address(), address);
  }
}

template <typename IsolateT>
template <typename SlotAccessor>
int Deserializer<IsolateT>::ReadRepeatedObject(SlotAccessor slot_accessor,
                                               int repeat_count) {
  CHECK_LE(2, repeat_count);

  Handle<HeapObject> heap_object = ReadObject();
  DCHECK(!Heap::InYoungGeneration(*heap_object));
  for (int i = 0; i < repeat_count; i++) {
    // TODO(leszeks): Use a ranged barrier here.
    slot_accessor.Write(heap_object, HeapObjectReferenceType::STRONG, i);
  }
  return repeat_count;
}

namespace {

// Template used by the below CASE_RANGE macro to statically verify that the
// given number of cases matches the number of expected cases for that bytecode.
template <int byte_code_count, int expected>
constexpr byte VerifyBytecodeCount(byte bytecode) {
  static_assert(byte_code_count == expected);
  return bytecode;
}

}  // namespace

// Helper macro (and its implementation detail) for specifying a range of cases.
// Use as "case CASE_RANGE(byte_code, num_bytecodes):"
#define CASE_RANGE(byte_code, num_bytecodes) \
  CASE_R##num_bytecodes(                     \
      (VerifyBytecodeCount<byte_code##Count, num_bytecodes>(byte_code)))
#define CASE_R1(byte_code) byte_code
#define CASE_R2(byte_code) CASE_R1(byte_code) : case CASE_R1(byte_code + 1)
#define CASE_R3(byte_code) CASE_R2(byte_code) : case CASE_R1(byte_code + 2)
#define CASE_R4(byte_code) CASE_R2(byte_code) : case CASE_R2(byte_code + 2)
#define CASE_R8(byte_code) CASE_R4(byte_code) : case CASE_R4(byte_code + 4)
#define CASE_R16(byte_code) CASE_R8(byte_code) : case CASE_R8(byte_code + 8)
#define CASE_R32(byte_code) CASE_R16(byte_code) : case CASE_R16(byte_code + 16)

// This generates a case range for all the spaces.
// clang-format off
#define CASE_RANGE_ALL_SPACES(bytecode)                               \
  SpaceEncoder<bytecode>::Encode(SnapshotSpace::kOld):                \
    case SpaceEncoder<bytecode>::Encode(SnapshotSpace::kCode):        \
    case SpaceEncoder<bytecode>::Encode(SnapshotSpace::kReadOnlyHeap)
// clang-format on

template <typename IsolateT>
void Deserializer<IsolateT>::ReadData(Handle<HeapObject> object,
                                      int start_slot_index,
                                      int end_slot_index) {
  int current = start_slot_index;
  while (current < end_slot_index) {
    byte data = source_.Get();
    current += ReadSingleBytecodeData(
        data, SlotAccessorForHeapObject::ForSlotIndex(object, current));
  }
  CHECK_EQ(current, end_slot_index);
}

template <typename IsolateT>
void Deserializer<IsolateT>::ReadData(FullMaybeObjectSlot start,
                                      FullMaybeObjectSlot end) {
  FullMaybeObjectSlot current = start;
  while (current < end) {
    byte data = source_.Get();
    current += ReadSingleBytecodeData(data, SlotAccessorForRootSlots(current));
  }
  CHECK_EQ(current, end);
}

template <typename IsolateT>
template <typename SlotAccessor>
int Deserializer<IsolateT>::ReadSingleBytecodeData(byte data,
                                                   SlotAccessor slot_accessor) {
  using TSlot = decltype(slot_accessor.slot());

  switch (data) {
    // Deserialize a new object and write a pointer to it to the current
    // object.
    case CASE_RANGE_ALL_SPACES(kNewObject): {
      SnapshotSpace space = NewObject::Decode(data);
      // Save the reference type before recursing down into reading the object.
      HeapObjectReferenceType ref_type = GetAndResetNextReferenceType();
      Handle<HeapObject> heap_object = ReadObject(space);
      return slot_accessor.Write(heap_object, ref_type);
    }

    // Find a recently deserialized object using its offset from the current
    // allocation point and write a pointer to it to the current object.
    case kBackref: {
      Handle<HeapObject> heap_object = GetBackReferencedObject();
      return slot_accessor.Write(heap_object, GetAndResetNextReferenceType());
    }

    // Reference an object in the read-only heap. This should be used when an
    // object is read-only, but is not a root.
    case kReadOnlyHeapRef: {
      DCHECK(isolate()->heap()->deserialization_complete());
      uint32_t chunk_index = source_.GetInt();
      uint32_t chunk_offset = source_.GetInt();

      ReadOnlySpace* read_only_space = isolate()->heap()->read_only_space();
      ReadOnlyPage* page = read_only_space->pages()[chunk_index];
      Address address = page->OffsetToAddress(chunk_offset);
      HeapObject heap_object = HeapObject::FromAddress(address);

      return slot_accessor.Write(heap_object, GetAndResetNextReferenceType());
    }

    // Find an object in the roots array and write a pointer to it to the
    // current object.
    case kRootArray: {
      int id = source_.GetInt();
      RootIndex root_index = static_cast<RootIndex>(id);
      Handle<HeapObject> heap_object =
          Handle<HeapObject>::cast(isolate()->root_handle(root_index));
      hot_objects_.Add(heap_object);
      return slot_accessor.Write(heap_object, GetAndResetNextReferenceType());
    }

    // Find an object in the startup object cache and write a pointer to it to
    // the current object.
    case kStartupObjectCache: {
      int cache_index = source_.GetInt();
      // TODO(leszeks): Could we use the address of the startup_object_cache
      // entry as a Handle backing?
      HeapObject heap_object = HeapObject::cast(
          main_thread_isolate()->startup_object_cache()->at(cache_index));
      return slot_accessor.Write(heap_object, GetAndResetNextReferenceType());
    }

    // Find an object in the read-only object cache and write a pointer to it
    // to the current object.
    case kReadOnlyObjectCache: {
      int cache_index = source_.GetInt();
      // TODO(leszeks): Could we use the address of the cached_read_only_object
      // entry as a Handle backing?
      HeapObject heap_object = HeapObject::cast(
          isolate()->read_only_heap()->cached_read_only_object(cache_index));
      return slot_accessor.Write(heap_object, GetAndResetNextReferenceType());
    }

    // Find an object in the shared heap object cache and write a pointer to it
    // to the current object.
    case kSharedHeapObjectCache: {
      int cache_index = source_.GetInt();
      // TODO(leszeks): Could we use the address of the
      // shared_heap_object_cache entry as a Handle backing?
      HeapObject heap_object = HeapObject::cast(
          main_thread_isolate()->shared_heap_object_cache()->at(cache_index));
      DCHECK(
          SharedHeapSerializer::ShouldBeInSharedHeapObjectCache(heap_object));
      return slot_accessor.Write(heap_object, GetAndResetNextReferenceType());
    }

    // Deserialize a new meta-map and write a pointer to it to the current
    // object.
    case kNewMetaMap: {
      Handle<HeapObject> heap_object = ReadMetaMap();
      return slot_accessor.Write(heap_object, HeapObjectReferenceType::STRONG);
    }

    // Find an external reference and write a pointer to it to the current
    // object.
    case kSandboxedExternalReference:
    case kExternalReference: {
      DCHECK_IMPLIES(data == kSandboxedExternalReference,
                     V8_ENABLE_SANDBOX_BOOL);
      Address address = ReadExternalReferenceCase();
      ExternalPointerTag tag = kExternalPointerNullTag;
      if (data == kSandboxedExternalReference) {
        tag = ReadExternalPointerTag();
      }
      return WriteExternalPointer(slot_accessor.external_pointer_slot(),
                                  address, tag);
    }

    case kSandboxedRawExternalReference:
    case kRawExternalReference: {
      DCHECK_IMPLIES(data == kSandboxedExternalReference,
                     V8_ENABLE_SANDBOX_BOOL);
      Address address;
      source_.CopyRaw(&address, kSystemPointerSize);
      ExternalPointerTag tag = kExternalPointerNullTag;
      if (data == kSandboxedRawExternalReference) {
        tag = ReadExternalPointerTag();
      }
      return WriteExternalPointer(slot_accessor.external_pointer_slot(),
                                  address, tag);
    }

    case kInternalReference:
    case kOffHeapTarget:
      // These bytecodes are expected only during RelocInfo iteration.
      UNREACHABLE();

    // Find an object in the attached references and write a pointer to it to
    // the current object.
    case kAttachedReference: {
      int index = source_.GetInt();
      Handle<HeapObject> heap_object = attached_objects_[index];
      return slot_accessor.Write(heap_object, GetAndResetNextReferenceType());
    }

    case kNop:
      return 0;

    case kRegisterPendingForwardRef: {
      HeapObjectReferenceType ref_type = GetAndResetNextReferenceType();
      unresolved_forward_refs_.emplace_back(slot_accessor.object(),
                                            slot_accessor.offset(), ref_type);
      num_unresolved_forward_refs_++;
      return 1;
    }

    case kResolvePendingForwardRef: {
      // Pending forward refs can only be resolved after the heap object's map
      // field is deserialized; currently they only appear immediately after
      // the map field.
      DCHECK_EQ(slot_accessor.offset(), HeapObject::kHeaderSize);
      Handle<HeapObject> obj = slot_accessor.object();
      int index = source_.GetInt();
      auto& forward_ref = unresolved_forward_refs_[index];
      SlotAccessorForHeapObject::ForSlotOffset(forward_ref.object,
                                               forward_ref.offset)
          .Write(*obj, forward_ref.ref_type);
      num_unresolved_forward_refs_--;
      if (num_unresolved_forward_refs_ == 0) {
        // If there's no more pending fields, clear the entire pending field
        // vector.
        unresolved_forward_refs_.clear();
      } else {
        // Otherwise, at least clear the pending field.
        forward_ref.object = Handle<HeapObject>();
      }
      return 0;
    }

    case kSynchronize:
      // If we get here then that indicates that you have a mismatch between
      // the number of GC roots when serializing and deserializing.
      UNREACHABLE();

    // Deserialize raw data of variable length.
    case kVariableRawData: {
      // This operation is only supported for tagged-size slots, else we might
      // become misaligned.
      DCHECK_EQ(TSlot::kSlotDataSize, kTaggedSize);
      int size_in_tagged = source_.GetInt();
      // TODO(leszeks): Only copy slots when there are Smis in the serialized
      // data.
      source_.CopySlots(slot_accessor.slot().location(), size_in_tagged);
      return size_in_tagged;
    }

    // Deserialize raw code directly into the body of the code object.
    case kCodeBody: {
      // This operation is only supported for tagged-size slots, else we might
      // become misaligned.
      DCHECK_EQ(TSlot::kSlotDataSize, kTaggedSize);
      // CodeBody can only occur right after the heap object header.
      DCHECK_EQ(slot_accessor.offset(), HeapObject::kHeaderSize);

      int size_in_tagged = source_.GetInt();
      int size_in_bytes = size_in_tagged * kTaggedSize;

      {
        DisallowGarbageCollection no_gc;
        Code code = Code::cast(*slot_accessor.object());

        // First deserialize the code itself.
        source_.CopyRaw(
            reinterpret_cast<void*>(code.address() + Code::kDataStart),
            size_in_bytes);
      }

      // Then deserialize the code header
      ReadData(slot_accessor.object(), HeapObject::kHeaderSize / kTaggedSize,
               Code::kDataStart / kTaggedSize);

      // Then deserialize the pre-serialized RelocInfo objects.
      std::vector<Handle<HeapObject>> preserialized_objects;
      while (source_.Peek() != kSynchronize) {
        Handle<HeapObject> obj = ReadObject();
        preserialized_objects.push_back(obj);
      }
      // Skip the synchronize bytecode.
      source_.Advance(1);

      // Finally iterate RelocInfos (the same way it was done by the serializer)
      // and deserialize respective data into RelocInfos. The RelocIterator
      // holds a raw pointer to the code, so we have to disable garbage
      // collection here. It's ok though, any objects it would have needed are
      // in the preserialized_objects vector.
      {
        DisallowGarbageCollection no_gc;

        Code code = Code::cast(*slot_accessor.object());
        if (V8_EXTERNAL_CODE_SPACE_BOOL) {
          code.set_main_cage_base(isolate()->cage_base(), kRelaxedStore);
        }
        DeserializerRelocInfoVisitor visitor(this, &preserialized_objects);
        for (RelocIterator it(code, Code::BodyDescriptor::kRelocModeMask);
             !it.done(); it.next()) {
          it.rinfo()->Visit(&visitor);
        }
      }

      // Advance to the end of the code object.
      return (int{Code::kDataStart} - HeapObject::kHeaderSize) / kTaggedSize +
             size_in_tagged;
    }

    case kVariableRepeat: {
      int repeats = VariableRepeatCount::Decode(source_.GetInt());
      return ReadRepeatedObject(slot_accessor, repeats);
    }

    case kOffHeapBackingStore:
    case kOffHeapResizableBackingStore: {
      int byte_length = source_.GetInt();
      std::unique_ptr<BackingStore> backing_store;
      if (data == kOffHeapBackingStore) {
        backing_store = BackingStore::Allocate(
            main_thread_isolate(), byte_length, SharedFlag::kNotShared,
            InitializedFlag::kUninitialized);
      } else {
        int max_byte_length = source_.GetInt();
        size_t page_size, initial_pages, max_pages;
        Maybe<bool> result =
            JSArrayBuffer::GetResizableBackingStorePageConfiguration(
                nullptr, byte_length, max_byte_length, kDontThrow, &page_size,
                &initial_pages, &max_pages);
        DCHECK(result.FromJust());
        USE(result);
        backing_store = BackingStore::TryAllocateAndPartiallyCommitMemory(
            main_thread_isolate(), byte_length, max_byte_length, page_size,
            initial_pages, max_pages, WasmMemoryFlag::kNotWasm,
            SharedFlag::kNotShared);
      }
      CHECK_NOT_NULL(backing_store);
      source_.CopyRaw(backing_store->buffer_start(), byte_length);
      backing_stores_.push_back(std::move(backing_store));
      return 0;
    }

    case kSandboxedApiReference:
    case kApiReference: {
      DCHECK_IMPLIES(data == kSandboxedExternalReference,
                     V8_ENABLE_SANDBOX_BOOL);
      uint32_t reference_id = static_cast<uint32_t>(source_.GetInt());
      Address address;
      if (main_thread_isolate()->api_external_references()) {
        DCHECK_WITH_MSG(reference_id < num_api_references_,
                        "too few external references provided through the API");
        address = static_cast<Address>(
            main_thread_isolate()->api_external_references()[reference_id]);
      } else {
        address = reinterpret_cast<Address>(NoExternalReferencesCallback);
      }
      ExternalPointerTag tag = kExternalPointerNullTag;
      if (data == kSandboxedApiReference) {
        tag = ReadExternalPointerTag();
      }
      return WriteExternalPointer(slot_accessor.external_pointer_slot(),
                                  address, tag);
    }

    case kClearedWeakReference:
      return slot_accessor.Write(HeapObjectReference::ClearedValue(isolate()));

    case kWeakPrefix: {
      // We shouldn't have two weak prefixes in a row.
      DCHECK(!next_reference_is_weak_);
      // We shouldn't have weak refs without a current object.
      DCHECK_NE(slot_accessor.object()->address(), kNullAddress);
      next_reference_is_weak_ = true;
      return 0;
    }

    case CASE_RANGE(kRootArrayConstants, 32): {
      // First kRootArrayConstantsCount roots are guaranteed to be in
      // the old space.
      static_assert(static_cast<int>(RootIndex::kFirstImmortalImmovableRoot) ==
                    0);
      static_assert(kRootArrayConstantsCount <=
                    static_cast<int>(RootIndex::kLastImmortalImmovableRoot));

      RootIndex root_index = RootArrayConstant::Decode(data);
      Handle<HeapObject> heap_object =
          Handle<HeapObject>::cast(isolate()->root_handle(root_index));
      return slot_accessor.Write(heap_object, HeapObjectReferenceType::STRONG);
    }

    case CASE_RANGE(kHotObject, 8): {
      int index = HotObject::Decode(data);
      Handle<HeapObject> hot_object = hot_objects_.Get(index);
      return slot_accessor.Write(hot_object, GetAndResetNextReferenceType());
    }

    case CASE_RANGE(kFixedRawData, 32): {
      // Deserialize raw data of fixed length from 1 to 32 times kTaggedSize.
      int size_in_tagged = FixedRawDataWithSize::Decode(data);
      static_assert(TSlot::kSlotDataSize == kTaggedSize ||
                    TSlot::kSlotDataSize == 2 * kTaggedSize);
      int size_in_slots = size_in_tagged / (TSlot::kSlotDataSize / kTaggedSize);
      // kFixedRawData can have kTaggedSize != TSlot::kSlotDataSize when
      // serializing Smi roots in pointer-compressed builds. In this case, the
      // size in bytes is unconditionally the (full) slot size.
      DCHECK_IMPLIES(kTaggedSize != TSlot::kSlotDataSize, size_in_slots == 1);
      // TODO(leszeks): Only copy slots when there are Smis in the serialized
      // data.
      source_.CopySlots(slot_accessor.slot().location(), size_in_slots);
      return size_in_slots;
    }

    case CASE_RANGE(kFixedRepeat, 16): {
      int repeats = FixedRepeatWithCount::Decode(data);
      return ReadRepeatedObject(slot_accessor, repeats);
    }

#ifdef DEBUG
#define UNUSED_CASE(byte_code) \
  case byte_code:              \
    UNREACHABLE();
      UNUSED_SERIALIZER_BYTE_CODES(UNUSED_CASE)
#endif
#undef UNUSED_CASE
  }

  // The above switch, including UNUSED_SERIALIZER_BYTE_CODES, covers all
  // possible bytecodes; but, clang doesn't realize this, so we have an explicit
  // UNREACHABLE here too.
  UNREACHABLE();
}

#undef CASE_RANGE_ALL_SPACES
#undef CASE_RANGE
#undef CASE_R32
#undef CASE_R16
#undef CASE_R8
#undef CASE_R4
#undef CASE_R3
#undef CASE_R2
#undef CASE_R1

template <typename IsolateT>
Address Deserializer<IsolateT>::ReadExternalReferenceCase() {
  uint32_t reference_id = static_cast<uint32_t>(source_.GetInt());
  return main_thread_isolate()->external_reference_table()->address(
      reference_id);
}

template <typename IsolateT>
ExternalPointerTag Deserializer<IsolateT>::ReadExternalPointerTag() {
  uint64_t shifted_tag = static_cast<uint64_t>(source_.GetInt());
  return static_cast<ExternalPointerTag>(shifted_tag
                                         << kExternalPointerTagShift);
}

template <typename IsolateT>
HeapObject Deserializer<IsolateT>::Allocate(AllocationType allocation, int size,
                                            AllocationAlignment alignment) {
#ifdef DEBUG
  if (!previous_allocation_obj_.is_null()) {
    // Make sure that the previous object is initialized sufficiently to
    // be iterated over by the GC.
    int object_size = previous_allocation_obj_->Size(isolate_);
    DCHECK_LE(object_size, previous_allocation_size_);
  }
#endif

  HeapObject obj = HeapObject::FromAddress(isolate()->heap()->AllocateRawOrFail(
      size, allocation, AllocationOrigin::kRuntime, alignment));

#ifdef DEBUG
  previous_allocation_obj_ = handle(obj, isolate());
  previous_allocation_size_ = size;
#endif

  return obj;
}

template class EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) Deserializer<Isolate>;
template class EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
    Deserializer<LocalIsolate>;

}  // namespace internal
}  // namespace v8